

Journal of Telecommunication, Electronic and Computer Engineering
ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 14 No. 4
jtec.utem.edu.my

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 14 No. 4 25

React Apps with Server-Side Rendering: Next.js

Harish A Jartarghar1, Girish Rao Salanke1, Ashok Kumar A.R1, Sharvani G.S1 and Shivakumar Dalali2
1Department of Computer Science and Engineering, R.V College of Engineering, Bengaluru, India.

2Don Bosco Institute of Technology, Bengaluru, India.

harishaj.cs18@rvce.edu.in

Article Info Abstract

Article history:
Received July 19th, 2022
Revised Sep 13th, 2022
Accepted Dec 4th, 2022

 Web applications are developed using a variety of different web frameworks, and developers can
pick from a wide range of web frameworks when developing a web application. React.js library
provides flexibility for building reusable User Interface (UI) Components. It uses the approach of
client side rendering, which loads the HTML content using Javascript. The client side rendering

causes the page to load slowly and the client communicates with the server for run-time data only.
Next.js Framework solves this problem by using server side rendering. When the browser requests
a web page, the server processes the web page by fetching the user’s specific data and sending it
back to the browser over the internet. Next.js helps the Search engines to crawl the site for better
Search Engine Optimization (SEO).

Index Terms:
Document Object

Model(DOM)
Server Side Rendering (SSR)
User Interface (UI)
Search Engine Optimization
(SEO)
Application Program Interface
(API)

I. INTRODUCTION

The Internet is used by companies all over the world as a low-

cost marketing medium as well as a route for contacting with
their clients and business partners. Providing a secure and

efficient method for this form of communication, the use of

web applications has increased since its inception. A web

application is a software intended to be used on a web

browser. Its usage involves the combination of the server-side

scripts to the API request to the server, and the retrieval of

information stored in database and client-side scripts to rend

the data from the server and to manage the user’s interaction

within the application.

Next.js is a lightweight React framework used to develop

static and server rendered applications. Next.js utilizes a

folder directory as the routing method for the web pages. The
app is the default page. By using the pages directory, the

Next.js provides the page with automatic routing, while the

server-side renders fetches and data for each request. [6]

The aim of the paper is to demonstrate the benefits of

Next.js Framework which uses server side rendering in

optimizing the performance and enhancing the Search Engine

Optimization (SEO).

II. RELATED WORK

With the rapid advancement of internet technology over the

last decade, customers have been increasingly reliant on e-

Business to carry out daily tasks such as shopping, property

lending, and tax return. One of the most important factors

contributing to this innovative outcome is the appearance of

HTML5 technologies, which affects the entire internet

development ecosphere. HTML5 technology is a markup

language used to create layout and deliver content on global

websites [1]. In comparison to previous HTML standards,

HTML5 adds and improves several semantic components,

such as footer>, aside>, and nav> to clearly describe the web

structure and to assist web developers in building their

website under distinct structure [2]. HTML5 also introduces

new components to gain access application programming

interfaces (APIs). For example, the canvas> element allows
the website to access the canvas portion of the mobile phone

[2]. Web developers can build a website with more complex

operations using the sophisticated access characteristics of

HTML5.

Although HTML5 introduces many new features, it still

has the constraint of low efficiency rendered by any published

HTML, which is even worse than FLASH in some cases.

Google created the Chrome V8 engine in 2008, which

sufficiently tackles the issue that pushes JavaScript to the

forefront of HTML5 [3]. Prior to the release of Chrome V8,

JavaScript's major job in a website was to interact with
Cascading Style Sheets (CSS) to build a better user interface

and to assume responsibility for some common script

activities, such as form validation. Chrome V8 aims to

redefine JavaScript since Chrome V8 JavaScript engine has

such an astonishing speed that is more than 56 times quicker

than any versions of Internet Explorer (IE) [3]. Traditional

web browsers often create JavaScript by parsing byte-code

and compile the entire web project to generate the code,

which is then executed from a file system [4]. As a result, its

Journal of Telecommunication, Electronic and Computer Engineering

26 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 14 No. 4

JavaScript execution time is significantly longer than that of

the compiled languages, such as Java and C++ [4]. The

optimized approach for the V8 engine uses inline caching

technology to boost speed without traditional compilation [5].

After the V8 engine is released, JavaScript have
comparable running performance to Java or C++. As a result,

the V8 JavaScript engine allows web projects to run at the

same pace as the traditional desktop software. Because of the

excellence of the V8 JavaScript engine, different JavaScript

platforms based on the V8 engine has appeared, ushering in a

new era in Internet development history. Node.js, a

development platform that combines with the V8 JavaScript

engine, was introduced in 2009 [6]. Node.js broadens the

developers' understanding that JavaScript can do more than

just running a simple script on a webpage; it can also be used

to write an event-driven server-side application with ease [7].

Despite the fact that Node.js was released nine years ago,
several new JavaScript frameworks have appeared and have

an impact on the Internet development. The paper will next

go over the key front-end frameworks, like Next.js and

React.js libraries in the following section.

III. WEB FRAMEWORKS AND LIBRARY

A. Document Object Model (DOM)

When a web page is requested in the web browser, the

browser renders the document into a tree, dividing the HTML

tags called a Document Object Model [3].

Figure 1. Syntax of HTML and DOM tree of the syntax

A web page's DOM will also update if the structure of the
page is modified. The DOM structure can be seen as a tree

chart that represents all the elements in an HTML document

that has been loaded by the browser [3]. The relationships

between the HTML tags can be seen in the tree chart. An

example of this can be seen in Figure 1, which is a

representation of the DOM structure of the code in the same

figure.

B. React Library

React is a declarative, efficient and flexible JavaScript

library meant for interactive User interfaces (UIs) and

building reusable UI components. It is component-based,

which means it is made up of smaller, independent parts
called components; thus, making the code easier to handle

and more predictable. [1]

Figure 2. Re-rendering of the actual DOM [20]

As the DOM manipulation is a heavy task and affects the

web page performance, the virtual DOM comes into action.

The changes are first made in the virtual DOM and the

difference is computed between the actual and the virtual

DOM. Further, the nodes which have changed will be re-

rendered. This way computing simple JS Objects in memory

is much faster than manipulating DOM objects for every

transformation.

C. Virtual DOM

React.js updates the Virtual DOM rather than the real DOM

directly. W3.org defines DOM as "the logical structure of

documents as well as how documents are accessed and

updated." Updating a DOM is as quick as updating any

JavaScript object. Figure 3 illustrates how the browser

renders a web page.

Figure 3. Rendering of DOM in browser [21]

All browsers have rendered engines such as V8 engine used

in the google chrome, These Javascript engines are

responsible for parsing the HTML page. Javascript engines

also parse the CSS to each DOM element and create a render

tree. This process is called attachment.

Virtual DOM is an in-memory representation of real DOM.

It is a minimal JavaScript object that reflects the Real DOM.

When the setState method is used, React.js creates the entire

Virtual DOM from scratch. The speed at which a whole tree

can be created means that it has no impact on performance.

React Apps with Server-Side Rendering: Next.js

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 14 No. 4 27

At any one time, React.js maintains two virtual DOMs, one

with the updated state and the other with the previous state.

D. Redux: State Manager

Many businesses have gone forward to deploy effective

and faster UI frameworks as a result of global technological

improvement. Any UI framework, including React, Angular,

Vue, and plain old JS, can use the Redux UI framework

library. Redux and React are widely used together, despite the

fact that they are independent of one another and that Redux

is compatible with all frameworks.

When utilizing Redux with another UI framework, we will

typically utilize a "UI binding" library or a linking library to

connect Redux to our UI framework, rather than directly
dealing with the store from your UI code. React Redux is the

original React UI binding library. As a result, the use of a

binding layer is reduced and direct connectivity is provided.

Figure 4. Redux Architecture

Advantages of using Redux:

● The official React Redux binding is called Redux. It

enables your React components to send actions to

the main data store to modify data and receive data

from a Redux store. Developers may easily manage

various application states due to the ability to access
global data.

● Any change to the state interrupts the child

components, consequently hurting performance.

The Redux library, on the other hand, centralizes the

application's state management. This enables the

developer to employ important development tools

such as undo/redo, state persistence, and much

more.

● Tracking the application's state during the

debugging process is quite challenging in React.

Redux, on the other hand, offers a fantastic

developer experience that allows for "time-travel
debugging" and even sends comprehensive error

reports to a server.

● React has a rich UI, making data flow challenging

when multiple components were used to share the

same data. However, Redux is adaptable across all

UI levels and has a big ecosystem of add-ons to meet

your needs.

● Since the components in React are strongly tied with

the root component, it is quite difficult to reuse

them. Redux eliminates this complexity and enables

global accessibility, which aids with the
development of apps that can be tested and run in a

variety of situations (client, server, and native).

IV. ANALYSIS METHODOLOGY

A. Client Side Rendering (CSR)

React.js, angular and vue.js uses client side rendering,

which runs on the browser. The client-side rendering refers to

the use of JavaScript to render content in the browser. As a

result, just a minimal HTML document with a JavaScript file

in initial loading is received. Rather than receiving all the

content directly from the HTML document, the remainder of

the site is then rendered using the browser. Although the

initial page load is typically a little slow with client-side

rendering, subsequently all the pages load are fast. This

technique mainly communicates with the server to obtain run-

time data. Additionally, following each call to the server, the
complete user interface does not need to be reloaded. By re-

rendering specific DOM element, the client-side framework

is able to refresh the user interface with the updated data..

Figure 5. Client Side Rendering [23]

Figure 6. Server- side Rendering [22]

B. Server Side Rendering (SSR)

Next.js uses server side rendering, that is the server sends

the HTML response and the browser over the internet. The

browser then forms the content and renders the page. The

entire process of requesting data from the database, creates an

HTML page and sends it to the browser, which happens in

mere milliseconds.

C. SSR vs CSR

The primary distinction between SSR and CSR is that for

the SSR, the server sends a ready-to-render HTML web page

to the browser in response, but for the CSR, the browser just

receives a sparse document with a link to the JavaScript. This

Journal of Telecommunication, Electronic and Computer Engineering

28 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 14 No. 4

means that instead of having to wait for all of the JavaScript

to download and run, the browser will immediately begin

rendering the HTML from the server. Reaction will need to

be downloaded in both situations, and it will go through the

same steps of creating a virtual DOM and adding events to
make the page interactive. However, with the SSR, the user

can begin seeing the page while all of process is taking place.

For the page to be accessible, the CSR requires all of the

aforementioned events to take place before the virtual DOM

is sent to the browser's DOM.

D. Performance Comparison

The analysis shown in Figure 7 is done on the structuring

of the web application to both the SSR and the CSR. These
are the chrome network screen tabs of the rendered pages.

Web application using SSR approach renders more quickly

and loads with CSR resulting in a blank, white page.

Figure 7. Network Tabs of SSR vs CSR

V. NEXT.JS: SSR FRAMEWORK

This section will highlights the advantages and disadvantages

of using Next.js:

A. Advantages of Next.js

1) Automatic code splitting

The technique of separating the application's bundle into

smaller parts required by each entry point is known as code-

splitting. The goal is to reduce the initial load time of the

application by just loading the code needed to run that page.
2) Lazy Loading

Next.js supports dynamic imports, some components are

imported during the runtime or later part time whenever

necessary. Deferred loading helps to improve the initial

loading performance by decreasing the amount of JavaScript

necessary to render the page. Components or libraries are

only imported and included in the JavaScript bundle when

they're used.

3) Built-in CSS

With Next.js, enables importing CSS styles from a

JavaScript file to be used online for faster rendering.
4) Better Image Optimization

Graphics are scaled and supplied using the best, most

recent formats, such as WebP (while being open to future

formats), and images are engineered to adapt to smaller

viewports.

5) Search Engine Optimization (SEO)

Titles and keywords for each page are simple to develop

for individuals wishing to improve their SEO. They can use

the featured Head components to add them to each page.

B. Disadvantages of using Next.js:

1) Cost of flexibility

Because Next.js does not have many pre-built front pages,

one must build the entire front-end layer from the ground up.

2) Lack of built-in state manager

As a result, if one requires a state manager, it will also

require Redux, MobX, or something similar.

3) Low on plug-ins

Next.js cannot utilize as many easy-to-adapt plugins in

comparison to the Gatsby.js.

VI. SEO OPTIMIZATION WITH NEXT.JS

As Next.js uses the SSR, the SSR converts the React code

to HTML on the initial request. In contrast, a typical SPA site

transmits a large Javascript payload to the browser. The vast

majority of the HTML shown by the browser will be

generated by the Javascript. This distinction in the load

strategies has a significant impact on search rankings.
SEO bots crawl the web, examining the HTML of each

URL they come across. If it reaches a non-SSR SPA page, it

will deliver a large glob of Javascript instead of HTML. SEO

bots do not comprehend Javascript, and they do not always

wait for it to convert to HTML. This means that the bots who

determine what appears on the first page of search results are

unable to read the page. If they could not read the page,

Google will not serve it up as the "best" option answer to a

user's search. This is where Next.js can help.

By encapsulating the SPA page in NextJS, any queries to

the site's URLs will always result in a bot-friendly HTML
page. It can have the best of both worlds. It may create SPA

sites while still reaping the SEO benefits of traditional

website architecture.

VII. DISCUSSION AND FUTURE WORK

The above discussion highlights the advantages of Next.js

and its performance optimization. Next.js has some

drawbacks, and one of the drawbacks is that the SSR makes

some features to be more complicated and costly. The cost of

flexibility is more as Next.js does not provide built-in front

pages and it has to create the frontend layer from ground up.

Less plugins are adaptable to the SSR approach and it could

not be integrated with Next.js. Managing the state is a

challenging task in SSR applications as compared to CSR.

Research and open contributions are being made to overcome

the above drawbacks for optimizing the SSR.

VIII. CONCLUSION

React apps with server side rendering can be built using

Next.js frameworks, which optimizes the application

performance. Next.js also enhances the SEO for the web
applications and makes crawling easily accessible. The two

most significant building components supporting the overall

digital experience are theNext.js and the React. They have the

ability to accelerate the web through applications that

improve performance, reduce development costs, and have

larger production rates.

REFERENCES

[1] Lawson, B. and Sharp, R, “Introducing HTML5”, 5th ed, pp. 1-13.

React Apps with Server-Side Rendering: Next.js

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 14 No. 4 29

[2] BRIGHT, P., 2014. HTML5 specification finalized, squabbling over

specs continues. From https://arstechnica.com/information-

technology/2014/10/HTML5-specification-finalized-squabbling-over-

who-writes-the-specs-continues/

[3] M. Kovatsch, M. Lanter and S. Duquennoy, “Actinium: a Restful

runtime container for scriptable Internet of Things applications” in 3rd

IEEE International Conference on the Internet of Things, Wuxi, 2012,

pp. 135-142.

[4] K. Lei, Y. Ma and Z. Tan, "Performance Comparison and Evaluation

of Web Development Technologies in PHP, Python, and Node.js," in

IEEE 17th International Conference on Computational Science and

Engineering (CSE), Chengdu, China, 2014, pp. 661-668.

[5] Eric Molin. “Comparison of Single-Page Application Frameworks”.

PhD thesis. KTH Royal Institute of Technology School of Computer

Science and Communication, 2016, pp. 12-105

[6] Dasari Hermitha Curie, Jaison Joyce, Yadav Jyoti, et al. “Analysis on

Web Frameworks”, in Journal of Physics: Conference Series, pp. 10-

15.

[7] Stefanov Stoyan, “React: Up and Running: Building web Applications”

in first Edition, 2016. pp. 1-200

[8] Horton Adam, Vice Ryan, “Mastering React”, February 23, 2016, pp.

12-19

[9] Stein Johannes, “ReactJS Cookbook”, December 6, 2017, pp. 150-170

[10] Masiello Eric, “Mastering React Native”, January 11, 2017.

[11] Pratik Sharad Maratkar , Pratibha Adkar "React JS - An Emerging

Frontend JavaScript Library" Iconic Research And Engineering

Journals Volume 4 Issue 12 2021, pp. 99-102

