
ISSN: 2180 - 1843 Vol. 7 No. 2 July - December 2015

A Fuzzy Logic Based Approach in Choosing the Appropriate Physical Machines for Live Virtual Machines Migration in
Cloud Computing

99

A Fuzzy Logic Based Approach in Choosing the
Appropriate Physical Machines for Live Virtual

Machines Migration in Cloud Computing

 S. R. Hosseini 1, S. Adabi 2, R. Tavoli 3

1Young Researchers and Elite Club, Chalus Branch, Islamic Azad University, Chalus, Iran
2Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran

3 Department of Mathematics, Chalus Branch, Islamic Azad University, Chalus, Iran
roudabeh.hosseini@gmail.com

Abstract— Migration of Virtual Machine (VM) has become a
critical issue in modern data centers that are working based on
virtualization. Among VM Migration challenges, choosing an
appropriate Physical Machine (PM) is an important issue. To
choose a place for VM several parameters, such as physical
topology, migration duration, power consumption, service
continuity, and price must be considered. Finding a near optimal
place for VM migration that trades-off between some or all of
these features is a challenging problem. In this paper, we propose
three aspects for ranking potential destination PMs to find the
most appropriate PM as VM host. In the first aspect, PMs are
ranked in terms of servicing condition using Fuzzy logic
technique according to three parameters: workload, performance
efficiency and availability. In the second aspect, PMs are ranked
in terms of power consuming condition using Fuzzy logic
technique according to power, temperature efficiency and power
efficiency metrics. In the third aspect, the output of two fuzzy
logic engines with communication cost metric is used as the third
fuzzy logic engine inputs that rank PMs. The proposed technique
has been compared with AppAware algorithm in terms of
communication cost and performance efficiency. Experimental
results demonstrate that the proposed technique has appropriate
improvement in these metrics and outperforms AppAware
algorithm.

Index Terms— Fuzzy Logic, Network topology, Performance
evaluation, Servers.

I. INTRODUCTION

Virtualization technology has changed the design and operation
of data center in recent years [1] and there has been a strong
tendency to develop data centers that have application with
low dependency with underlying infrastructure and can easily
share resources. The basis of cloud computing is virtualization
which can manage services easily and reduce energy costs in
data centers [2]. Generally, there are two types of migration
including the live migration and non-live migration. The most
common type of VM migration is the live VM migration. In
this migration, VMs move from one PM to another PM while
VMs are running [3]. In the non-live migration, the VM is
stopped from working in the source of PM and the VM starts
working in the destination of PM from the last stage before
migrating, when all the processor state, memory pages and

disk data are received [3].
Existing decision model for choosing VM migration

destination is useful but it has limited application. These
models cannot deal with uncertainty and ambiguities, which
cannot be driven by crisp values. Using crisp values is a
significant problem in their decision making process.
In this paper we propose a method for choosing an appropriate
PM focusing on seven important PM ranking metrics
including: performance efficiency, power efficiency,
communication cost between VMs, power consumption,
workload, temperature efficiency and availability. These
metrics were not considered in the previous methods, such as
Sandpiper, Mirsal and AppAware. In the proposed method, a
combination of the mentioned metrics for a logical evaluation
of each PM state with the aid of Fuzzy logic method is
conducted. This is based on the consideration that the Fuzzy
logic method is a proper method for decision-making in
uncertainly conditions. As a result, PMs are prioritized with
the mentioned metrics and the suitability of each PM is
determined.

The remainder of the paper is organized as follows. Section
2 presents a brief overview of previous works. Using the
Hierarchal Fuzzy logic method for choosing a near optimal
PM for VM migration, the proposed method and algorithm
were described in detail in section 3. Section 4 defines the
parameters for the simulation. We present the experimental
results and analysis of these experiments in section 5, while
the conclusions and future works were described in section 6.

II. LITERATURE REVIEW

In this section, we present a brief overview of some of the

state-of-the-art approaches on VM migration. Many researches
in context of VM migration have concentrated on ways to
improve costs, performance, efficiency and flexibility. To
detect overloaded server, a method has been proposed in [4]
that using TOPSIS algorithm to relocate VMs between
clusters. The proposed method consist a control unit that
receives PM information and sorts PMs from the most rank to
the least rank. The control unit checks the ranks and if it is
higher than a predefined threshold, the server is saturated and
migration must be done. In the next step, hotspot VMs is

ISSN: 2180 - 1843 Vol. 7 No. 2 July - December 2015

Journal of Telecommunication, Electronic and Computer Engineering

100

determined with some parameters. To avoid transferring large
data and reduce cost, the VMs with the lowest RAM
utilization are chosen for migration. By migrating hotspot
from the overloaded PM to under loaded PM, the load
distribution is conducted and the response time is improved
[4]. For eliminating hotspots in the data center, Sandpiper
algorithm was proposed [5]. Sandpiper provides two
monitoring strategies for collecting statistics, namely the
black-box and grey-box strategy. The black-box strategy
collects statistic from the outside of the VM. The grey-box
approach accesses the OS-level statistics, resource usage of
VMs and application resident within each VM and migrates
overloaded VMs to less loaded servers that can satisfy the
need of VM. Optimization bandwidth usage is a primary goal
in the data centers [6]. In this context AppAware is an
evaluating approach for selecting the most appropriate PM to
host VM in terms of minimizing the traffic of data center
network. The main aim of AppAware is to put the dependent
VMs in close proximity to reduce total traffic in data center
physical network. This algorithm takes into account inter-VM
dependencies and underlying network topology into host
selection. AppAware migrates an overloaded VM to a PM
based on a migration impact factor and required resources [7].
Unbalanced temperature in data centers result higher cooling
cost [1]. In [8] a multi-objective approach to virtual machine
management in data centers was proposed and this approach
improves VM performance and temperature efficiency and
reduces power consuming [8]. In [9] control architecture for
VM migration to trade-off between performance and cost and
power is proposed. Tao et al. [10] proposed a triple-objective
comprehensive model for solving dynamic migration of VMs
that uses a binary graph matching-based bucket-code learning
algorithm (BGM-BLA) for evaluating the candidate solutions.
The goal of the model is to reduce the energy consumption
and communication cost, while reducing migration cost.
To the best of the authors’ knowledge, this is the first work
that considers the effect of seven important parameters in VM
migration approach, which include performance efficiency,
power efficiency communication cost between VMs, power
consumption, workload, temperature efficiency and
availability together.

III. THE PROPOSED APPROACH

 In the proposed approach, we use fuzzy logic method to

select a near optimal PM as VMs migration destination
because this method efficiently uses human knowledge in
vague and inaccurate conditions. PM ranking parameters that
make numerical value of PM rank (i.e., PM_rank) are vague
and uncertain to be expressed by crisp mathematical models. It
is, however, often possible to describe the PM_rank by means
of building fuzzy models.

There is a direct relation between the number of fuzzy sets
of input parameters of the system and the size of the fuzzy
knowledge base [11]. As the number of fuzzy sets of input
parameters increases, the number of rules increases
exponentially. Obviously by considering seven PM ranking
parameters as the number of inputs into the fuzzy system we
will face the mentioned problem. In this case, it is

recommended to limit the number of inputs used by the
system. To face this, we use a hierarchal fuzzy logic structure
for such fuzzy logic systems, which leads to the reduction of
computational time and maintenance of the systems robustness
and efficiency.

To calculate the PM_rank, the metrics are classified based
on tree logics. As shown in Figure 1, it includes:

1. calculating PM_rank based on serving conditions,
2. calculating PM_rank based on communication cost and
3. calculating PM_rank based on power consuming

It also includes three fuzzy inference engines designed in the
form of Hierarchical Fuzzy inference engine in order to
enhance speed of operation and permit more criteria for PMs
ranking.

Figure 1: The proposed hierarchical fuzzy inference engine

The proposed approach has two layers. The first layer

composes of two types of fuzzy decision controller: Fuzzy PM
Serving Condition determinator and Fuzzy PM Power.
Consuming determinator is designed to determine the
numerical values of PM rank based on serving conditions and
PM rank based on power consumption respectively. The
second layer is composed of a fuzzy decision controller,
Total_PM_Rank, determinator which is designed to determine
the total values of PM_rank based on a) the output of Fuzzy
PM_Serving_Condition determinator, b) the output of Fuzzy
PM_Power_Consuming determinator and c) communication
cost.

A fuzzy decision controller is composed of:
1. input and output variables, which are determined based

on the knowledge of experts;
2. a fuzzification interface (FI), which has the effect of

transforming crisp data into fuzzy sets;
3. a fuzzy rule base (RB), in which a set of fuzzy rules is

determined;
4. a fuzzy negotiation decision making logic (DML), that

uses them together with the RB to make inference by
means of a reasoning method; and

5. a defuzzification interface (DFI), that translates the
fuzzy rule action, thus obtaining a real action using a
defuzzification method.

Following the five components of each part of PM Serving
Condition determinator and PM Power Consuming
determinator of the first layer of proposed approach and Total
PM Rank determinator of the second layer, the proposed
approach is discussed in the following section.

ISSN: 2180 - 1843 Vol. 7 No. 2 July - December 2015

A Fuzzy Logic Based Approach in Choosing the Appropriate Physical Machines for Live Virtual Machines Migration in
Cloud Computing

101

A. PM Serving Condition determinator
The PM Serving Condition determinator ranks each PM in

terms of PMs servicing condition. PMs with the highest rank
in terms of servicing condition, is the most proper destination
for VMs migration. The inputs, fuzzy rules and output of this
fuzzy engine are discussed below.

The inputs of PM Serving Condition determinator

 The inputs of this fuzzy inference engine comprise three
metrics, which are the workload, availability and performance
efficiency. It also has a triangular membership function as
illustrated in Figure 2. In this respect, we used mamdani type
fuzzy logic system to design this fuzzy logic engine. The
inputs are discussed in the following.

Figure 2: Triangular membership function for ranking the PMs

Availability is defined as the percentage of time which a

customer can access to the service” [12], for selecting a PM as
VM host. It is important to know that the PM is available on
that time or not. In other words, it involves the investigation
whether a candidate’s destination of PM has sufficient
capacity to support a new VM and can satisfy its requirements
[1]. Availability of i’th PM is determined as Equation (1) [1]:

t

nt
i T

TTPM -tyAvailabili_  (1)

where Tt is the total service time and Tn is the total time for
which service is not available. According to (1), when

ity_AvailabilPMi tends to one the availability of a PM increased.
Obviously, a PM with the highest ity_AvailabilPMi value is the
best destination for a migrating VM in terms of PM
availability.

Workload is a set of jobs known as W [13]. The PMs
unbalanced workload leads to fierce competition to resources
in the PMs with heavy workload. For PMs with low workload
there is low competition, which will decrease the performance
of the VMs running on the PM with heavy workload.
Therefore, VMs should be distributed to less loaded PMs to
avoid overloading of some PMs. The workload of i’th PMs is
defined by Equation (2) [14].











10,1

_

,, networkmemcpunetworkmemcpu

networknetworkmemmemcpucpui

WWWWWW
PWPWPWWorkloadPM

(2)

where Wcpu is the weight of the CPU usage, Pcpu is the CPU
usage, Wmem is the weight of the memory usage, Pmem is the
memory usage, Wnetwork is the weight of the network usage and
Pnetwork is the network usage. In equation (2), Wcpu, Wmem and

Wnetwork can dynamically be adjusted [14]. If the result value is
closer to one, PM has heavy workload and if the result value is
closer to zero it means the PM has better state and is less
loaded.

Performance efficiency represents the amount of use of
resource of different types. To avoid resource contention, the
efficiency decreases rapidly when the usage of one or more of
resources increase the maximum allowed [8]. VMs should
migrate to PMs that have better performance efficiency. The
performance efficiency of i’th PM is defined by Equation (3).

 (3)

where CPUi is the CPU usage (%), CPUlow is the CPU usage
of idle PM (0%), CPUhigh is the CPU usage of overloaded PM
(100%), IOi is the disk utilization (%), Olow is the IO usage of
idle PM (0%), IOhigh is IO the usage of overloaded PM (100%),
Neti is the network IO usage of PM i, Nethigh is the highest
network IO usage (20 M bytes/sec), Netlow is the lowest

network IO usage (0) and m is the exponent (set to 3 in
implementation) [8].

In Equation (3) if the result value is closer to one, PM is less
efficient and if the result value is closer to zero, PM is more
efficient

The output of PM Serving Condition determinator
The output of this fuzzy inference engine is used for ranking

PMs in terms of servicing condition. As can be seen in Figure
2, the triangular membership function is used for the output
variable. The weighted average method is used for the
defuzzification and computing the clear output value. If the
PM_rank from the PM_Serving_condition perspective is close
one, the chance of selecting a PM as a destination for a
migrating VM from servicing condition perspective should be
increased.

The rule set of PM_Serving_Condition determinator
Table 1 represents the rule set of PM_Serving_Condition

determinator, which is provided by expert knowledge. These
rules define this fuzzy inference engine behavior.

        

 

 

m

lowhigh

highi
i

m

lowhigh

highi
i

m

lowhigh

lowi
ii

iiiiiiii

NetNet
NetNet

NetEffPM

IOIO
IOIO

IOEffPM

CPUCPU
CPUCPUCPUEffPM

NetEffPMIOEffPMCPUEffPMCEffPM



















































1)(_

1_

1_

,,_min_

ISSN: 2180 - 1843 Vol. 7 No. 2 July - December 2015

Journal of Telecommunication, Electronic and Computer Engineering

102

Table 1
The rule set of PM_Serving_Condition determinator

Input metrics Output

Performance
efficiency Availability Workload PMs servicing

condition
H ˅ M L L L

L L L M
M ˅ L M L M

H H ˅ M L L
M H L M
L H L H

M ˅ H L M L
H M M L
M M M M
L M ˅ H M M
H H M L
M H M L
H L H L
L L H ˅ M L

H ˅ M M ˅ L H L
M ˅ L M H M

L ˅ M ˅ H H H L

B. PM_Power_Consuming determinator
The PM_Power_Consuming determinator ranks each PM in

terms of PMs power consuming. The PM with the highest rank
in terms of power consuming is the best destination for a
migrating VM. The inputs, fuzzy rules and output of this fuzzy
engine are discussed below.

The Inputs of PM_Power_Consuming determinator
The inputs of this fuzzy inference engine consists of three

metric, namely the power efficiency, temperature efficiency
and power utility, and it has a triangular membership function
as illustrated in Figure 2. We used mamdani type fuzzy logic
system to design this fuzzy logic engine. The inputs are
discussed in the following.

The power utility is a function of the resource utilization by
a PM in a time interval [15]. A PM with lower power
utilization should be selected as a VM host. The Power utility
of i’th PM is shown in Equation (4) [15]:

disk

disk
disk

cpu

cpu
cpuidlei C

UP
C
U

PPpowerPM _ (4)

where Pcpu is the maximum dynamic power usage of the CPU,
UCPU is the CPU consumption as a percentage of the total CPU
capacity [%], Udisk is the disk usage as a percentage of the total
bandwidth capacity [%], Cdisk is the total disk bandwidth
capacity and Pidle is the power utilization by a PM when it is
idle [17]. According to (4(if _PowerPMi

value close to one, the
power utilization of the PM increases. Obviously a PM with
the highest _PowerPMi

value is the best destination for a
migrating VM in term of power utilization.

With the increase of PM workload, the CPU temperature is
raised. By increasing the CPU temperature, the performance
of PM is affected and lead to an unbalanced heat in the data
center, resulting in the increase of the data center cooling cost.
To reduce the data center cooling cost and the power
consumption, selecting a PM with a lower temperature as VM

host is momentous. Temperature efficiency of i’th PM is
calculated by Equation (5) [8]:

 
m

lowhigh

lowi
ii TT

TTTEffPM 













1_ (5)

where Ti is the temperature of PM i, TLow is the temperature for
an idle PM (15˚C), Thigh is the temperature for overloaded PM
(55˚C) and m is the degree set to 3 in implementation [8].
In Equation (5), if the result value is close to one, PM is less
suitable and if the result value is close to zero, the PM is more
suitable in term of temperature efficiency.

Power efficiency represents how much useful work is done
by the consumed power. By using the linear power model, Power
efficiency of i’th PM is calculated by Equation (6) [8]:

 
i

i
ii Power

WorkloadPEffPM _ (6)

The power efficiency increases with the utilization of the

CPU and reaches the highest point when CPU usage is 100%
[8].

The Output of PM_Power_Consuming determinator
The output of this fuzzy inference engine is used for ranking

the PMs in terms of power consuming. As can be seen in
Figure 2, the triangular membership function is used for the
output variable. For defuzzification and computing the clear
output value, the weighted average method is used. If the
result value is closer to one, PM is more appropriate in terms
of power consuming state.

The rule set of PM_Power_Consuming determinator
Table 2 illustrates the rule set for PM_Serving_Condition

determinator, which is determined based on knowledge of
experts.

Table 2
The rule set of PM_Serving_Condition determinator

Input metrics Output

Temperature
efficiency

Power
efficiency Power PMs Power

consuming condition
L ˅ M L L L

H L L M
L M L L
M M L M
H M L H

L H L M
M ˅ H H L H

L L M L
H ˅ M L M M
L ˅ M M ˅ H M M

H M M M
H H M H

L ˅ M ˅ H L H L
L M ˅ H H L

H ˅ M M ˅ H H M

ISSN: 2180 - 1843 Vol. 7 No. 2 July - December 2015

A Fuzzy Logic Based Approach in Choosing the Appropriate Physical Machines for Live Virtual Machines Migration in
Cloud Computing

103

C. Total_PM_Rank determinator
The Total_PM_Rank determinator ranks each PM to find a

near_optimal destination for a migrating VM. PM with the
highest PM_rank will be chosen as a destination for a
migrating VM.

The inputs of Total_PM_Rank determinator
The inputs of Total_PM_Rank determinator are:
1. output of Fuzzy PM_Serving_condition determinator
2. output of Fuzzy PM_Power_Consuming determinator
3. communication cost
This fuzzy inference engine has a triangular membership

function, as shown in Figure 2 and mamdani type fuzzy logic
system is used for designing of this fuzzy logic engine. The
communication cost parameter is discussed below.
The network communication cost is the time taken to
communicate and swap data between VMi and VMj [16]. By
moving the dependent VMs, which exchange a large volume
of network traffic closer to each other, the network
communication cost will be reduced. The VM communication
cost in VL2 and Tree topology are determined in Equations
(7) and (8) [18] respectively:
























































00

00

2

5

1

0

p
j

p
iif

p
j

p
iif

jiif

CVL
ij

(7)






























































































1010

101000

00

5

3

1

0

pp
j

pp
iif

pp
j

pp
i

p
j

p
iif

p
j

p
iif

jiif

CTree
ij

(8)

where P0 is the fan-out of the access switch and p1 is the fan-
out of the aggregation switch [18]. One of advantages of VL2
is that VL2 can be easily implemented with low cost [17]. In
VL2 Topology, the cost is a function of fan-out of the access
switch (P0) and can be calculated with Equation (7). In
equation (8) the cost between two VMs is a function of access
switches (p0) fan-out as well as the fan-out of the aggregation
ones (p1) [18]. After the normalization process, if the result
value is closer to one, PM has more communication cost and if
the result value is closer to zero, the PM is more suitable and
has less communication cost.

The output of Total_PM_Rank determinator
This fuzzy inference engine ranks the PMs as VMs

migration destination in the output. The membership function
is defined according to Figure 2. If the result value is closer to
one, it means that PM is more appropriate as a VM migration
host.

The rule set of Total_PM_Rank determinator
Table 3 illustrates the rule set for Total_PM_Rank

determinator, which is determined based on knowledge of
experts.

Table3
The rule set of Total_PM_Rank determinator

Input metrics Output

PM power
consuming state

Communication
cost

PMs service
state

PMs
ranking

L ˅ M L L L
H L ˅ M L M

L ˅ M M ˅ H L L
H H ˅ L L ˅ M L

L ˅ M L M M
L ˅ M M M L

H M M ˅ H M
L H M L
L L H M

M ˅ H L H H
M M H M

L ˅ M ˅ H H ˅ M H L

D. Proposed Algorithm
We proposed a fuzzy logic-based approach for VM

migration to minimize the cost and improve performance
efficiency. Application dependencies and network topology
are considered in the decision making processes. The base
procedure for the proposed approach is shown in Algorithm1.
In the proposed algorithm, the set of physical machines in the
data center is defined as P = {P1, P2, P3,..., Pm} , set of virtual
machines is defined as V = {V1, V2, V3, . . . , Vn} and the set
of overloaded virtual machines is defined as O ={V1, V2, . . . ,
Vk}, such that O  V . The algorithm takes as input the
number of VMs and PMs. Creat_datacenter(m) function
creates a datacenter with m PMs, which have tree or VL2
network topology. Creat_state(n,m) defines which Vi creat on
PMi and then Vi will be created with a predefined percentage
of PMi ’s resources by creat_vm(n,m,pm,state) function. Next,
we calculate the communication cost between PMs in
datacenter topology by creat_dcost(m). We define Load(Vi) as
the vector of CPU, memory and storage load requirements of
virtual machine Vi. Capacity(Pi) is defined as the available
capacity of physical machine Pi regarding its CPU, memory
and storage. In the next step, we find overloaded VM
regarding its CPU usage. PM that has CPU utilization more
than the predefined threshold is detected and VMs, which
have the most CPU usage is selected for migration. In next
step, we obtain a dependency graph, G = (V, E), where V is
the set of VM and E is the set of edges, defined as E = (Vi,
Vj): Vi, Vj V c, such that if Vi and Vj are dependent to each
other, a communication takes places between them. W(Vi, Vj)
is the traffic demand of each edge, which is directly
coordinated based on the traffic transferred between Vi, Vj .
The total communication weight TW(Vi) of all overloaded
VMs incoming edges is computed, as TW(Vi) =
∑ 𝑊𝑊(𝑣𝑣𝑣𝑣, 𝑉𝑉𝑉𝑉)∀ 𝑉𝑉𝑉𝑉 ∈ 𝑉𝑉 . Overloaded VMs are sorted in

ISSN: 2180 - 1843 Vol. 7 No. 2 July - December 2015

Journal of Telecommunication, Electronic and Computer Engineering

104

descending order of their TW(Vi), thus overloaded VM which
has the most traffic will have the priority to migrate to the
selected PM. The algorithm will try to place the dependent
VMs close to each other in the data center topology. For all
the overloaded VMs, these steps will be done:

Check all side constraints (CPU, memory, disk capacity
limits), if all server side constraints are satisfied, PMs ranking
process will start. For all PMs, the value of seven inputs
metrics is calculated and normalized between [0,1], and then
three proposed engine will be called to rank the PMs. PM with
the highest rank will be chosen as VM migration Destination.
The capacity of source and destination PM will be updated
after all migration. The migration decision steps are repeated
until a mapping has been identified for all overloaded virtual
machines.

IV. SIMULATION

A testbed is developed in Matlab program to evaluate the

performance of the proposed approach. The VMs migration is
done among PMs of a data center. Two data center topologies
named as VL2 and Tree are considered. We generate a range
of scenarios. All the input parameters required for setting
simulation testbed and their possible values are shown in
Table 4. We run simulated experiments for small topologies
for 300 scenarios and 288 scenarios for large ones.

Algorithm 1 Algorithm for virtual machine migration

number of PMs (m) , number of VMs (n) INPUTS:
pm=creat_datacenter(m); % m is PMs number
state=creat_state(n,m);% n is VMs number
vm=creat_vm(n,m,pm,state);

(m);% Network distancedistance=creat_dcost
in P kfor each PM P

for each VM Vi in O
Calculate each PM used resources based on it’s VMs

) % available server side capacity on physical machine Pi kCapacity(P
regarding its CPU,memory And storage
End for
End for

VM Calculate Overloaded VMs O
% Dependency graph G=(V,E) with [w,g]=creat_dependency(n,O);

weights W
For each VM Vi in O

TW(Vi) = ∑ 𝑊𝑊(𝑣𝑣𝑣𝑣, 𝑉𝑉𝑉𝑉)
∀ 𝑉𝑉𝑉𝑉 ∈ 𝑉𝑉

End for
O in decreasing order of TW(Vi) sort Vi

0 //migration setM
for each VM Vi in O
for each PM Pk in P

check_server_constrant(Vi , PK)==falseif
continue;
Workload(Vi, Pk), Cool(Vi, Pk), eff (Vi, Pk)= min{ eff_CPU(Pk),
eff_io(Pk), eff_net(Pk) }
Power(vi, Pk), Availablity(vi, Pk), Performance(vi, Pk),Power_eff(vi, Pk)

Cost(Vi, Pk) = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉𝑉𝑉, Pk, Vj , C(vj))
∀ 𝑉𝑉𝑉𝑉 ∈ 𝐷𝐷(𝑣𝑣𝑣𝑣)

Fuzzy_1(i)= evalfis([workload(i); Availablity (i); performance(i)])
Fuzzy_2(i)= evalfis([power(i);cool(i)])
Fuzzy_3(i)= evalfis([Fuzzy_1 (i);cost(i); Fuzzy_2 (i)])
End if
End for

Table4
Simulation parameters

V. MAIN RESULT

The proposed approach was compared with AppAware

algorithm [7] in terms of communication cost and
performance efficiency. In Figure 3, the proposed approach
was compared with AppAware algorithm in terms of the
average of performance efficiency, in two VL2 and Tree
topologies with 240 VMs. The X-axis indicates the number of
VMs and Y-axis and is assigned to the average of performance
efficiency metric. As shown in Figure 3, the proposed
approach demonstrates the performance efficiency
improvement (based on Equation (4)) in both VL2 and Tree
topologies. Table 5 represents the amount of performance
efficiency improvement in comparison to the AppAware
algorithm in tree topology, and Table 6 represents the amount
of performance efficiency improvement in comparison to the
AppAware algorithm in VL2 topology.

In Figure 4, the proposed approach was compared with
AppAware algorithm in terms of the average of
communication cost, in two VL2 and Tree topologies. The X-
axis indicates the number of VMs and Y-axis is assigned to
the average of the communication cost metric. As shown in
Figure 4, it can be observed that the proposed algorithm
outperforms the AppAware algorithm in terms of average
communication cost in both the VL2 and Tree topologies and
the amount of communication cost improvement in
comparison to the AppAware algorithm in tree topology is
represented in Table 7. Table 8 represents the amount of
communication cost improvement in comparison to the
AppAware algorithm in VL2 topology. On average, the
proposed approach improved communication cost much more
in VL2 topology in comparison to the tree topology. These
results confirm that the consideration of the average
combinatorial effects of the seven parameters (Performance
efficiency, power efficiency, communication cost between
VMs, Power consumption, Workload, Temperature efficiency
and Availability) by the proposed system, the accuracy of
proposed algorithm increases which leads to better results in
both VL2 and Tree topologies.

Quantity domain parameters Simulation
3-Uniforms distribution 1 VMs dependencies

2.0 , 2.0 , 2.0 Fraction of overloaded VMs

[7] Tree, VL2 Architecture(PM)

Small topology Large topology
of VMs

[7]10-5 [7] 002-02

[7] 12-7 [7] 122 # of PMs

ISSN: 2180 - 1843 Vol. 7 No. 2 July - December 2015

A Fuzzy Logic Based Approach in Choosing the Appropriate Physical Machines for Live Virtual Machines Migration in
Cloud Computing

105

Figure 3: Comparison of proposed approach and AppAware in term of
performance efficiency in large topology

Table 5

The amount of performance efficiency improvement in proposed approach in
Tree topology in compare with AppAware

Number
of VM

Proposed
approach in

Tree topology

AppAware
in Tree

topology

Amount of
improvement

20 0.318 0.396 12.91
40 0.163 0.302 19.91
60 0.123 0.229 13.75
80 0.087 0.201 14.27
100 0.073 0.13 6.55
120 0.059 0.13 8.16
140 0.047 0.134 10.05
160 0.043 0.099 6.22
180 0.037 0.094 6.29
200 0.035 0.087 5.7
220 0.028 0.078 5.42
240 0.03 0.076 4.98

Table 6

The amount of performance efficiency improvement in proposed approach in
VL2 topology in compare with AppAware

Number
of VM

Proposed
approach in

VL2 topology

AppAware
in VL2

topology

Amount of
improvement

20 0.348 0.412 10.9
40 0.169 0.315 21.3
60 0.123 0.239 15.2
80 0.089 0.16 8.5

100 0.062 0.128 7.6
120 0.057 0.125 7.8
140 0.051 0.099 5.3
160 0.045 0.097 5.8
180 0.039 0.073 3.7
200 0.033 0.078 4.9
220 0.03 0.06 3.2
240 0.029 0.051 2.3

Figure 4: Comparison of proposed approach and AppAware in term of
communication cost in large topology

Table 7

The amount of communication cost improvement in proposed approach in
Tree topology in compare with AppAware

Number
of VM

Proposed
approach in

Tree topology

AppAware
in Tree

topology

Amount of
improvement

20 0.072 0.101 3.2
40 0.035 0.129 10.8
60 0.028 0.101 8.1
80 0.019 0.105 9.6
100 0.015 0.073 6.3
120 0.018 0.068 5.4
140 0.01 0.071 6.6
160 0.01 0.05 4.2
180 0.008 0.052 4.6
200 0.007 0.05 4.5
220 0.006 0.044 4
240 0.007 0.05 4.5

Table 8

The amount of communication cost improvement in proposed approach in
VL2 topology in compare with AppAware

Number
of VM

Proposed
approach in

VL2 topology

AppAware
in VL2

topology

Amount of
improvement

20 0.096 0.11 1.6
40 0.038 0.117 8.9
60 0.029 0.162 15.9
80 0.023 0.087 7
100 0.02 0.07 5.4
120 0.012 0.069 6.1
140 0.012 0.054 4.4
160 0.01 0.058 5.1
180 0.009 0.044 3.7
200 0.007 0.047 4.2
220 0.007 0.034 2.8
240 0.006 0.03 2.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

20 40 60 80 100 120 140 160 180 200 220 240

A
ve

ra
ge

 o
f p

er
fo

rm
an

ce
 e

ffi
ci

en
cy

Number of VMs

 Proposed algorithm in Tree topology

 AppAware in Tree topology

 Proposed algorithm in VL2 topology

 AppAware in VL2 topology

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

20 40 60 80 100 120 140 160 180 200 220 240

A
ve

ra
ge

 o
f c

om
m

un
ic

at
io

n
co

st
 e

ffi
ci

en
cy

Number of VMs

 Proposed algorithm in Tree topology

 AppAware in Tree topology

 Proposed algorithmin VL2 topology

 AppAware in VL2 topology

ISSN: 2180 - 1843 Vol. 7 No. 2 July - December 2015

Journal of Telecommunication, Electronic and Computer Engineering

106

VI. CONCLUSION

In this paper, we proposed a hierarchical fuzzy logic system
for ranking PM as destination of VM migration aiming to
reduce communication cost and improve the performance
efficiency of PMs. To design this hierarchical fuzzy logic
system, a classification is provided and a proposed metrics is
classified in three aspects, namely the PM_Serving_Condition,
PM_Power_Consuming and Total_PM_Rank. Using the
hierarchal fuzzy logic system, which consider seven
parameters (Performance efficiency, power efficiency,
Communication cost between VMs, Power consumption,
Workload, Temperature efficiency and Availability) and the
significant role in ranking the potential destination of PMs for
migrating VM together, the number of fuzzy rules in the
system are reduced, thereby reducing the computational time
(which is critical in cloud environment). The experimental
results show that a proposed algorithm outperforms
AppAware in terms of communication cost and performance
efficiency due to the combined effects of the seven
parameters. For future works, we can develop our work in VM
migration among clouds, learn the proposed rules and develop
better membership functions.

REFERENCES

[1] R. Boutaba, Q. Zhang and M. F. Zhani, "Virtual Machine Migration in
Cloud Computing Environments. Benefits, Challenges, and
Approaches", IGI Global, 2013, pp. 383-408.

[2] R. Buyya , C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud
computing and emerging IT platforms. Vision, hype, and reality for
delivering computing as the 5th utility", Future Generation computer
systems, Vol.25, no.6, 2009, pp.599-616.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, and A.
Warfield, "Live migration of virtual machines", In Proceedings of the
2nd conference on Symposium on Networked Systems Design &
Implementation, Vol.2 , 2005, pp. 273-286.

[4] M. Tarighi, S. A. Motamedi and S. Sharifian, "A new model for virtual
machine migration in virtualized cluster server based on Fuzzy Decision
Making", 2010, arXiv preprint arXiv.1002.3329.

[5] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, "Sandpiper.
Black-box and gray-box resource management for virtual
machines", Computer Networks, Vol.53, no.17, 2009, pp. 2923-2938.

[6] H. Liu, H. Jin, C. Z. Xu, and X. Liao, "Performance and energy
modeling for live migration of virtual machines", Cluster
computing, Vol.16, no.2, 2013, pp.249-264.

[7] V. Shrivastava, P. Zerfos, K. W. Lee, H. Jamjoom, Y.H. Liu, and S.
Banerjee, "Application-aware virtual machine migration in data centers",
In Proceedings of IEEE INFOCOM, 2011, pp. 66 -70.

[8] J. Xu, and J. Fortes, "A multi-objective approach to virtual machine
management in datacenters", In Proceedings of the 8th ACM
international conference on Autonomic computing, 2010, pp. 225–234.

[9] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu,
"Mistral. Dynamically managing power, performance, and adaptation
cost in cloud infrastructures", In Proceedings of the IEEE International
Conference on Distributed Computing Systems ICDCS, 2010, pp.62–73.

[10] F. Tao, C.Li,T. Liao and Y.Laili, “BGM-BLA: a new algorithm for
dynamic migration of virtual machines in cloud computing”, 2015.

[11] M. Mohammadian., "Designing Customized Hierarchical Fuzzy Logic
Systems For Modelling and Prediction", 4thAsian-Pacific Conference on
Simulated Evolution and Learning, pp.18-22, 2002, Singapore.

[12] S. K., Garg, S., Versteeg & R., Buyya, "A framework for ranking of
cloud computing services", Future Generation Computer
Systems, Vol.29, no.4, 2013, pp.1012-1023.

[13] A. Burkimsher, I. Bate and L. S. Indrusiak, "A survey of scheduling
metrics and an improved ordering policy for list schedulers operanking
on workloads with dependencies and a wide variation in execution
times", Future Generation Computer Systems,Vol. 29, no.8, 2013, pp.
2009-2025.

[14] H. Mao, Z. Zhang, B. Zhao, L. Xiao, and L. Ruan, "Towards deploying
elastic Hadoop in the cloud". In Cyber-Enabled Distributed Computing
and Knowledge Discovery CyberC, 2011 International Conference on ,
2011, October, pp. 476-482.

[15] D. Minarolli, and B. Freisleben, “Distributed Resource Allocation to
Virtual Machines via Artificial Neural Networks”, In Parallel,
Distributed and Network-Based Processing PDP, 2014 22nd Euromicro
International Conference on, 2014, pp. 490-499.

[16] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra, "Starling.
Minimizing communication overhead in virtualized computing
platforms using decentralized affinity-aware migration", In Parallel
Processing ICPP, 2010 39th International Conference on , 2010,
September, pp. 228-237.

[17] A. Hammadi, and L. Mhamdi, "A survey on architectures and energy
efficiency in Data Center Networks", Computer Communications, Vol.
40, 2014, pp.1-21.

[18] X. Meng, V. Pappas and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement”, In
INFOCOM, 2010 Proceedings IEEE, 2010, pp. 1-9.

