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 This paper presents the construction of Matlab-Simulink and LabView models for a novel nonlinear 

dynamic system of equations in an eight-dimensional (8D) phase space. The Lyapunov exponent 
spectrum and Kaplan-York dimension were calculated with fixed parameters of the 8D dynamical 
system. The presence of two positive Lyapunov exponents indicates hyperchaotic behavior. The 
fractional Kaplan-York dimension shows the fractal structure of strange attractors. An adaptive 
controller was used to stabilize the 8D chaotic system with unknown system parameters, and an 
active control method was derived to achieve global chaotic synchronization of two identical 8D 
chaotic systems with unknown system parameters. Using the results from Matlab-Simulink and 
LabView models, a chaotic signal generator for the 8D chaotic system was implemented in the 
Multisim environment. The simulation results of chaotic behavior in the Multisim environment 

demonstrate similar behavior compared to simulation results from Matlab-Simulink and LabView 
models. To visualize the new 8D chaotic system, we employed an Arduino Uno board along with 
eight light-emitting diodes (LEDs). Furthermore, we demonstrated the capability to simulate the 
new 8D chaotic system in the Proteus 8 environment using the Arduino Uno microcontroller. This 
advancement in the understanding and implementation of chaotic systems opens doors to numerous 
possibilities in the realm of secure communication and control systems. 

 

Index Terms: 
Chaotic behavior 
Chaos generator 
Computer simulation 
Circuit design 
 

I. INTRODUCTION 

Deterministic chaos is now increasingly applied in solving 

various engineering problems, particulary those related to 

the design of telecommunication systems [1, 2]. Recent 

advancements have enabled the physical modeling of 

nonlinear dynamic equations through the deployment of 

electronic circuits to create new chaos generators. These 

generators provide a viable alternative to numerical 
modeling. One of the most commonly studied dynamical 

systems that exhibits chaotic behavior is the Lorentz system 

[3], which is used to describe free convection in an 

atmosphere. An electronic circuit to generate chaotic signals 

that behaves similarly to those predicted by numerical 

experiments based on Lorentz equations was crafted in [4]. 

The authors of [4] demonstrated an approach to secure data 

exchange using synchronized chaotic systems, implemented 

via the Lorenz system in both the transmitter and receiver. 

This unique modulation process involves the addition of a 

chaotic masking signal to the information message at the 
transmitter, and subsequently, the message is retrieved 

during the demodulation process by deducting the chaotic 

signal produced in the receiver. 

The increasing interest in applying chaotic dynamics for 

engineering purposes is noteworthy. The study in [4] 

stimulated the development of electronic chaos generators 

based on a variety of equations, such as the Rössler 

equations [5,6], Rikitake equations [7], modified Lorentz 

equations [8], and Rucklidge equations [9]. More recently, 

systems producing hyperchaotic oscillations have been 

developed, such as the Liu systems [10,11], Chen systems 

[12], and new modifications of the Lorentz equations 

[13,14] and Rikitake equations [15,16].  

This paper focuses on the nonlinear 8D dynamic 

equationa that describe convection in a non-uniformly 

rotating electrically conductive fluid in a helical magnetic 
field [17]. These equations were derived in a similar manner 

to the Lorentz equations [3], utilizing a minimum order of  

the Fourier series to represent physical fields. Unlike the the 

3D Lorentz equations, these equations resulted in a higher 

phase space dimension nonlinear dynamic system of 

equation  (8D). Chaotic systems with attractor dimensions 

greater than 3D offer broader practical applications, 

particularly in secure communication where high- 

dimensional chaotic systems are preferred. These systems, 

due to the presence of more than one Lyapunov exponent,  

exhibit complex dynamics, thereby increasing the security 
of information transmission. Given these traits, high-
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dimensional chaotic systems are highly suitable for secure 

information transmission. Therefore, the computer 

simulation of chaotic signals and the exploration of circuit 

implementation strategies for chaotic oscillation generators 

represent critical challenge that warrant investigation. 

The aim of this paper is to create computer models of an 8D 

chaotic dynamic system leveraging the capabilities of the 

Matlab-Simulink environment and LabView software. To 
actualize the circuit of the newly developed chaos generator 

circuit, we employe the NI Multisim package. This software 

allows us to illustrate the chaotic dynamics through signal 

oscillograms and attractor phase portraits. Moreover, this 

study emcompasses a practical implemention of a new 8D 

chaotic system using the Arduino Uno board. 

II.  BASIC EQUATIONS OF THE 8D CHAOTIC 

SYSTEM 

According to [17], the dynamic system of equations that 

describes weakly non-linear convection in an electrically  

conductive fluid with non-uniform rotation within a helical 

magnetic field can be expressed as follows: 
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Equation (1) describes a dynamic system, where the dot 

over the symbol signifies differentiation with respect to time 

t . The variables , ,X V V , , ,U W W , and ,Y Z  represent the 

amplitudes of disturbances in velocity, magnetic fields and 

temperature fields respectively. The parameters 

, , , , , , , ,H H Ta T Pm Pr Ro b  and R  are real constants, while 

Ra (the Rayleigh number) is a bifurcation parameter. The 
last two equations of system (1) are comparable to the 

equations found in the Lorentz system [3], which also 

exhibit chaotic behavior. Thus, the nonlinear system of 

equations (1) falls within the category of Lorentz-type 

equations in an eight-dimensional phase space (8D). In a 

specific case where there is only a constant external axial 

magnetic field, equations (1) reduce to the six-dimensional 

Lorentz equations, which were numerically analyzed in [18]. 

The trajectory in the 8D-dimensional phase space, as 

described by the nonlinear system of equations (1) is 

dependent on an extensive range of dimensionless 

parameters, specifically 11 parameters represented by 

, , , , , , , ,H H Ta T Pm Pr Ro b . 

Additionally, system (1) exhibits hyperchaotic behaviour 

with two positive Lyapunov exponents, making it 

appropriate for secure communication applications. The 
fractal structure of the attractors is indicated by the 

fractional Kaplan-York dimension. Moreover, system (1) 

can be stabilised using an adaptive controller and global 

chaotic synchronisation of two identical systems can be 

achieved using an active control method. The properties 

make system (1) a promising candidate for various 

applications in chaos-based secure communication and 

control systems. Using the values of the parameters 
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we write system (1) in a form more convenient for 
modeling: 
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In this scenario, new variables were introduced: 

1 2 3 4 5 6 7 8= , = , = , = , = , = , ,x X x Y x Z x U x V x W x V x W  . 

Subsequently, equations (3) are supplemented with the 
initial conditions: 

1 2 3 4 5 6 7 8(0) = (0) = (0) = (0) = (0) = (0) = 1(0) (0)x x x x x x x x  . 

Equations (3) contain a singular parameter R , whose 

changes allow for the exploration of a one-parameter set of 

solutions. To study the chaotic behaviour of system (3), 

various numerical methods can be employed.These include  
the Euler method, the Runge-Kutta method, or the fourth-

order Adams-Bashforth method. Additionally, one can 

calculate the Lyapunov exponents, which serve as a measure 

to quantify the degree of chaos in the system, and the 

Kaplan-Yorke dimension, which characterizes the fractal 

structure of the strange attractor. In addition to numerical 

simulations, it is also possible to investigate the stability of 

the system and its synchronization properties, which are 

important for potential applications in secure 

communication. Finally, a chaotic signal generator can be 

designed based on system (3) for experimental verification 
of its chaotic properties. Furthermore, we aim to examine 

the chaotic behaviour of system (3) particularly tfor the 

value of 58R  . 

III. LYAPUNOV EXPONENTS AND KAPLAN-YORKE 

DIMENSION 

   One of the important criteria characterizing the chaotic 

behavior of a nonlinear dynamical system is the spectrum of 

Lyapunov exponents. The maximum Lyapunov exponent is 

a measure of the rate of separation between initially close 

trajectories in the phase space of a chaotic system. The 
Benettin algorithm [19,20] is a widely used method for the 

numerical computing of Lyapunov exponents. In this work, 

the maximum Lyapunov exponent = 0.0974135
max

L  was 

calculated for system (3) at a specific parameter value of 
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= 58R . This was carried out following the approach 

described in [21]. Then, all all Lyapunov exponents were 
determined more accurately using the Gram-Schmidt 

orthogonalization. 

1 2 3

4 5 6

7 8

= 0.0914666, = 0.0232093, = 0.549477,

= 0.983332, = 1.01154, = 1.01105,

= 1.15546, = 1.77049

L L L

L L L

L L



  

 

 (4) 

Figure 1: Convergence plot of the Lyapunov spectrum for the 
system (3). 
 

As shown in Figure 1, the spectrum of Lyapunov 

exponents (4) has two positive terms 
1 2
,L L ; therefore, 

system (3) shows hyperchaotic behavior. The maximum 

Lyapunov exponent of the new hyperchaotic system (3) 

corresponds to the value 
1

= 0.0914666
max

L .  

The sum of the Lyapunov exponents in (4) is negative

1 2 3 4 5 6
= 6.36667 < 0L L L L L L      , indicating that the 

hyperchaotic system (3) is dissipative. The Kaplan-York 

dimension of the new hyperchaotic system (3) is calculated 

as  

 

1 2

3

= 2 2.20184
| |

KY

L L
D

L


   (5) 

This shows the high complexity of system (3). Figure 1 
depicts the dynamics of the Lyapunov exponents of the 

hyperchaotic system (3). 

IV. ADAPTIVE CONTROL OF THE 8D CHAOTIC 

SYSTEM 

In this section, we consider an adaptive controller to 

stabilize the chaotic system (3) with an unknown system 

parameter. We represent system (3) in the following form: 
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where 1 2 3 4 5 6 7 8, , , , , , ,u u u u u u u u  are adaptive controls to be 

determined using estimate ( )R t  for the unknown parameter 

R . We consider the adaptive feedback control law  
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In (7), 1 2 3 4 5 6 7 8, , , , , , ,k k k k k k k k are positive constants. 

( )R t is an estimate for the unknown system parameter R . 

Upon substituting (7) into (6), we obtain:  
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Then, the parameter estimation error is defined by 

( )e R R t  . After differentiating e  with respect to t, we 

get 

 

( )de dR t

dt dt
   (9) 
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Employing adaptive control theory, we define Lyapunov 

function as: 

 

2 2 2 2 2 2 2 2 2
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1
( )

2
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 It is obvious that 𝑉 is a positive definite function. 

Differentiating 𝑉 from (10), we can obtain: 
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From (11), we obtain the parameter update law as: 
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Therefore, the adaptive control law (7) and the parameter 

update law (12) can globally and exponentially stabilize the 

8D chaotic system (3) with unknown system parameter R  

for all initial conditions. 

V. ADAPTIVE SYNCHRONIZATION OF THE 

IDENTICAL 8D CHAOTIC SYSTEM 

The adaptive synchronization of identical 8D chaotic 

systems was examined with an unknown system parameter 
R . For the drive system, system (3) was selected and for the 

response system, the following system was used. 
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where 1 2 3 4 5 6 7 8, , , , , , ,y y y y y y y y  are the states and 

1 2 3 4 5 6 7 8, , , , , , ,u u u u u u u u  are the controllers to be designed to 

achieve global chaos synchronization between systems (3) 

and (13). The synchronization error between the identical 

chaotic systems is defined as ( ) ( )i i iy t x t   , 

( 1,2,3,4,5,6,7,8)i  . 

 

1 1 2 4 5

2 2 1 1 3

3 3 1 2

4 4 1

5 5 1 6

6 6 4 5

7 7 4 8

8 8 1 7

1

1 3 2

1 2 3

4

5

6

7

8

= 2 0.1

1
= (

10

1 8
= (

10 3

1
=

10

= 8.21 2

1
= 24.65

10

28.2 2

1
0.47

10

)

)

R

y

y

u

y x x u

y x x u

u

u

u

u

u

   

 



  

 

  

 





 

 



 



 

   

  

 

 

  

  

   

   

 

  



    
  

 






















 (14) 

 

The adaptive control law was written as: 
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where 1 2 3 4 5 6 7 8, , , , , , ,k k k k k k k k
 are positive constants 

controlling the synchronization speed,
( )R t

 is the estimate 

of the unknown parameter R .  

The parameter estimation error is defined by 
( )Re R R t 

. 

As a result, the error dynamics was obtained: 
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Next, the quadratic Lyapunov function is defined as: 
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Taking into account that ( ) /Re dR t dt  , it is found that 
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From (18), the parameter update law is obtained as: 
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Thus, the adaptive synchronization of two identical 8D 

chaotic systems with an unknown system parameter is 

achieved using the proposed adaptive control law (15) and 

parameter update law (19). The stability of the synchronized 

system is guaranteed by Lyapunov's stability theory, where a 

positive definite function   and a negative function 

0d dt   are used to ensure asymptotic stability at the 

origin of the equilibrium state. Consequently, the error 

between the drive and response systems decreases 

exponentially 0Re   over time t  . 

 
Figure 2: Time history of the controlled chaotic system. 

 

 
 

Figure 3: Synchronization of the states 
1 1 2 2 3 3 4 4, , ,x y x y x y x y     of 

the chaotic systems. 

VI. RESULTS AND DISCUSSION 

For the numerical simulations, the fourth-order Runge-

Kutta method is used to solve the novel system (6). The 

bifurcation parameter value of the novel chaotic system (6) 

is taken as in the chaotic case, i. e. 58R  . The control 

gains are chosen as 1 7k  , 2 4k  , 3 3k  , 4 3k  , 5 4k  , 

6 6k  , 7 8k  , and 8 11k  . The initial values of the 

chaotic system (6) are taken as 

 
Figure 4: Synchronization of the states 

5 5 6 6 7 7 8 8, , ,x y x y x y x y     of 

the chaotic systems. 

 

 
Figure 5: Time-history of the synchronization errors. 

 

1 2 3 4

5 6 7 8

(0) = (0) = (0) = (0) = 1,

(0) = (0) = 1(0) (0)

x x x x

x x x x 
. 

 

The initial value of the parameter estimate is taken as 

(0) 59R  . 

Figure 2 shows the time history of the controlled novel 

chaotic system. It is proven that the controlled system (6) is 

globally exponentially stable when the adaptive control law 

(7) and the parameter update law (12) are implemented. 

For numerical simulations, the bifurcation parameter value 

of the novel drive system (3) and the novel response system 

(13) is taken as in the chaotic case, viz. 58R  . We take the 

gain constants as 1 3k  , 2 3k  , 3 4k  , 4 2k  , 5 4k  , 

6 6k  , 7 8k  , and 8 10k  . 

 

The initial conditions of the drive system (3) are taken as: 

1 2 3 4

5 6 7 8

(0) = (0) = (0) = (0) = 1,

(0) = (0) = 1(0) (0)

x x x x

x x x x 
 

 

The initial values of the response system (13) are chosen as: 

1 2 3 4

5 6 7 8

(0) = (0) = (0) = (0) = 5,

(0) = (0) = 5(0) (0)

y y y

y y y

y

y 
 

 
The initial condition of the bifurcation parameter estimate is 

taken as (0) 60R  . 

 

The timing diagrams of 1 1 2 2 3 3 4 4, , ,x y x y x y x y    , 

5 5 6 6 7 7 8 8, , ,x y x y x y x y     are shown in Figure 3 and 4. 

Figure 3 and 4 describe the complete synchronization of the 
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identical novel chaotic systems (3) and (13). Figure 5 shows 

the convergence of the synchronization errors 

1 2 3 4 5 6 7 8, , , , , , ,         to zero exponentially with time. 

 

 
Figure 6: Matlab-Simulink model for equations (3). The simulation data is 

displayed using the To Workspace blocks. 

 

 

 
Figure 7: The phase portraits in the planes a) 

1 2x x , b) 
1 4x x , c) 

1 5x x , d) 

1 6x x e) 
1 7x x , f) 

1 8x x , g) 
2 3x x , h) 

2 4x x , i) 
2 5x x . 

VII. MATLAB-SIMULINK MODEL 

The system of equations (3) was numerically solved using 

a model developed within Matlab-Simulink environment. 

This model consists of interconnected blocks for 

amplification, summation, subtraction, multiplication, 

integration, and signal recording. Figure 6 shows a diagram 

of the Matlab-Simulink model, while Figures 7 and 8 depict 

the results of the simulation for the parameter = 58R . The 

phase portraits in Figures 7 and 8 show the complexity of 

the trajectories, which is a distinctive feature of strange 

attractors. 

It is worth noting that directly implementing equations (3) 

in an electronic circuit poses certain difficulty. The dynamic 

variables 1 5 6 7 8
, , , ,x x x x x  in (3) occupy a wide dynamic range 

with values that go beyond typical power supply limitations. 

In practical electronic circuits, operational amplifiers 

typically operate within a voltage range of -15 V to +15 V. 

This issue can be mitigated through a simple transformation 

of variables in the dynamic system [4]. For our case, we 

need to rescale the following variables: 

1 1 5 5 6 6 7 7 8 8= 10 , = 20 , = 10 , = 10 , = 5x X x X x X x X x X .  

The remaining variables are simply redesignated as

2 2 3 3 4 4= , = , =x X x X x X . Consequently, equations (3) are 

transformed using this scaling to the following form: 
 

1 1 2 4 5 8

2 2 1 1 3

3 3 1 2

4 4 1

5 5 1 6

6 6 4 5

7 7 4 8

8 8 1 7

= 5.8 0.2 0.2 0.03

= 0.1

8
=

30

=

= 4.12

= 2.465 0.2

= 2.84

= 0.94 0.2

X X X X X X

X X X X X

X X X X

X X X

X X X X

X X X X

X X X X

X X X X

    

  

 

 

  

  

  

  
















 (20) 

 

 
Figure 8: The phase portraits in the planes j) 

2 6x x , k) 
2 7x x , l) 

2 8x x , m) 

3 1x x , n) 
3 4x x , o) 

3 5x x , p) 
3 6x x , q) 

3 7x x , r) 
3 8x x . 

 

   Note that the two systems (3) and (20) are equivalent, as 

the linear transformation only changes the variables but not 
the physical properties of the nonlinear system. The chaotic 

solutions of the transformed equations (20), achieved using 

the Matlab-Simulink model, are shown in Figures 9 and 10. 

It is evident that the range of values of the dynamic 

variables has significantly decreased in comparison to the 

values in Figures 7 and 8. This reduction makes it possible 

to implement electronic circuits using operational amplifiers 

that operate within the conventional voltage range of -15 V 

to +15 V. 

VIII. LABVIEW MODEL 

It is interesting to model nonlinear dynamic systems using 

different software environments as it allows for the 
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demonstration of various informational properties of chaotic 

oscillations. 

 

 
Figure 9: The phase portraits in the planes a) 

1 2
X X , b) 

1 4
X X , c) 

1 5
X X , d) 

1 6
X X , e) 

1 7
X X , f) 

1 8
X X , g) 

2 3
X X , h) 

2 4
X X , i) 

2 5
X X . 

 

 

Figure 10: The phase portraits in the planes j) 
2 6

X X , k) 
2 7

X X , l) 
2 8

X X , 

m) 
3 1

X X , n) 
3 4

X X , o) 
3 5

X X , p) 
3 6

X X , q) 
3 7

X X ,  r) 
3 8

X X . 

 

To simulate and showcase the results of the chaotic system 

(20), we utilized the LabView software environment. 

LabView, a graphical software platform, is widely used for 

engineering applications [22]. A visual platform has been 

created for the development of algorithms in LabView. 

Figure 11 displays a block diagram of the chaotic system 

(20) created using the Control & Simulation toolbox in 

LabView. As shown in Figure 11, various operations such as 

addition, multiplication, multiplication on a fixed number, 
and integration were utilized to model differential equations 

(20). Figure 12 showcases the programming interface that 

illustrates the information modeling properties in the form 

of phase portraits in the planes such as,  

 

1 2 1 4 1 7 2 3 2 5 2 8 3 1 3 5 3 7
, , , , , , , ,X X X X X X X X X X X X X X X X X X  

for the initial conditions  

1 2 3 4

5 6 7 8

(0) = (0) = (0) = (0) 1,

(0) = (0) = (0) (0) 1.

X X X X

X X X X



 
 

 

Figure 11: Block diagram implementing chaotic system (6) in LabView. 

 

 
Figure 12: Phase portraits are simulated in LabView. 

 

 

By comparing the phase portraits in Figures 9 and 10 with 

Figure 12, it can be observed that the results of modeling the 

chaotic system (20) in Matlab-Simulink and LabView are 

consistent. 

IX. CIRCUIT SIMULATION 

The implementation of chaotic systems in circuits is 

crucial for various engineering applications, suc as the 

secure communications and the random bit generation. 
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Figure 13: Electronic circuit of the generator of chaotic oscillations based 

on the system of equations (23). 

 

 
Figure 14: Electronic circuit of the subsystem SC1. 

 

 
Figure 15: Electronic circuit of the subsystem SC2. 

 

To implement the dynamic system of equations (20) in a 

circuit, eight operational amplifiers are used to perform the 

signal integration function. The dynamic system variables 
(20) are represented by electrical signals that correspond to 

the instantaneous voltage values on capacitors 

1 2 3 4 5 6 7 8
, , , , , , ,C C C C C C C C , which are denoted by 

1 2 3 4 5 6 7 8
( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )U U U U U U U U        .  

The electrical analogue of the system (20) in accordance 

with the laws of Kirchhoff for electrical circuits, takes the 

following form: 

 

5 81 1 2 4
1

11 12 13 14 15

1 32 2 1
2

21 22 23

3 3 1 2

3

31 32

4 4 1

4

41 42

5 5 61

5

51 52 53

6 6 54

6

61 62 63

7 7 84

7

71 72 73

8 8

8

U UdU U U U
C

d R R R R R

U UdU U U
C

d R R R K

dU U U U
C

d R R K

dU U U
C

d R R

dU U UU
C

d R R R

dU U UU
C

d R R R

dU U UU
C

d R R R

dU U
C

d R

















     

   

  

  

   

   

   

  71

81 82 83

UU

R R

























 


 (21) 

 

where ijR  are resistors ( , ) = 1,2,3,4,5,6,7,8i j ; K  is a scale 

coefficient for the multiplier. We choose the normalised 

resistor as 0 = 10R kΩ, and the normalised capacitor as 

0 = 100C  nF. Then the time constant is equal to 

3

0 0 0= =10t R C  s. We rescale the state variables of the 

system (21) as follows:  

 

1 0 1 2 0 2 3 0 3 4 0 4

5 0 5 6 0 6 7 0 7 8 0 8

= , = , = , = ,

= , = , = , =

U U X U U X U U X U U X

U U X U U X U U X U U X
  

 

and '

0=K U K , 0= t t  and equations (21) are written in a 

dimensionless form such as: 

0 0 0 0 01 1

1 2 4 5 8

0 11 12 13 14 15

0 0 02 2

2 1 1 3'

0 21 22 23

3 3 0 0

3 1 2'

0 31 32

0 04 4

4 1

0 41 42

5 5 0 0 0

5 1 6

0 51 52 53

R R R R RC dX
X X X X X

C dt R R R R R

R R RC dX
X X X X

C dt R R R K

C dX R R
X X X

C dt R R K

R RC dX
X X

C dt R R

C dX R R R
X X X

C dt R R R

     

   

  

  

   

6 6 0 0 0

6 4 5

0 61 62 63

7 7 0 0 0

7 4 8

0 71 72 73

8 8 0 0 0

8 1 7

0 81 82 83

C dX R R R
X X X

C dt R R R

C dX R R R
X X X

C dt R R R
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




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


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

    


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(22) 

 

 

Substituting 
0 = 10R kΩ , 

1 2 3 4 5 6 7 8 0= = = = = = = 100C C C C C C C C C  nF  
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Figure 16: Chaotic phase trajectories displayed in 

Multisim oscilloscopes: a) 1 2X X , b) 1 4X X , c) 1 5X X , d) 1 6X X , 

e) 1 7X X , f) 1 8X X , g) 2 3X X , h) 2 4X X , i) 2 5X X . 

and ' = 10K  into (22). Comparing the numerical values 

before the output voltages of the system (22) and (20), the 

value of electronic circuit resistors is obtained: 

1
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2 1 1 3
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4 1
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5 1
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10k 10k

10k 10k 10

10k 2.43k
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X X X X X

dt

dX
X X X X

dt
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X X X
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X X
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
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7 4 8

8

8 1 7

k

10k

10k 10k 10k

10k 4.056k 50k

10k 10k 10k

10k 3.546k 10k

10k 10k 10k

10k 10.64k 50k

X

dX
X X X

dt

dX
X X X

dt

dX
X X X

dt


















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



   




   

 (23) 

 

The Multisim software environment is used to design a 

circuit for generating chaotic oscillations in the system 

described by equations (23). In this process, operational 

amplifiers are used as integrators. The circuit is designed 

using standard methods for integrating, summing, and 

inverting signals. Figure 13 shows the analog circuit of the 

system (23), with the initial six equations conveniently 

implemented in a subsystem labeled as SC1. Figure 14 
shows the electronic circuit of the SCI subsystem, which 

also includes another subsystem, SC2, representing the first 

three equations of system (23) (similar to Lorentz 

equations). The electronic circuit of subsystem SC2 is 

displayed in Figure 15. 

 

Figure 17: Microcontroller circuit of the 8D chaotic 

oscillator depicted in Proteus 8. 

The circuits illustrated in Figures 13, 14, and 15 are based 

on operational amplifiers TL084ACN and analogue 

multipliers A1 and A2. The signal outputs correspond to the 

terminals labeled in the circuit diagram. By connecting a 

dual-channel oscilloscope to different outputs, various phase 
portraits can be obtained in the Multisim environment, as 

shown in Figure 16. The results obtained from Multisim 

outputs are similar to those obtained from Matlab-Simulink 

in Figures 9 and 10 and LabView in Figure 12. 

X. IMPLEMENTATION OF THE NEW 8D CHAOTIC 

SYSTEM ON AN ARDUINO UNO BOARD 

To implement the new developed 8D chaotic system on 

the Arduino Uno board, we utilize the Proteus 8 

environment. We connect a matrix of eight LEDs to the 

digital pins (D4-D11) of the microcontroller using eight 220 

Ohm resistors (as shown in Figure 17). The programme 

code (accessible at the provided link, 

https://wokwi.com/projects/362267327996080129) uses the 

Euler method to numerically solve the state variables of the 

8D dynamic system. The program code is compiled in the 
Arduino IDE software and a hex.file is generated for 

programming the Arduino Uno R3 microcontroller in the 

Proteus 8 environment. It is noteworthy to mention that the 

brightness of the LEDs varies depending on the output 

voltage in each channel. 

XI. CONCLUSION 

In summary, this study provides a comprehensive analysis 

of a new 8D chaotic system, inclusive of its fundamental 

properties and phase portraits. Furthermore, an adaptive 

controller was developed to stabilize the system with 

unknown parameters and to synchronize two identical 

chaotic systems. Numerical simulations using Matlab-

Simulink and LabView models were carried out to 

investigate the dynamics of the system. The simulations 

revealed complex chaotic oscillations in the system, as 
demonstrated by the phase portraits. In addition, an 

electronic circuit for a chaos generator was designed using 

operational amplifiers and tested in the Multisim 

environment. The findings of this study  hold significant 

https://wokwi.com/projects/362267327996080129
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potential for applications in various fields, including secure 

communications and random bit generation. Today's digital 

technologies can benefit greatly from the use of an 8D 

chaotic generator, as demonstrated by the implementation of 

an Arduino. Integrating chaos generators in electronic 

devices could potentially pave the way for the development 

of more secure communication systems that are challenging 

to intercept or decode.  
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