IoT-Based Mining Safety and Air QuBlynk System

A. Chaitanya, P. Rahul, A. Siddhartha and Mohan Dholvan
Sreenidhi Institute of Science and Technology, Ghatkesar, Medchal District, Hyderabad, India
19311a19e8@sreenidhi.edu.in

I. INTRODUCTION

The mining industry is highly concerned about industrial safety. To ensure worker safety and productivity, communication and healthcare are crucial. To monitor and respond to potential hazards, reliable communication is essential, while medical personal protective equipment and examinations are critical. The mining industry has to improve safety measures because the existing safety systems have flaws. To minimize dangers and safeguard workers, the mining industry uses safety systems like ventilation, emergency response plans, and gas monitoring. Fresh air is provided via ventilation, dangerous gasses are detected by gas monitoring, and accidents are reduced by emergency action procedures. These systems have drawbacks, including the inability to detect all gasses, insufficient airflow, and a limited ability to reduce accidents. Therefore, these systems need to be improved. By enhancing communication and utilizing the IoT (Internet of Things) to monitor air quality, toxicity, and workers’ vital signs, our solution increases safety in the mining industry. Real-time monitoring and reporting of dangers is made possible via sensors, an esp32 board, and the blynk software.

Monitoring workers’ vital signs ensure their health, while the method seeks to raise productivity in the mining sector. Our proposed system significantly enhances safety in the mining industry through the use of advanced technology and innovative ideas. The mining industry is significant to the global economy because it supplies numerous industries with the raw minerals they need. However, there are other substantial dangers and hazards that are connected to mining that could have a negative impact on the health and safety of workers. Therefore, it is essential to take action to reduce these hazards and guarantee the safety and productivity of employees. The use of safety measures including gas monitoring, ventilation, and emergency response plans is one of the main ways to increase safety in mining operations. Although these solutions have some effectiveness, there are several issues that need to be resolved. For instance, faulty ventilation systems can result in poor air quality and gas monitoring systems that can only detect specific gasses can have a severe influence on worker health.

Our proposal suggests a remedy that uses the Internet of Things (IoT) to improve communication and monitoring in mining operations as a means of mitigating these limitations. Our system provides real-time monitoring and reporting of dangers, such as air quality, toxin levels, and workers’ vital signs. This is accomplished using sensors, ESP32 board, and Blynk software. Through the use of IoT technology, our system can detect potential hazards early, enabling a more proactive approach to safety and the implementation of preventive measures. The proposed system has the potential to revolutionize the mining industry by providing a safer and more efficient working environment for miners. Our solution can protect employees from danger and boost productivity by leveraging technology to improve communication and monitor possible hazards in real-time. For instance, the system can notify managers to give workers timely support and relaxation if their vital indicators suggest they are tired or uncomfortable. Our solution can also assist mining businesses in adhering to rules regarding worker safety and environmental preservation. Our approach can assist businesses in maintaining compliance and avoiding potential fines by offering thorough monitoring of air quality and toxin levels.

 Article Info

<table>
<thead>
<tr>
<th>Article history:</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received May 6th, 2023</td>
<td>Industrial safety is a major issue for the mining sector. Healthcare and effective communication are crucial for worker safety and productivity. Reliable communication is vital for monitoring possible threats and responding to them, while medical personnel protection equipment and examinations are essential. Given that the current safety systems are inadequate, the mining industry must enhance its safety measures. The mining sector uses safety systems like ventilation, emergency response plans, and gas monitoring to reduce risks and protect workers. Ventilation provides clean air, gas monitoring identifies hazardous gases, and emergency action protocols lessen accidents. These systems have shortcomings, such as a limited ability to prevent accidents, an insufficient airflow, and an inability to detect all gases. As a result, these systems require improvement. Our solution raises safety in the mining sector by boosting communication and utilizing the IoT (Internet of Things) to monitor air quality, toxicity, and miners’ vital signs. Sensors, an esp32 board, and the blynk software enable real-time monitoring and reporting of risks. In addition to ensuring the health of the workforce, this strategy aims to increase mining production. Our proposed system significantly enhances safety in the mining sector by leveraging advanced technology and innovative ideas.</td>
</tr>
<tr>
<td>Revised Aug 1st, 2023</td>
<td></td>
</tr>
<tr>
<td>Accepted Sep 11th, 2023</td>
<td></td>
</tr>
</tbody>
</table>

Index Terms:
ESP32
Air quality detection
Air purifier
Blynk
IoT

ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 15 No. 4
jtec.uten.edu.my
Although the mining industry is essential for global economic development, it also poses significant risks to worker safety and health. In order to increase communication and monitoring in mining operations, our study suggests a solution that makes use of IoT technology. Our solution seeks to safeguard workers' welfare, improve safety, and increase productivity in the mining industry by leveraging cutting-edge technology and creative methods. Our suggested solution can offer the mining industry other benefits in addition to the gains in safety and production. For instance, our system can gather a lot of information about the health of the workforce, the surroundings, and equipment performance. Using this information, prediction models that can see possible problems before they emerge can be created. This strategy can save downtime, boost efficiency, and prolong the life of the equipment. Additionally, mining companies can use the information gathered by our technology to enhance their entire safety culture. Mining businesses can take proactive steps to enhance safety conditions and lower the frequency of accidents by analyzing the data and spotting trends. Additionally, by sharing this data across the sector, businesses may benefit from one another's expertise and best practices, making the mining sector safer and more productive. The scalability of our suggested approach is another benefit. Any size of mining operation, from small-scale enterprises to large-scale mines, can use the system.

In a nutshell, our proposal suggests a method for enhancing communication and monitoring in mining operations using IoT technology. Our solution seeks to safeguard workers' welfare, improve safety, and increase productivity in the mining industry by providing real-time monitoring and reporting of dangers. Through the provision of a safer and more productive working environment for miners, our suggested technology has the potential to completely transform the mining industry. Our solution can assist create predictive models, enhance safety culture, and boost productivity by gathering a lot of data. Additionally, our suggested solution is scalable and may be used in all sizes of mining operations. We think that our suggested solution may significantly improve safety in the mining industry with the help of mining firms and technology providers.

II. LITERATURE SURVEY

In 2016, Huang Mengtao and Feng Zunxiang proposed an exhaust gas purification system based on electrostatic adsorption. The system aims to purify the exhaust gas by capturing harmful pollutants through electrostatic adsorption, which can help to reduce air pollution levels.[1]

In 2018, Kennedy Okokpujie and Etinosa Noma-Osaghae proposed a smart air pollution monitoring system that constantly keeps track of air quality in an area and displays the air quality measured on an LCD screen. This system aims to raise awareness about air pollution and provide real-time information on air quality levels.[2]

In 2019, Ms. S. Menaga and Ms. J. Paruvathavardhini proposed an air quality monitoring system using vehicles based on IoT technology. The system has the ability to monitor the air pollution of any required area by fitting a module in a moving vehicle. This system aims to provide a comprehensive view of air pollution levels in different areas.[3]

In 2020, Farih Bin Deraman and Asrudin Bin Mat Ali proposed an innovation of an air quality detector in a passenger car using IoT technology. The system has a power window system that can be controlled automatically. This system detects high levels of CO2 in a car and actuates the power window to roll down automatically. When the CO2 levels in the car are back to a safe level, the window closes automatically. This system aims to provide a safe and comfortable driving experience.[4]

In 2021, Xue Dong proposed a design of a filtering car air purifier that can effectively improve harmful substances such as formaldehyde in a car. This system aims to provide a healthier environment for drivers and passengers in the car.[5]

In 2022 Jacqueline Waworundeng, Priana Sari Adrian proposed the Air Quality Monitoring and Detection System in Vehicle Cabin Based on Internet of Things which is air quality monitoring and detection system, implemented in the vehicle cabin to raise awareness and help humans to monitor the air quality.[6]

Overall, these proposals demonstrate the efforts being made to tackle air pollution, and the diverse approaches being taken to address this global problem.

III. PROPOSED SYSTEM

The sensors possess the ability to identify various gas concentrations, encompassing methane, propane, hexane, ammonia, and carbon monoxide, alongside particulate matter, such as smoke and fine dust, in the proximity of the miner. The ESP-32 microcontroller is assigned a threshold value, and when this value is surpassed, an alarm is triggered. This alarm serves as a reminder for the mine worker to wear the mask provided. The process of purifying the surrounding air is initiated by the air filtration system, which then propels the decontaminated air into the respiratory mask. The LCD (Liquid crystal display) integrated into the system will exhibit the detected gas values for all gasses. The same values will also be accessible through the Blynk application. The removal of the mask by the worker is contingent upon a reduction in the concentration of pollutants. In the event of a requirement, the miner is provided with a source of oxygen through the oxygen tank situated within the backpack.
capable to detect concentrations of CO as low as 20 ppm. The MQ-7 sensor’s diminutive form factor and minimal energy consumption render it an optimal candidate for assimilation into diverse safety and surveillance systems. The sensor demonstrates a response time of less than 10 seconds and a recovery time of less than 30 seconds.[7]

D. **MQ-135 Sensor**

The MQ-135 sensor is a gas sensor utilized for the detection of various gasses, such as ammonia, nitrogen oxides, benzene, smoke, and CO2. The operational mechanism of the device is predicated upon the alteration in resistance of a sensing component upon exposure to a particular gas. The sensing apparatus comprises a diminutive heating component that elevates the temperature of the sensing element, and an electrical circuit that gauges the alterations in resistance. The sensitivity range of the MQ-135 sensor is reported to be 1 to 50 ppm for nitrogen dioxide, 10 to 300 ppm for benzene, and 100 to 10000 ppm for carbon dioxide. The device functions at a voltage of 5 volts and exhibits a power consumption of 800 mill watts. The sensor exhibits a response time of under 10 seconds and a recovery time of under 60 seconds. The compact dimensions of this entity facilitate its seamless integration into diverse systems and devices.[7]

E. **DHT11 Sensor**

This is a digital device that has been specifically engineered to gauge the temperature and humidity levels present in the surrounding environment. The device is composed of a capacitive humidity sensor and a thermostat, which are utilized to identify variations in relative humidity and temperature, correspondingly. This sensor functions within a voltage range of 3.5V to 5.5V and has the capacity to gauge humidity levels between 20 percent to 90 percent with a precision of ±5 percent. The device is capable of measuring temperature within the range of 0°C to 50°C, exhibiting a precision of ±2°C. The data collected by the sensor is transmitted in a digital signal format through a single wire. This signal is then interpreted and analyzed by a microcontroller or other computing device.[8]

F. **Pulse oxy sensor**

A pulse oxy sensor is situated on a patient’s finger, earlobe, or another suitable location. The sensor emits dual wavelengths of light, specifically red and infrared, that are assimilated by oxygenated and deoxygenated hemoglobin present in the blood. Unabsorbed light by hemoglobin traverses through the tissue and is perceived by the sensor. The microprocessor of the sensor examines the data on light absorption and computes the values for SpO2 and pulse rate. The circuitry of the sensor generally comprises a light source, photo detectors, and an electronic circuit that amplifies and filters the signal. It is a commonly employed medical device in various healthcare settings, including hospitals, clinics, and ambulances, for the purpose of monitoring patients afflicted with respiratory and cardiovascular ailments. Furthermore, contemporary wearable technologies integrate pulse oximetry sensors to track physical fitness and sleep-related parameters.[9]

G. **HEPA Filter**

HEPA filters are a type of air filtration system that is designed to effectively eliminate airborne particles and
pollutants from the surrounding environment. HEPA filters are extensively utilized in diverse settings such as residential dwellings, workplaces, and healthcare centers. Air purifiers, Hoover cleaners and HVAC systems are frequently equipped with them in residential settings. Within medical settings, clean rooms, operating rooms, and isolation rooms employ them as a means of mitigating the transmission of contagious illnesses. HEPA filters are evaluated according to their efficacy in eliminating particles from the atmosphere. In order to meet the criteria for a genuine HEPA filter, it is necessary for the filter to eliminate a minimum of 99.97 percent of particles that possess a size of 0.3 microns or greater. Certain High Efficiency Particulate Air (HEPA) filters are capable of eliminating particles that are smaller in size, such as ultrafine particles that measure less than 0.1 microns.[10]

H. Activated carbon filter
These filters are widely used to purify air by removing impurities and harmful contaminants. The filters are composed of activated carbon, a form of carbon that has undergone oxygen treatment to produce a considerably porous substance with an extensive surface area. The filter has the capability to be tailored towards particular categories of impurities, for instance, volatile organic compounds (VOCs), chlorine, and other chemical substances. These filters are frequently employed in air purifying devices, water treatment systems, and facial masks as a means of safeguarding against hazardous contaminants. These entities exhibit a high degree of efficacy in eliminating various types of odors, including those emanating from cigarette smoke or cooking activities, within the atmosphere.[11]

I. ESP32 Board
The ESP32 board is a microcontroller development board that is extensively utilized for Internet of Things (IoT) applications due to its robustness. The device is founded on the ESP32 microcontroller, which encompasses two central processing units and provides compatibility with both Wi-Fi and Bluetooth communication protocols. The ESP32 board is endowed with a diverse array of functionalities, including but not limited to GPIO (General purpose input/output) pins, ADC (Analog to digital converter), DAC (Digital to analog converter), SPI (Serial peripheral interface), I2C (Inter integrated controller), UART (Universal asynchronous receiver/transmitter), among others, rendering it a suitable choice for a multitude of undertakings. The device’s suitability for IoT applications is attributed to its diminutive size, energy efficiency, and capacity to function on battery power.[12]

J. Blynk Software
Blynk is a software application that facilitates remote control of Internet of Things (IoT) devices through both mobile and web platforms. The software enables users to create personalized and dynamic graphical user interfaces (GUI) without necessitating any programming expertise. Blynk provides an extensive selection of widgets, such as buttons, sliders, graphs, and displays, that can be conveniently placed onto a digital canvas through a drag-and-drop interface. Blynk libraries are available for popular platforms such as Arduino, Raspberry Pi, ESP32, and NodeMCU, enabling users to establish a connection between their IoT devices and Blynk. Blynk offers cloud connectivity and secure communication protocols to safeguard user data.[13]

K. 16 by 2 LCD Display
The 16 by 2 LCD display is a frequently employed electronic display module consisting of 16 columns and 2 rows of characters, enabling the presentation of a maximum of 32 characters at any given time. Alphanumeric displays are commonly employed in diverse applications, including but not limited to digital clocks, thermometers, and home automation systems, as they are capable of exhibiting both alphabetical and numerical characters. The management of the display is facilitated by a microcontroller, which transmits signals to the display module, thereby enabling the exchange of data input and output. The 162 LCD display is a frequently selected option for electronic projects that necessitate fundamental display capabilities due to its modest interface and low power consumption.[14]
VI. RESULT

The efficacy of MQ-series gas sensor in identifying atmospheric contaminants is demonstrated by the favorable performance of the proposed system. The sensors possess exceptional sensitivity and precision, rendering them well-suited for scenarios that demand meticulous air quality monitoring. The combination of the ESP32 microcontroller and the Blynk software offers a proficient and user-centric platform for remotely managing the system and acquiring real-time data.

VII. CONCLUSION

The utilization of MQ sensors and ESP32 board in conjunction with Blynk software for air quality monitoring presents a dependable and economical approach to identify the levels of diverse atmospheric contaminants. The device provides accurate output according to atmospheric conditions and also air purifier is able to purify toxic air up to an extent. The system employs a variety of sensors to identify diverse categories of pollutants, such as carbon monoxide, nitrogen dioxide etc. The data obtained from the sensors is exhibited on both an LCD screen and the Blynk application. The utilization of Blynk software enables the remote supervision and manipulation of the system, rendering it a fitting resolution for the surveillance of indoor air quality in residential, commercial, and other indoor settings. In general, this project showcases the capacity of affordable and readily available air quality monitoring systems to aid mine workers and industries in making informed judgments regarding their ambient surroundings. Subsequent research endeavors may concentrate on broadening the scope of identified contaminants by integrating supplementary sensors or amalgamating machine learning algorithms to enhance precision and instantaneous analysis. However, this project establishes a robust basis for developing efficient air quality monitoring systems utilizing easily accessible components and software.

REFERENCES

