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 Vehicular Delay Tolerant Network (VDTN) routing has been improved using probabilistic routing 

to improve the coverage of intermittent vehicular networks. VDTNs are characterized by large 
transmission ranges of vehicles, rapid vehicular speeds, and restricted mobility movements, 
particularly in urban areas. As a result, the probabilistic Sore-Carry-and-Forward (SCF) relay 
vehicle selection can be inaccurate when considering remote vehicles, leading to high overheads. 
To address this issue, a new bio-inspired VDTN routing protocol is proposed to better estimate the 
SCF capabilities of remote vehicles so that the duplicated generated bundles’ copies are reduced 
without altering the bundles’ delivery ratio and average delivery delay. This solution sequentially 
employs the Ant Colony Optimizer (ACO) and Glowworm Swarm Optimization (GSO) to 
adaptively control the replication of bundle copies at each bundle forwarding stage based on 

predefined probabilistic forwarding parameters. Simulation results from a sparse urban mobility 
scenario show reduced bundle replication rates compared to several probabilistic VDTN routing 
protocols. 

Index Terms: 
VDTN routing 
ProPHET 
SCF 
ACO 
 

I. INTRODUCTION 

Vehicular Delay Tolerant Networks (VDTNs) are a 

subcategory of Vehicular Ad-Hoc Networks (VANETs) 

specifically designed for sparse vehicular areas, where 

intermittent connectivity dominates communication time 

between vehicles. VDTN routing applies Delay-Tolerant 

Network (DTN) routing principles to sparse VANETs [1]. 

Opportunistic routing methods used between handheld 

devices in Mobile Ad-Hoc Networks (MANETs) [2] can be 

adapted to vehicles in VANET routing, considering factors 

such as a broader transmission range, faster speeds, and 
directed mobility. For DTNs, Store-Carry-Forward (SCF) 

serves as the default VDTN routing mechanism: SCF relies 

on predefined data replication parameters to determine the 

forwarding decision for buffered bundles. It is also linked to 

a custom buffer management policy that helps maintain an 

effective balance between buffer time and bundle replication 

speed, thereby improving the overall Qualit-of-service (QoS) 

performances [3]. 

Swarm-inspired VDTN routing optimization falls under 

the umbrella of bio-inspired VANET routing. Numerous 

swarm-based algorithms [4] have been efficiently used to 
solve various VANET routing problems [5]. VDTN routing 

faces a major challenge in tracking effective SCF vehicles 

while minimizing the number of bundle relays and reducing 

delivery delays. Consequently, various types of VDTN 

routing has been developed[6] [7] including probabilistic 

routing [8], which relies on stochastic bundles replication 

based on available vehicular routing information. 

Probabilistic VDTN routing helps predict future vehicle 

trajectories to efficiently distribute bundles to position as 

close as possible to their destinations which reduces the 

average bundle buffer time. However, it may suffer from a 

lack of accuracy due to factors  such as radio obstacles, drastic 

change in destination speed, or movement changes, leading 

to uncontrolled overheads caused by excessive flooding in 
urban areas. 

Another VDTN routing mode based on bio-inspired 

optimization has emerged recently, inspired by social-based 

grouping native to human behavior [9]. The intelligence of 

particles in nature has been utilized to mitigate the nodes’ 

participation in data forwarding and to redirect bundles to 

their destinations more efficiently. Sparse density adds to the 

difficulty of anticipating better relay nodes to avoid long 

buffer time, particularly in VANETs characterized by high 

speeds and limited urban mobility patterns [10]. 

This paper discusses the challenge of leveraging the 
qualities of probabilistic VDTN routing within the context of 

swarm-based optimization to improve SCF vehicle selection 

and optimize flooding. The fitness of each vehicle for 

buffered bundle can be estimated base on predefined 

probabilistic routing parameters. To accomplish this, a new 

bio-inspired VDTN routing solution that combines two two 

metaheuristics, namely the Ant Colony Optimizer (ACO) 

[11] and Glowworm Swarm Optimization (GSO) [12] is 

proposed. The stochastic solution selection methods of ACO 

and GSO are integrated to anticipate a larger number of relay 

vehicles during early and advanced forwarding stages, 

respectively, which is expected to increase bundle delivery 
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probability and reduce average delivery delays and flooding 

rates. 

The remaining of this paper is organized as follows: 

Section 2 discusses the major probabilistic VDTN routing 

literature, including the bio-inspired VDTN routing. Section 
3 provides a detailed explanation of the new bio-inspired 

routing solution, including the context of swarm-based 

optimization with its mathematical models and illustrations. 

Section 4 analyses and compares the simulation results of the 

realized work with few VDTN routing references. Section 5 

concludes the manuscript and discusses future research 

directions related to this contribution. 

II. LITERATURE REVIEW 

The probabilistic opportunistic routing has been widely 

developed in VANETs to address consistently-sparse 

networks. In this section, the notable probabilistic routing 

protocols are described as follows: 

Adaptive ProPHET-based routing protocol (PRoPHET+) 

[13] is a modified version of the Probabilistic Historic of 

Encounters and Transitivity (ProPHET) [14] that introduces 
a predefined deliverability value (VD) to evaluate candidate 

nodes for next-SCF selection. The VD is calculated using 

four parameters that reflect the node’s forwarding abilities, 

namely, the buffer parameter, power parameter, popularity 

parameter, and bandwidth parameter. These parameters 

represent the remaining buffer space, residual sending power, 

the ratio of performed data transmissions, and the ratio 

between sending and receiving bandwidth, respectively. Each 

parameter is weighted according to its impact on the VD. 

Probabilistic Routing based on History of Messages 

(HOMME-ProPHET) [15] is a modified version of ProPHET 

that adjusts its default DP value for all known contacts by 
considering the history of previous hops traversed by the 

bundle. This adjustment helps predict better next-SCF nodes. 

The traversed hop count and the forwarding quality of passed 

nodes are added as prediction parameters to calculate the new 

DP of potential next-hop nodes.  Thus, the routing decision 

links the quality of the passed path to the host vehicle and the 

forwarding abilities of the available direct contacts through 

deduced DP values. 

Probabilistic Bundle Relaying Scheme (PBRS) [16] is a 

new DTN routing protocol that combines knowledge-based 

and prediction-based forwarding modes. For each buffered 
bundle in every host node, PBRS estimates the required time 

for the bundle’s delivery to its destination for each candidate 

SCF node amongst the host’s active contacts. To accomplish 

this task, a predefined release probability (Pr) value is 

calculated based on the node speed to estimate the probability 

of passing a bundle to the next-SCF node. This approach 

seeks to reduce the bundle’s buffering time so that the final 

delivery delay is shortened. 

Delivery Probability Routing (DPR) [17] is an improved 

Spray-and-Wait (SnW) [18] protocol that includes a delivery 

probability mechanism. Every DPR node exchanges its active 

contacts with encountered nodes using a probability vector 
(PV) which associates a delivery probability to each contact. 

Each node’s PV is updated during both SnW phases. This 

mechanism defines a separate spray time for each node 

depending on the routing quality of SCF candidates, collected 

from the received PVs. Consequently, the Spray phase is 

shortened for each bundle relative to the number of remaining 

copies. The Wait phase starts at different times, allowing 

more replicated bundles to arrive sooner than the Wait phase. 

This approach significantly reduces average delivery delays. 

Epidemic-ProPHET [19] is a hybrid probabilistic DTN 

routing protocol that combines Epidemic Routing (ER) 

protocol [20] and ProPHET. This version uses ER during the 
early stages of the bundle’s forwarding cycle enabling faster 

spreading of bundle copies across the  nodes’ neighborhoods. 

The forwarding policy during the advanced stages relies on 

ProPHET, which seeks a better-oriented replication of the 

spread bundle copies during the ER-based phase. The 

transition from ER-based to ProPHET-based forwarding is 

triggered when either a hop count threshold or a predefined 

number of forwarded bundles is surpassed. 

ProPHET-based SnW routing protocol (ProPHET-SnW) 

[21] is a hybrid multi-copy DTN routing protocol deduced by 

applying the Delivery Predictability (DP) of ProPHET in 

SnW. ProPHET’s DP is restricted to the spray phase, where 
only L bundle copies are distributed to neighboring nodes 

with a higher delivery probability. The Wait phase remains 

the same as defined in SnW. ProPHET-based SnW adds a 

buffer management control to solve the buffer overflow 

problem by checking the free buffer space of available 

candidate SCF nodes before storing new bundles according 

to their size. 

A data dissemination mechanism based on evaluating 

behavior for VDTNs [22] defines a routing protocol that 

estimates traffic density for SCF node selection decisions. 

This mechanism also takes into account the behavior of 
vehicles under a predefined interaction score, calculated 

using four parameters; namely, node interaction freshness, 

node interaction dispersion, node interaction contribution, 

and node interaction participation. The first parameter 

reflects the vehicle’s recent interaction activity, the second 

represents the communication time stability between pairs of 

vehicles. The third measures the participation degree of nodes 

in bundles forwarding, and the fourth parameter accounts for 

the communication frequency between vehicles pair. 

The evolution of bio-inspired VDTN routing in 

probabilistic  SCF forwarding has appeared in a few works, 

primarily focusing on DTNs. Some notable examples 
include: 

AntProPHET by [23] is an ACO-inspired ProPHET-based 

routing protocol. To enhance the delivery probability and 

limit routing overheads, AntProPHET applies the process of 

food nest tracking from ant swarm behavior to select the next-

SCF node. The predictability calculation for each next-hop 

candidate, as in PRoPHET, is updated using the ACO’s 

pheromone decay formula. A probabilistic selection among 

the available candidate next-SCF nodes is performed, where 

the nodes generating lesser decay quantities, reflecting a 

higher pheromone quantity, having a higher selection rate. 
Nature-inspired routing protocol for DTNs (BeeAntDTN) 

[24] is a bio-inspired probabilistic DTN routing protocol that 

uses the food foraging intelligence of insects modeled in 

ACO and Bee Colony Optimizer (BCO) [25]. Innitially, a 

BCO-based flooding mechanism is used to explore 

connectivity degree (CD) information for each node. Then, 

ACO tracks optimized forwarding routes. This requires 

forwarding delay between all recorded source-destination 

pairs, remainning energy of known nodes on receiving 

bundles, and the best CD-ranked nodes with each relay node. 

This information is used by the ACO to calculate a visibility 
value for candidate SCF nodes towards the bundle’s 
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destination to form a better-connected chain of relay SCF 

nodes. 

Probabilistic Swarm-based VDTN routing [26] proposes a 

hybrid bio-inspired geographic protocol for next-SCF vehicle 

selection. Thus, two strategies are employed for regular and 
recovery routing, respectively: the first is a swarm-inspired 

probabilistic approach that combines the Firefly Algorithm 

(FA) [27] and GSO to track optimal SCF relay vehicles 

among available direct contacts. For each buffered bundle, 

every next-SCF candidate is evaluated based on its historic 

routing parameters, such as buffer capacity, node degree, 

average neighborhood lifetime, speed balance to its active 

contacts, and the number of former relayed bundles. If the 

first phase fails to find better SCF vehicles, geographic 

routing is performed based on bundles’ restricted forwarding 

using the Minimum Estimated Time of Delivery (METD), as 

introduced in [28]. 
Recent probabilistic VDTN routing works, such as [29], 

use artificial intelligence to solve the trade-off between QoS 

metrics. DesCom [30] bases its SCF decision on time 

estimation, bundle TTL, and transmission rate. GR-PDR [31] 

solves the local maxima issue by using the delegation 

replication approach for both single and multiple copy 

forwarding, considering a buffer delivery priority. [32] 

proposes an improved VDTN routing based on K-means 

clustering. 

III. PROPOSED VDTN ROUTING SOLUTION 

The concepts and optimization model of the new swarm-

based VDTN routing protocol are detailed in this section: 

 Critics and assumptions 

The discussed literature exposes several challenges: 

 The QoS performances of probabilistic DTN routing 

is subjected to deterioration in VDTNs, especially 

regarding delivery probability and flooding overflow. 

Bio-inspired optimization is expected to reduce the 

number of generated bundle copies. 

 Hybridizing the probabilistic and bio-inspired 

forwarding to enhance the selection of the next-SCF 

vehicle has been introduced by [26]. However, the 
scope of the protocol is limited in terms of comparison 

protocols and simulation tests, and it lacks other 

essential modules such as buffer management, 

recovery forwarding, and flooding control. 

 The discussed literature does not define a specific 

methodology to reduce network overheads. For 

instance, the swarm probabilistic protocol focuses on 

the optimal relay SCF vehicle selection by combining  

FA and GSO, while neglecting the reduction of the 

number of relayed bundle copies. 

 Most literature lacks buffer management policy for 

routing priority and buffer space-saving. The first 
policy aims to alleviate congestion in vehicles, while 

the second is designed for vehicles whose energy is 

constrained by unexpected factors such as breakdowns 

and stop status. 

The proposed contribution seeks to control routing 

overheads by adaptively avoiding the duplication of copies in 

networks at all forwarding stages of each bundle. To achieve 

this, a hybrid bio-inspired approach is suggested to manage 

the SCF vehicle selection process. 

 Swarm-inspired optimization from VANET to VDTN 

routing 

Bio-inspired optimization techniques have been introduced 

to various VANET routing problems [33]. Overall, these 

techniques have demonstrated promising performances in 
highly-dense networks, while the challenge lies in 

capitalizing on the stochastic swarm search abilities to 

perform equally well in sparse networks, where the end-to-

end routing is not applicable. The unavailability of vehicles,  

particularly in urban VANET areas, complicates the ability of 

swarm-based search methods to apply the intelligent 

behaviors of particles in nature for extended periods, so as to 

progressively build an effective stochastic search to anticipate 

better SCF relay vehicles, similar to when the network is 

dense. To address this, we utilize specific historical SCF 

mobility information of vehicles to assist the SCF selection 

during all the bundle’s routing stages toward its destinations. 
The main challenge in VDTN routing is the control of SCF 

through the optimal bundle replication and next-SCF 

selection. This functionality is organized to limit flooding in 

the early forwarding stages and unicast SCF selection in the 

advanced forwarding stages. 

The proposed swarm-based approach includes two 

metaheuristic techniques to guide the exploration and local 

search of SCF vehicle selection, respectively [34]. 

 Next SCF vehicle selection approach 

The major function of VDTN forwarding, which controls 

the overall routing performances, invloves two back-to-back 

SCF selection phases executed within the framework of GSO 

and improved ACO, respectively: 

 Exploration SCF phase (Global search): The 

stochastic qualities of ACO are used to apply 

restricted flooding of L bundle copies following a 

probabilistic selection of M vehicles among N possible 

host’s active contacts, with M ≤ N. M depends on the 

available N contacts. The selected vehicles serve as the 
pheromone path nodes explorers, while the bundle act 

as ant agents that proceed to the local-search SCF 

selection phase. 

 Exploitation SCF phase (Local search): Following the 

exploratory SCF selection, this phase employs GSO’s 

probabilistic approach to select SCF relay nodes 

locally based on the ACO-explored vehicles in the 

direction of the bundle’s destination. This phase is 

triggered after meeting a set of predefined conditions, 

which are described next in this section. 

Figure 1 illustrates an example of the performed SCF 
selection strategy between the source and destination 

vehicles: 

 
Figure 1. Proposed hybrid ACO-GSO SCF bundle flooding 
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The transition time from exploration to local search for 

each bundle can differ from one copy to another, influenced 

by the SCF quality of the exploration process. 

1) Exploration-based SCF selection using the Ant Colony 

Optimizer (ACO) 
The early stages of bundle forwarding involve limited 

selective flooding of bundle copies towards relay vehicles. 

The replication of bundles is determined based on the 

fulfillment of predefined routing parameters set, described 

next in this section. 

a) Ant Colony Optimizer (ACO) 

ACO was introduced by [33] to model the intelligence of 

ant swarm to track food sources via the most frequented 

discovered paths. Ants use pheromone substances to notify 

antecedent ants about the shortest paths to food sources. ACO 

models this behavior in an optimization approach that  

reflects the ability of ant swarms to adaptively update the 

optimum path to food sources regarding natural conditions 

like route obstacles. ACO has proven its ability to accelerate 

convergence towards global-best solutions in classic VANET 

routing. 

According to the calculated pheromone concentration for 
path edge (i,j) as in Eq.2, the selection probability of an edge 

by an ant is extracted in Eq.3: 

𝜏(t + 1) = (1 − ρ). 𝜏(t) + ∆𝜏 (2) 

𝑝𝑖𝑗 =
𝜏𝑖𝑗 . 𝜂𝑖𝑗

∑ 𝜏𝑖𝑙 . 𝜂𝑖𝑙𝑙∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖)

 (3) 

Considering: 

 τ(t): pheromone concentration at given time t. 

 ρ: pheromone decay factor regarding 0 ≤ ρ ≤ 1. 

 ∆τ: deposited pheromone quantity during the interval 

[t, t+1]. 
Eq.4 details the formula that updates the pheromone 

concentration between food nest pair nodes (i,j): 

𝜏(t + 1) = (1 − ρ). 𝜏(t) + ∑ ∆𝜏𝑖𝑗
𝑘

𝑚

𝑘=1

 (4) 

Where: 

 i,j: is a pair of nodes i and j of the food nest path. 

 τij: pheromone concentration between i and j. 

 ∆τij: deposited pheromone quantity between i and j. 

Considering j≠l and η is a heuristic value adjusted 

according to the problem at hand. From Eq.2 we deduce: 

∆𝜏 = ∑ ∆𝜏𝑖𝑗
𝑘

𝑚

𝑘=1

 

b) Application of ACO-based SCF selection 

The proposed implementation of ACO in VDTN routing is 

used to explore better SCF node alternatives through the 

detection of relay vehicles that possess more pheromone 

attractiveness towards all stored bundles’ destinations. It is 

considered that vehicles that are more frequented by bundles 

towards different destinations will have higher pheromone 

concentrations. 

Table 1 summarizes the mapping of modeled components 

of the ACO algorithm to VDTN routing characteristics. The 

quality of an SCF vehicle as a relay node for a bundle’s 
destination is evaluated by the pheromone concentration 

between the connection linking the bundle’s host vehicle and 

this node. In this solution, it is considered that vehicles more 

frequented by incoming bundle copies for different 

destinations are more likely to be selected as relay vehicles. 

Thus, vehicles handling more ant bundles generally indicate 

more reliable nodes that shorten distances to a maximum 

number of food nests (bundle destinations). The exploration 
of VDTN relay vehicles seeks to detect simultaneously 

optimized directions to multiple destinations for buffered 

bundles. This approach is expected to reduce flooding and 

maintain optimized delivery delays. 
 

Table 1 

ACO-VDTN mapping 

 

ACO elements VDTN routing 

Pheromone SCF quality 

Ant Bundle copy 

Food path node SCF relay vehicle 

Evaporation Forwarding quality update 

Ants’ nest Source vehicle 

Food source Destination vehicle 

 

For each stored bundle’s destination, every node takes on 

the role of a landmark towards the food source (destination). 

As illustrated in the example in Figure 2, a pheromone table 

is set up in all vehicles to store a pheromone value (PH) for 

every buffered destination for all active connections 

linkingthe host vehicle to its direct contacts. This PH value is 

refreshed after the passage of a bundle to that destination, 
while the destination entries are continually updated based on 

the neighboring connectivity and buffer status changes. 

The illustrated example in Figure 2 shows the pheromone 

fitness evaluation of two contacts A and B of host vehicle S 

for stored bundles. For instance, it is observed that vehicle B 

is buffering two bundles for the destination V6, while vehicle 

A is buffering one bundle (B5) to V6. Thus, when host S 

handles a new bundle with V6 as its destination, it is more 

likely to select B as the next SCF vehicle for the new bundle 

than A the since the connection [S-B] has a higher  pheromone 

concentration than the connection [S-A]. 

 
Figure 2. Illustration of pheromone update on VDTN relay vehicles 

 
A predefined set of parameters is considered to explore 

better trajectories towards the destination through relay 

vehicles. Thus, both the forwarding history and buffer status 

of vehicles are taken into account to estimate the probabilistic 

selection as the next-SCF hop. The discussed fitness 

parameters for SCF selection are detailed below: 

 Historic forwarding parameter (HP): considers the 

ratio of utilization of the host as a relay node. HP is 

the ratio of the number of relayed bundles to the total 

number of received bundles, as calculated in Eq.5: 

 

𝐻𝑃𝑗 =
𝑁𝑏𝑅𝑒𝑙𝑎𝑦𝑠(𝑗)

𝑁𝑏𝑅𝑒𝑙𝑎𝑦𝑠(𝑗) + 𝑁𝑏𝑇𝑎𝑟𝑔𝑒𝑡𝑠(𝑗)

 (5) 
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Considering: 

▫ NbRelays(j): the number of received bundles by 

candidate SCF node j as a relay vehicle 

▫ NbTargets(j): the number of received bundles by 

candidate j as a destination vehicle. 
It is worth noting that 0 ≤ HPj ≤ 1. 

 Forwarding parameter (FP): this factor evaluates the 

forwarding quality of candidate vehicles by 

considering the ratio of relayed bundles within a 

predefined threshold period, calculated using Eq.6. A 

higher FP value indicates a faster forwarding dynamic. 

𝐹𝑃𝑗 =
𝑁𝑏𝑅𝑒𝑝𝑙𝑖𝑐𝑎(𝑗)

𝑁𝑏𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑠(𝑗)

 (6) 

Considering: 

▫ NbReplica(j): the accumulated number of 

replicated bundles by candidate vehicle j 

within a threshold time Th. 

▫ NbForwards(j): the accumulated number of 

forwarded bundles by candidate j. 

It is worth noting that 0 ≤ FP ≤ 1. 

 SCF parameter (SP): complements the FP by focusing 

on the average store time of bundles in the buffer 

cache. The SP is extracted from a predefined store 

time ratio value which equals the percentage of 
average buffer time from the average travel time of 

stored bundles, calculated using Eq.7. A higher SP 

value indicates better SCF quality. 

𝑆𝑃𝑗 = 1 −
∑ 𝐵𝑢𝑓𝑓𝑒𝑟𝑗

𝑚𝑁𝑏𝐵𝑢𝑛𝑑𝑙𝑒𝑠
𝑚=1

∑ 𝑇𝑟𝑎𝑣𝑒𝑙𝑆𝑟𝑐,𝑗
𝑚𝑁𝑏𝐵𝑢𝑛𝑑𝑙𝑒𝑠

𝑚=1

 (7) 

Considering: 

▫ m: the stored bundle copy by the candidate 

vehicle j. 

▫ NbBundles: the number of forwarded bundles. 

▫ Bufferj
m: the store time of m in j. 

▫ TravelSrc,j
m: the travel time of m in j. 

It is worth noting also that 0 ≤ SP ≤ 1. 

The forwarding quality of a candidate vehicle j from every 
host i for a given bundle (ant) is calculated using Eq.8: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑗 = (𝛼1 × 𝐻𝑃𝑗) + (𝛼2 × 𝐹𝑃𝑗
𝑇ℎ)

+ (𝛼3 × 𝑆𝑃𝑗) 
(8) 

Where: α1, α2, α3: the affected weights  to the fitness 

parameters regarding α1 + α2 + α3 = 1. 

Since all above-described fitness parameters vary between 

0 and 1, we can notice that 0 ≤ Fitnessij ≤ 1. 

The accumulated pheromone quantity from every host i to 

the candidate j is equivalent to Eq.9: 

∑ ∆𝜏𝑖𝑗
𝑘

𝑀

𝑘=1

= ∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑗
𝑎𝑛𝑡

𝑁𝑏𝐵𝑢𝑛𝑑𝑙𝑒𝑠

𝑎𝑛𝑡=1

 (9) 

Considering: 

 M: the number of ants traversing the food path’s node 

i. 

 NbBundles: the number of bundles relayed by the host 

vehicle i to candidate vehicle j. 

 Fitnessij: the accumulated pheromone quality of the 

reception of new ant bundle from host i to candidate j. 

The pheromone update is performed using Eq.10: 

𝜏𝑖𝑗(t + 1) = (1 − ρ). 𝜏𝑖𝑗(t)

+ ∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑗
𝑎𝑛𝑡

𝑁𝑏𝐵𝑢𝑛𝑑𝑙𝑒𝑠

𝑎𝑛𝑡=1

 
(10) 

Considering: 

 NbBundles: the number of relayed ant bundles from i to 

j. 

 Fitnessij: the fitness of a relayed ant bundle within the 

delivery time from i to j. 

Considering  η =1 in Eq.3, the selection probability of the 
next food nest node is performed using Eq.11: 

𝑝𝑖𝑗 =
𝜏𝑖𝑗

∑ 𝜏𝑖𝑙𝑙∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖)

 (11) 

The flowchart synchronizing the steps of ACO-based SCF 

node selection is illustrated in Figure 3. 

 
Figure 3. ACO-based exploratory SCF selection flowchart 

 
2) Local search SCF selection using Glowworm Swarm 

Optimization (GSO) 

The passage from the exploratory SCF selection to the 

local-search SCF phase using GSO is conditioned by the 

advancement of every bundle copy towards its destination. 

One of the predefined following transition parameters must 

be met to trigger the GSO-based SCF selection: 

a) Glowworm Swarm Optimization (GSO) 

GSO is a swarm-inspired metaheuristic suggested by [32] 

to model the collective movement of lightning flies called 

glowworms. This movement is controlled by the changing 

quantity of a luminescent substance called luciferin. The 

interactive behavior between glowworms in food search and 

swarm organization depends mainly on the luciferin intensity. 

GSO serializes the glowworm swarm activity in four steps: 
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 Initialization phase: regroups a set of candidate 

glowworm agents that forms the initial population. 

 Neighbors tracking: represents the interactive 

movement between adjacent glowworms to displace 

towards better positions. 

 Luciferin update: refreshes new positions of 

glowworms and deduces the partial-best positions. 

 Location update: extracts the global-best position 

according to the discovered local-best positions. 
 

Table 2 

GSO peudo-algorithm 

 

GSO () 

{ 

1. Initialize dimension size of glowworm population GSO Population. 

2. Initialize luciferin update factor λ and luciferin enhancement 

constant γ. 

3. Initialize GSO maximum iteration number MaxIter. 

4. Define Pos(i): position of glowworm i at instant t. 

5. Define N(i): neighbors of i. 

6. Define CandList: candidate solutions list of i. 

7. Set initial Luciferin L0 intensity for all glowworms. 

8. Set random initial position for all glowworms 

9. While MaxIter not reached { 

10. For each glowworm(i) in GSO Population  { 

11. For each glowworm(j) in GSO Population { 

12. Lj (t + 1) = (1 − λ) × Lj (t) + γ.f (Posj (t)); /* luciferin update of 

glowworm i towards candidate j */ 

} 

13. For each glowworm(i) in GSO Population { 

14. For each glowworm(j) in N(i) { 

15. if Lj (t) > Li(t) { 

16. 𝑃𝑟𝑜𝑏𝑖𝑗 =
𝐿𝑗(𝑡)−𝐿𝑖(𝑡)

∑ 𝐿𝑘(𝑡)−𝐿𝑖(𝑡)
𝑁𝑗
𝑘=1

 /* calculate the selection probability */ 

17. Record (j, Probij , CandList); 

} 

} 

18. n = GSO_Selection(CandList) /* probabilistic selection of next 

glowworm n */ 

19. 𝑃𝑜𝑠𝑖(𝑡 + 1) = 𝑃𝑜𝑠𝑖(𝑡) + 𝑆 (
𝑃𝑜𝑠𝑛(𝑡)−𝑃𝑜𝑠𝑖(𝑡)

|𝑃𝑜𝑠𝑛(𝑡)−𝑃𝑜𝑠𝑖(𝑡)|
) 

20. |Posn(t)−Posi(t)| ) /* position update according to step size ‘S’ */ 

} 

} 

} 

} 

 

GSO is an extracted variant of the ACO metaheuristic that 
is conceived to solve combinatorial continuous problems 

[34]. Compared to ACO, GSO offers a faster local-search 

convergence and can detect multiple local-optimum solutions 

in the multimodal functions. 

GSO updates the luciferin intensity Lij of glowworm agent 

i after moving towards glowworm j within time interval from 

instant t to t+1 following Eq.12: 

𝐿𝑗(𝑡 + 1) = (1 − 𝜆)𝐿𝑗(𝑡) + 𝛾. 𝑓(𝑃𝑜𝑠𝑖(𝑡)) (12) 

Considering: 

 Lj(t) and Lj(t+1): the luciferin value gathered from 
glowworm i after displacing towards glowworm j 

within the time interval [t, t+1]. 

 λ: the luciferin update factor considering 0 ≤ λ ≤ 1. 

 Posj(t): position of glowworm j at time t. 

 fj(t): the objective function of position of j at t. 

 γ: the luciferin enhancement constant. 

Eq.13 approximates the probability of selection (Pbij) of an 

attractive glowworm j for each candidate glowworm i 

amongst available candidates according to its luciferin 

intensity: 

𝑃𝑏𝑖𝑗 =
𝐿𝑗 − 𝐿𝑖

∑ 𝐿𝑙 − 𝐿𝑖
𝑁𝑏𝐶𝑎𝑛𝑑
𝑙=1

 (13) 

Considering: 

 NbCand: the number of glowworm candidates likely to 

move towards attractive glowworm j. 

 Lj - Li: the difference between luciferin intensity of 

glowworms i and j. 
The pseudo-code of GSO procedure is given in Table 2. 

b) Application of GSO-based SCF selection 

The concepts of GSO are applied to VDTN routing through 

the next-SCF vehicle selection process. The candidate  SCF 

vehicles discovered through ACO-based exploration serve as 

the initial population of candidate solutions by GSO, which 
then conducts a local search for each population entity 

separately. GSO is expected to overcome the limitations of 

ACO in the exploitation search of local optima in this context. 

Table 3 summarizes the mapping of GSO algorithm to VDTN 

routing: 
Table 3 

GSO-VDTN mapping 

 

GSO elements VDTN routing 

Luciferin intensity SCF quality 

Attracted glowworm Bundle copy 

Attractive glowworm SCF relay vehicle 

Interactive movement Bundle forwarding 

Prey/food source Destination vehicle 

 

The initial luciferin value (LuciferinINIT) of each bundle 
takes the value of the pheromone concentration at the host 

vehicle (PheromoneFINAL), as shown in Eq.14: 

𝐿𝑢𝑐𝑖𝑓𝑒𝑟𝑖𝑛𝐼𝑁𝐼𝑇 (𝑖) = 𝜏𝑏𝑢𝑛𝑑𝑙𝑒(ℎ𝑜𝑠𝑡) (14) 

Where: i = host. 

Bundles starting with a higher LuciferinINIT indicate a 

better forwarding towards their destinations. Thus, such 

bundles are more likely to be delivered with shortened delays. 

GSO is applied for local search on the basis of ACO-

explored relay vehicles. Thus, a predefined set of fitness 

parameters, with values ranging between 0 and 1 is set to 
prioritize candidate relay nodes’ position rather than the 

quality of their historical SCF forwarding. The parameters 

considered by GSO for SCF selection are: 

 Historic factor (HF):Contrarily to the calculated HP 

parameter defined in ACO-based fitness evaluation, 

HF evaluates the historical participation of the host 

vehicle as a destination node. HF considers the ratio 

of utilization of the host vehicle as a destination to the 

total number of handled bundles, calculated using 

Eq.15: 

𝐻𝐹𝑗
𝑚 =

𝑁𝑏𝑇𝑎𝑟𝑔𝑒𝑡𝑠(𝑗)

𝑁𝑏𝑅𝑒𝑙𝑎𝑦𝑠(𝑗) + 𝑁𝑏𝑇𝑎𝑟𝑔𝑒𝑡𝑠(𝑗)

 (15) 

 Mobility factor (MF): This parameter evaluates the 

mobility characteristics of candidate SCF vehicles. 

MF considers the ratio of the candidate vehicle’s 

relative speed towards the bundle’s destination to its 

absolute speed, as calculated using Eq.16: 

𝑀𝐹𝑗 =
𝑅𝑒𝑙𝑗,𝑑𝑒𝑠𝑡

𝑆𝑝𝑗

 (16) 

Considering: 

▫ Relj,dest: relative speed of candidate vehicle j 
towards the destination of bundle m. 
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▫ Spj: absolute speed of candidate j. 

It is worth noting that 0 ≤ HF ≤ 1 and 0 ≤ MF ≤ 1. 

The above-cited GSO’s SFC parameters mentioned above 

are used to calculate the GSO fitness formula of all candidate 

SCF contacts of the host vehicle using Eq.17: 

𝐺𝑆𝑂𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑗) = (𝜔1 × 𝐻𝐹𝑗) + (𝜔2 × 𝑀𝐹𝑗) (17) 

Considering ω1 and ω2 are the affected fitness weights for 

HF and MF parameters, respectively, regarding ω1 + ω2 = 1. 

The GSO-based SCF selection probability formula is 

deduced in Eq.18: 

𝑃𝑏𝑖𝑗 =
𝐿𝑗 − 𝐿𝑖

∑ 𝐿𝑙 − 𝐿𝑖
𝑁𝑏𝐶𝑎𝑛𝑑
𝑙=1

 (18) 

It is worth noting that the node’s selection probability 

increases with its GSO fitness.  

Any contact with a negative GSO fitness balance compared 

to the host’s fitness is eliminated from the selection since it 

indicates that the host is a better relay vehicle for the bundle 
than the candidate contact (Eq.19). 

𝐺𝑆𝑂𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐿
≤ 𝐺𝑆𝑂𝐻𝑜𝑠𝑡  (19) 

Contrarily to the ACO-based SCF approach, only one 

contact is selected probabilistically according to Eq.18 to 

forward the bundle. This operation is repeated until finding 

the contact that is linked directly to the bundle’s destination. 

3) Synthesis 

The predefined SCF historic factors used for calculating 

the predefined SCF selection parameters in both ACO-based 

and GSO-based processes are reset to zero after each static 

cyclic loop time, fixed at 3600 seconds. As a result, the 
impact of historic forwarding is kept close to the ongoing 

forwarding ability of vehicles. Specifically, the NbRelays(j), 

NbDestinations(j), NbReplica(j), and NbForwards(j) are reset. 

The bundle reception procedure is illustrated in the 

flowchart in Figure 4. 

 
Figure 4. Bundle handling process flowchart 

 

4) Bundle’s forwarding priority in Buffer 

Although vehicles are not constrained by buffer capacity 

limitations, it is still preferable to consider critical use cases 

that can compromise unlimited bundle storage time such as 

old cars, stopping vehicles like taxis and buses, breaking 
down vehicles, or those with aging batteries. Therefore, a 

bundle replication priority mechanism is neededfor buffer 

caches to reduce the number of lost copies and speed up 

bundles forwarding. Additionally, considering the large  

number of bundle copies that can be stored simultaneously in 

the buffer cache, vehicles may not be able to transmit a high 

number of bundles concurrently due to the bandwidth 

limitations and the short contact opportunity times in some 

cases. Furthermore, it is advisable to consider different types 

of vehicles in terms of buffer size differences, so a priority 

order considering available buffer space is used to better 

manage storage utilization of smaller buffers. 
An adaptive approach that considers transmission and 

deletion priority is suggested for the proposed solution to 

reduce the average buffer time. As the storage limits of 

vehicles are a minority concern, the proposed buffer ranking 

mainly depends on the swarming phase and fitness since they 

are the most significant indicators of the routing quality. The 

remaining parameters are set by order as tiebreakers in cases 

where two bundles are being forwarded within the same 

swarm phase or they share tied-swarm fitness. Thus, the 

bundle’s host SCF vehicle is evaluated through a set of 

predefined transmission priority parameters, as illustrated in 
Figure 5, to order bundles from the least to the most 

forwarding necessity. The described ranking parameters 

below follow a descendent tie-breaking priority: 

 Swarm-based SCF phase (SP): The priority of buffer 

storage is given to bundles within the ACO-based 

exploration SCF phase, while GSO-based bundles are 

the first to be transmitted. This order seeks to optimize 

delivery delay. 

 Bundle’s swarm fitness (SF): A pair of bundles 

sharing the same swarm phase are ranked according to  

their swarm fitness; the bundle with lower ACO 
fitness for exploring vehicles (or GSO fitness for 

local-search vehicles) is prioritized to remain in the 

buffer cache. This is because bundles with better 

fitness values need to be delivered or forwarded 

 Bundle’s hop count (HC): Bundles traversing a higher 

number of hops are considered increasingly aged in 

the buffer cache. Thus, bundles with higher hop counts 

are prioritized for buffering since they risk a 

decreasing delivery expectancy, while the newer 

bundles are transmitted first. 

 Bundle’s size: Bundles with larger sizes are less 

privileged to stay for extended periods in the buffer 
cache; thus, they are transmitted first. The smaller the 

average bundle’s size, the greater the number of 

bundles saved. 

 Longevity of bundle in host buffer (HB): Bundles 

residing longer in the buffer increasingly lose their 

buffer priority and are transmitted first. Buffer space 

is prioritized for newly created bundles. 

 Ratio of bundle size occupation in buffer (BSO): 

Bundles occupying larger buffer space lose their 

buffer priority increasingly; hence, they are 

transmitted first. 
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Figure 5. Buffer forwarding priority policy 

IV. EXPERIMENTS AND RESULTS ANALYSIS 

The Opportunistic Network Environment (ONE) simulator 

[35] is used to implement and simulate the proposed VDTN 

solution, while Open Jump [36] is used to generate the urban 

mobility model as illustrated in Figure 6. This figure 

represents the map of the constructed urban city scenario in 

which all roads are bidirections. 

The proposed swarm-based VDTN routing protocol 

(Hybrid-Swarm) is compared to a few probabilistic VDTN 

routing references, namely: 

 ProPHET: a standard probabilistic DTN routing 
reference. 

 Historic-ProPHET: an enhanced ProPHET version for 

VDTNs as discussed in the literature. 

 SnW-ProPHET routing protocols,: another enhanced 

ProPHET version for VDTNs as discussed in the 

literature. 

 Hybrid FA-GSO VDTN routing (Swarm-Proba): a 

bio-inspired probabilistic VDTN routing solution. 

The performance evaluation considers four QoS metrics; 

namely, the average delivery delay, the bundles’ delivery 

probability, overheads, and the bundles’ replication cost. The 
formulas of these indicators are calculated in Eq.20, Eq.21, 

Eq.22, and Eq.23, respectively. 

 
Figure 6. Simulation of proposed urban scenario 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝐷𝑒𝑙𝑎𝑦

=
1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑏𝑢𝑛𝑑𝑙𝑒𝑠

× ∑ 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝐷𝑒𝑙𝑎𝑦 (𝐵𝑖)
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑏𝑢𝑛𝑑𝑙𝑒𝑠

𝑖=1
 

(20) 

Considering Bi the ith stored bundle in the buffer cache. 

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑏𝑢𝑛𝑑𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑢𝑛𝑑𝑙𝑒𝑠
 

(21) 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑 𝑏𝑢𝑛𝑑𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑏𝑢𝑛𝑑𝑙𝑒𝑠
 (22) 

𝑅𝑒𝑙𝑎𝑦 𝑐𝑜𝑠𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 𝑏𝑢𝑛𝑑𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑢𝑛𝑑𝑙𝑒𝑠
 (23) 

The network and mobility configurations of the tested 

simulations are detailed respectively in Table 4 and Table 5, 

respectively. 

 
Table 4 

Network settings of simulation tests 

 

Parameter Value 

Network simulator ONE 1.5.1 RC1 

Monility generator Open Jump 

Mobility support WKT file 

Mobility map dimensions 6.9 × 5.1 km 

Simulation time 24000 Seconds 

Scenario warm-up 400 Seconds 

Number of random simulations 7 

Density [35;50;65;80;95;110] vehicles 

Transmission range 40 meters 

Bundle’s Time-To-Live (TTL) {30; 60} Minutes 

Bundle size [500kB, 1MB] 

Bundle creation interval [15, 30] Seconds 

Buffer size [10, 20] MB 

Node’s wait time [0, 120] Seconds 

 
Table 5 

Mobility settings of simulation tests 

 

Vehicle 

type 
Mobility model 

Speed 

interval 

Density 

ratio (%) 

Number 

of trams 

Car 
Shortest Path Map-

based Movement 

[12.6, 68.4] 

km/h 

72.63% full 

map 

Bus Bus Movement 
[12.6, 68.4] 

km/h 

8.73% 1 

Tram 
Map Route 

Movement 

[12.6, 68.4] 

km/h 

18.62% 2 

 

 

 

 
The simulation has been varied based on the network 

density level and different bundle TTL limits. The density 

factor seeks to evaluate the impact of connectivity degree 

between vehicles on the overall QoS performance of the 

proposed protocol. The bundle TTL factor evaluates the 

effectiveness of the solution relative to comparison protocols. 

The analysis of simulation results is detailed on the basis 

of the graphs presented in the figures below: 

Figures 7 and 8 show the delivery delay performances 

when TTL = 30 minutes and 60 minutes, respectively The 

hybrid-swarm protocol achieves optimal returns regardless of 

the bundle’s TTL, while the proposed swarm probabilistic 
protocol outperforms the conventional protocols. The hybrid 

FA-GSO proves more effective than the ACO-GSO approach 

in reducing the average delivery delay, demonstrating the 

superiority of the FA-GSO selection over the ACO-based 

exploration and the GSO-based local search in identifying  

better local-SCF vehicles towards bundle destinations. On the 

other hand, the bundle’s TTL does not affect the tendency of 

results in all simulated protocols, while extending TTL 

significantly reduces the average delay as it allows more time 

for bundles to reach their targets. 
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Figure 7. Average Delivery Delay vs Bundle TTL = 30 mn 

 

 
Figure 8. Average Delivery Delay vs Bundle TTL = 60 mn 

 

Figures 9 and 10 show the overhead performance when 

TTL = 30 minutes and 60 minutes, respectively. SnW-

ProPHET achieves the best returns in this metric compared to 
all other protocols. The application of SnW phases on 

ProPHET drastically reduces the number of flooded copies 

compared to the other routing models. ACO-GSO protocol 

achieves optimized overhead compared to the rest of the 

protocols, notably relative to the FA-GSO model.  The ACO-

based exploration is more effective than the FA-GSO SCF 

selection in reducing the number of replicated copies and 

delivering a high number of bundles. The collected overhead 

results are proportional to the bundle’s TTL for ProPHET and 

Hist-ProPHET, while they remain stable for SnW-ProPHET, 

FA-GSO, and ACO-GSO protocols. This difference shows 
the consistency of the bio-inspired protocols in terms of 

bundle replication rate due to the high delivery probability. 

 

 
Figure 9. Delivery probability vs Bundle TTL = 30 mn 

 

 
Figure 10. Delivery probability vs Bundle TTL = 60 mn 

 

 
Figure 11. Overheads vs Bundle TTL = 30 mn 

 

 
Figure 12. Overheads vs Bundle TTL = 60 mn 

 

 
Figure 13. Bundles relay cost vs Bundle TTL = 30 mn 
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Figure 14. Bundles relay cost vs Bundle TTL = 60 mn 

 

Figures 11 and 12 show the replication cost when TTL = 

30 minutes and 60 minutes, respectively. The performances 

of this metric are very similar to that of overheads, with the 

SnW-ProPHET leading the evaluated protocols in all density 

levels. The proposed protocol surpasses the swarm 

probabilistic protocol in this indicator, similar to the case of 

overheads. This difference is attributed to the minimization 

of duplicated bundle copies during both the ACO-based 
exploration and the GSO-based local-search phases. 

Contrarily to the ProPHET and the Hist-ProPHET, the SnW-

ProPHET and the bio-inspired VDTN models demonstrate 

great abilities to slow down overheads’ progress in high-

density levels while maintaining stable overheads for long 

bundle TTLs. 

Figures 13 and 14 showcase the replication cost when TTL 

= 30 minutes and 60 minutes, respectively. The collected 

results closely resemble those of overheads, with the SnW-

ProPHET leading the evaluated protocols across all density 

levels. The proposed protocol outperforms the swarm 
probabilistic protocol in this metric, as the case of the 

overheads. This difference is justified by the minimization of 

duplicated bundle copies during both the ACO-based 

exploration and the GSO-based local-search phases. Contrary 

to the ProPHET and the Hist-ProPHET, the SnW-ProPHET 

and the bio-inspired VDTN models show strong capabilities 

to reduce overheads in high-dense areas while keeping 

overheads stable for long bundle TTLs. 

In summary, the proposed solution effectively reduces the 

bundle flooding rates, as evidenced by the collected routing 

overheads and replication cost statistics, while maintaining 

satisfactory levels of  delivery delay and delivery ratio across 
all densities. However, the performance in delivery delay and 

probability shows some limitations compared to the swarm 

probabilistic protocol. This study encourages further 

investigation of more effective mechanisms to optimize 

returns for all QoS metrics. 

V. CONCLUSION AND PERSPECTIVES 

In this paper, a hybrid swarm-inspired routing approach for 

VDTNs is proposed. The conceived routing protocol 

leverages the global and local optimization qualities of ACO 

and GSO metaheuristics, respectively, to optimize the SCF 

vehicle selection. The ACO-based SCF seeks to explore 

better relay vehicles, which are then handled by the GSO-

based SCF to identify superior local data forwarders. For this 

purpose, the ACO’s exploration fitness evaluation takes into 

consideration the forwarding history of vehicles and ongoing 
SCF quality, while the GSO’s local search fitness considers 

the forwarding history related to the bundle’s destination and 

real-time node mobility information. Simulation tests of the 

bio-inspired solution indicated optimum flooding rates 

compared to the other VDTN protocols, while maintaining  

satisfactory delivery delay and probability performance. 

However, there remains room for improvement in these latter 
metrics, as the combined ACO-GSO approach is found to be 

somewhat limited compared to FA-GSO in finding the 

shortest and most reliable trajectories to the bundles’ 

destinations. Swarm computation can be extended to different 

types of sparse vehicular routing in urban areas with sparse 

connectivity, involving Road Side Units (RSUs) and 

Unmanned Aerial Vehicles (UAVs) [37]. The incorporation 

of evolutionary computation [38] is also recommended to 

further expand VDTN routing modes, such as knowledge-

based routing. 
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