
 

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 13 No. 4   October – December 2021 35 

 

Solving Multi-Pickup and Delivery Problem with 

Time Windows using Ant Colony Optimization 
 

 

Thuong Thanh Tran1,2, Maria Art Antonette Clariño1 
1Institute of Computer Science, University of the Philippines Los Baños, Philippines  

2 Thai Nguyen University, Vietnam. 
ttran@up.edu.ph  

 

 
Abstract — This paper presents a meta-heuristic approach for 

the NP-hard multi-pickup and delivery problem with time 

windows based on Ant Colony Optimization (ACO) algorithm. 

ACO is an algorithm that mimics the behaviour of ant colonies 

in efficiently finding the shortest path from the nest to a food 

source. The Smooth Max-Min Ant System algorithm is used as 

a rule to update pheromone in the ACO algorithm. Visual Studio 

2019 is used as the program software. The test instances of 24 

types are used in computational experiments. The experiments 

have been tested with 100, 200, 500, 1000, 2000, and 3000 

iterations. The results are then compared with those generated 

by the CPLEX optimizer. Among three window types, the 

instances belonging to Normal Time Windows produced the best 

results. For the same node cases, the instances with long requests 

were solved faster than those with short requests due to having 

fewer requests that needed to work with than the latter. The 

results were assessed via a comparison with the Adaptive Large 

Neighborhood Search, CPLEX, in which the ACO algorithm 

performed well in most instances. Since mathematical 

programming could not handle instances with 400 nodes, it 

could be said that the problem is complicated and complex. This 

demonstrated the NP-hard characteristics of the multi-pickup 

and delivery problem with the time windows problem.  

 

Index Terms—Ant Colony Optimization; Multi-pickup and 

Delivery Problem; Time Windows; Smooth Max-Min Ant 

System Algorithm; NP-hard Problem; CPLEX Optimizer. 

 

I. INTRODUCTION 

 

A multi-pickup and delivery problem with time windows 

(MPDPTW), which is introduced in [1], [2], is a variant of the 

Vehicle Routing Problem that is in the class of NP-hard [1]. 

According to [1], [2], each request in MPDPTW is satisfied 

by a vehicle picking up items from different locations to be 

shipped and unloaded at one common delivery location. 

Additionally, a time window (TW) is associated with each 

node. This time window allows scheduled pick-ups and 

deliveries concerning the node’s start and end times. TWs are 

also indicated where the vehicles are contained to represent 

operation hours. The main objective is to minimize the 

route’s overall costs, ensuring that required pick-ups and 

deliveries are satisfied. 

In the MPDPTW, a mapping of one vehicle per request is 

made such that the single vehicle has to fulfil a single route 

made up of combined requests for pick-ups and deliveries. 

Moreover, vehicle tours have to be developed for precedence 

constraints (order in which nodes of a given request are 

visited) while reducing the overall routing cost. These 

constraints do not take precedence between the last visited 

pick-up and delivery nodes. The requirement is to fulfil pick-

ups first and then visit the delivery node. 

MPDPTW problem shares some characteristics with 

problems previously studied in the literature, namely the 

pick-up and delivery problem with time windows (PDPTW) 

and the sequential ordering problem (SOP). As the MPDTW 

is an extension of PDPTW and SOP, it is thus an NP-Hard 

problem [3]. The MPDPTW is one of the combinatorial 

optimization problems. 

The Ant Colony Optimization proposed by [4] is a unique 

approach in which the algorithm simulates the behaviour of 

ant colonies, aiming to find the shortest path from the ant’s 

nest to the food source based on the pheromone that the ants 

left on the way. This approach can be applied to many 

combinatorial optimization problems in the NP-hard class.  

This paper applies an ACO algorithm based on smoothed 

max-min for ant system for MPDPTW. The main 

contributions of our paper are as follows: 

- Presentation of a meta-heuristic approach (ACO with 

smoothed max-min for ant system algorithm) for the 

NP-hard Multi-pickup and Delivery Problem with 

Time Windows; 

- Implementation of experiments with test instances of 

24 types. For each type, five instances have been 

generated, resulting in a total of 120 instances in the 

tests; 

- Providing a favourable comparison of results of our 

ACO method to ALNS and CPLEX. 

 

In addition to this section, the rest of the paper includes (2) 

a literature review that provides a summary of approaches 

using previous works to solve MPDPTW, (3) Methodology 

that describes our methods of applying ACO algorithm with 

smooth max-min ant system for MPDPTW, (4) Results and 

Discussion, and (5) Conclusion. 

 

II. LITERATURE REVIEW 

 

The first work on MPDPTW was that of Naccache et al. 

(2018) [2], in which they used both exact and heuristic 

methods to solve the problem. While a branch-and-bound 

approach was applied with a new formulation to find 

solutions exactly, a hybrid adaptive large neighbourhood 

search algorithm with improvement operations was also 

proposed for the approximated solutions. The branch-and-cut 

algorithm was also applied for this problem in the paper of 

Aziez et al. (2020) [4], using several families of valid 

inequalities to strengthen the linear programming relaxations 

of the proposed formulations. As cited by [2] and [4], the 

MPDTW problem has similar characteristics with the 

sequential ordering problem and the pick-up and delivery 

problem with time windows. Therefore, the literature review 

of the two above problems is also considered. The following 
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briefly reviews the sequential ordering problem and the pick-

up and delivery problem with time windows.  

The sequential ordering problem (SOP) has been solved by 

several methods such as local search, branch-and-cut, and 

genetic. Local search algorithms were presented to address 

SOP problems using the concept of k-interchange by 

Savelsbergh (1985 [5], 1990 [6]). Ascheuer et al. (2001) 

constructed a new model to solve the SOP problems with the 

branch-and-cut algorithm [7]. A cooperative multi-thread 

parallelization strategy has been applied in the paper of 

Guerriero and Mancini (2003) [8]. The sequential algorithm 

that paralleled the heuristic rollout method was proposed for 

solving the SOP. Seo and Moon (2003) presented an 

improvement of the genetic algorithm to tackle the SOP [9]; 

the Voronoi quantized crossover adopted the complete graph 

representation was applied in their hybrid algorithm. 

Letchford et al. (2015) studied mathematical programming 

tools with two new multi-commodity flow formulations to 

address the SOP [10].  

Similar to SOP, several approaches have been applied for 

the delivery problem with time windows (PDPTW). Pisinger 

and Ropke (2007) used a heuristic framework: the adaptive 

large neighbourhood search with robust algorithms to solve 

the PDPTW [11]. A parallel algorithm for PDPTW was 

proposed by Subramanian et al. (2010) [12]. The method was 

the integration of a multi-start heuristic containing a variable 

neighbourhood descent procedure and a random 

neighbourhood ordering in an iterated local search. The 

particle swarm optimization (PSO) was often used in works 

on the PDPTW. Ai and Kachitvichyanukul (2009) introduced 

a new formulation for the problem and a PSO algorithm that 

was performed using the method of decoding and 

representing a random key-based solution [13]. This year, 

Zhang et al. presented a modified version of the PSO 

algorithm for solving the PDPTW problem in which the 

sweep algorithm was applied in the decoding process to 

transform the particles to the matrices of vehicle allocation 

[14]. The PSO approach was continued to address the 

PDPTW in the paper of Goksal et al. (2013), in which a 

heuristic method combining PSO and neighbourhood descent 

algorithm applied for the local search was proposed [15]. 

Aside from these heuristic approaches, several exact 

methods were also applied for solving the PDPTW. Ropke et 

al. (2007) [16] built models for the problem based on two 

novel formulations and used the branch-and-cut algorithms to 

deal with the PDPTW. Ropke and Cordeau (2009) solved the 

problem based on a branch-and-cut-and price method. In their 

new proposed algorithm, they computed the lower bounds 

using the column generation approach in which the pricing 

subproblems consisting of the nonelementary and elementary 

shortest path problem were considered [17]. Baldacci et al. 

(2011) [18] introduced a novel algorithm for solving PDPTW 

using a formulation named set-partitioning–like integer. The 

branch-and-cut-and price algorithm was then applied in this 

paper to solve the issue of the integrality gap. Another exact 

algorithm for PDPTW was presented by Alyasiry et al. 

(2019) [19], in which the relaxed network flow model was 

constructed using fragments that were pick-up and delivery 

requests series which were started as well as ended by an 

empty vehicle.   

Based on the above review, there are no doubt that only a 

few studies on methods applied for solving the MPDPTW 

problem. Hence, seeking other methods is still necessary.  

Our paper focuses on using a meta-heuristic ACO 

algorithm with smoothed max-min for the ant system to deal 

with this MPDPTW problem. 

 

III. METHODOLOGY 

 

A. Problem Description 

This section recalls the MPDPTW’s description by 

Naccache et al. (2018) [15] as below: 

There are n requests and m vehicles included in an 

MPDPTW’s problem instance. P = {1, ..., p}, D = {p + 1, ..., 

p + n}, and R = {𝑟1, ..., 𝑟𝑛} are the pick-up nodes set, the 

delivery nodes set, and the requests to be routed set, 

respectively, where |D| = n and 𝑝 ≤ 𝑛 in which each set of 

pick-up nodes 𝑃𝑟 ⊆ P and delivery node 𝑑𝑟 ∈ D represents a 

request 𝑟 ∈ R. Each pick-up node belongs to exactly one set, 

and each request always contains at least one pick-up node. 

We also have customer nodes set N = P ∪ D, r(i) is the request 

associated with node 𝑖 ∈ 𝑁 and K = {1, ..., m} is the available 

vehicles set. 

The graph G = (V, A) contains the nodes V containing the 

customer nodes, starting node, and ending depot or delivery 

node. Each node i ∈ V has a service time s𝑖 and a TW [a𝑖, b𝑖]. 

The parameters of the time window TW for each node 

corresponds to its start time a𝑖 and end time b𝑖 of operation.  

The set of arcs is A = V × V minus arcs that lead to infeasible 

solutions: we omit arc (i, j) if the following occurs: 

- i is a pick-up node and j is its delivery node if b𝑗 

< a𝑖 + s𝑖 + t𝑖𝑗  
- i is a delivery node and j is its pick-up node  

- i is the start depot and j is a delivery node  

- i is a pick-up node and j is the end of depot 

A distance d𝑖𝑗 ≥ 0 and a travel time t𝑖𝑗 ≥ 0 are associated 

with each arc (i, j) ∈ A. Let A+ (i) and A− (i) be the sets of 

outgoing and incoming arcs from node i ∈ V. 

The goal is to optimize route cost and provide requests for 

all vehicles, such as one request is only served by a vehicle. 

A solution for MPDPTW is to optimize route cost and divide 

requests for all vehicles such that one request is only served 

by a vehicle. An example of MPDPTW [15] is described in 

Figure 1. 

 

 
 

Figure 1. An MPDPTW example: Requests Rq2 and Rq5 inserted into 

route n 

 

As shown in Figure 1, Rq2 and Rq5 are two requests; p1 - 

p4 are the pick-up nodes, d1-d6 are delivery nodes, and a route 

is associated with vehicle n. For instance, in the request in 

Rq2, to collect items to be delivered to d2, p1 and p2 need to 

be visited. Similarly, for the request Rq5, p4 and p5 are 

necessary to be visited to collect items to be delivered to d5. 

Note that p2 is not directly visited after p1 from the same 

request. In addition, the delivery node of request Rq2 is 

visited after all items have been collected from p1 and p2. The 

same applies to the request Rq5. Node p4 is visited before 

node p5 in the same request, and the delivery node d5 is visited 

after all items have been collected from p5 and p4. Regarding 

precedence constraints, the two requests Rq2 and Rq5, are 

inserted into route n. 



Solving Multi-Pickup and Delivery Problem with Time Windows using Ant Colony Optimization 

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 13 No. 4   October – December 2021 37 

The mathematical formulation of MPDPT. The 

mathematical formulation of the MPDPTW problem uses the 

following decision variables: 

 xij
k = 1 if arc (i, j) is traversed by vehicle k, 0 

otherwise; 

 𝑦𝑟𝑘 = 1 if request r is visited by vehicle k, 0 

otherwise; 

 S𝑖 indicates the beginning of service at node i ∈ V. 

 The problem is then formulated as below: 
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Function (1) is the objective function that minimizes the 

overall transportation cost. The degree constraints (2) and (3) 

are in order to guarantee all nodes of a request belonging to 

the same vehicle. The constraint of at most K vehicles being 

used in the solution is ensured by (4), (5) makes sure that a 

request is to be served by only one vehicle. The schedule 

feasibility concerning TWs is guaranteed by constraints (6) 

and (7). Constraint (8) ensures the precedence order. The 

constraints of nature and the domain of the variables are 

imposed by (9) and (10). A big enough number M is equal to 

max {bi + si + tij - aj, 0} for each constraint (7) [20]. 

B. Ant Colony Optimization 

Ant colony optimization (ACO) and its most notable 

applications were proposed by [21]. Based on the name, it 

mimics how ant species demonstrate foraging by emitting 

pheromones. The path by which the pheromones are released 

creates a pattern that other colony members may follow. Ant 

colony optimization uses the same approach by finding a 

favourable path [21]. 

As shown in Table 1, four main factors decide the ACO 

algorithm’s efficiency when it is applied for specified 

problems: building a construction graph and partial solution, 

determining heuristic information, and selecting update 

pheromones’ rule. 
 

Table 1 

Algorithm of ACO Meta-Heuristic 
 

Procedure ACO Meta-heuristic 

Begin 

Set parameters, initialize pheromone- 

marked paths 

while termination condition not met do 

Construct Ant Solutions 

Apply Local Search (optional) 

Update Pheromones  

End while 

Optimized solution 

    End; 

Building a construction graph and partial solution depends 

on the problem’s characteristics. The update pheromones’ 

rule demonstrates the learning strategy of the algorithm. It is 

a common factor and is used to distinguish ACO algorithms. 

The rule, which is used in this report, is smoothed Max-Min 

Ant System. 

C. Smoothed Max-Min Ant System 

This Smoothed Max-Min Ant System (SMMAS) [22] is an 

improvement over the Max-Min Ant System algorithm [23]. 

This algorithm is simpler and more efficient than Max-Min 

Ant System. Its performance is tested experimentally through 

standard problems such as Traveling Salesman Problem and 

Production Scheduling Problem. 

The SMMAS updates general pheromone for all trails 

instead of updating the pheromone trails of only the best ants. 

The rule that SMMAS follows will be shown in the next 

section. 

D. ACO Algorithm using SMMAS for MPDPTW 

In this section, MPDPTW is solved by an ACO algorithm 

based on L.P. Tran’s work of ACO for vehicle routing 

problems [24], in which the SMMAS is applied for updating 

the pheromone step. 

Construction graph. Given N is a set of customers 

(including pick-up nodes and delivery nodes) with N = n1, n2, 

. . ., n𝑛, M is a set of requests (including vehicle capacity, 

window times, combinations of picking-up before delivery) 

with M = m1, m2, . . ., m𝑛 and E is a set of edges that connect 

nodes belonging to possible solutions, where a construction 

graph G = (N, E) for dealing with this combinatorial 

optimization problem by ACO is built, as shown in Figure 2. 

The graph contains n levels in which V𝑜 is the start and end 

node of each route. Each layer Vi includes customer nodes 

(both pick-up nodes and delivery nodes). Ants build a partial 

solution. Each ant that starts at V𝑜 visits partially from layer 

1 to layer n. At each layer, a random node will be selected to 

visit such that it would not break the constraints, and this 

selection relies on the probability that is calculated based on 

heuristic information and pheromone value following the 

SMMAS method. 
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Figure 2. Construction Graph for MPDPTW 
 

A solution for MPDPTW. A set of identified routes, and 

each route is served by a vehicle, is a solution for this 

problem. Each ant builds routes of the solution partially. Ants 

insert nodes into the current route such that these nodes would 

break the constraints. If the current solution cannot be 

inserted more nodes and is still unvisited, ants suspend this 

route and start a new one. 

Let 𝜑 is a current unfinished solution executed by 𝑟−1 

finished route and a route 𝑟𝑡ℎ in building solution. Suppose 

that 𝑖 is the final node that is visited in the route 𝑟, Q𝑟 is the 

capacity of the vehicle after visiting node 𝑖 and U is a set of 

candidates that can visit after 𝑖. A node j is qualified if it has 

not been fulfilled and falls under one of the following 

conditions: 

1. 0 < 𝑗 ≤ 𝑝 and there exists a route that responds to all 

constraints in U ∪ {𝑝 + 𝑖}. 

2. 𝑝 < 𝑗 ≤ (𝑝 + 𝑛) ⋀  𝑗 − 𝑝 ∈ 𝑟 here exists a route that 

responds to all constrains in V\{𝑗}. 

These parameters prove that a possible route responds to all 

constraints after visiting node j. The problem is a Hamilton 

cycle. 

𝑗, which is inserted into the current solution 𝜑, is randomly 

selected using the following equation: 

 

𝑃𝑖𝑗
𝜑

= {

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗
𝜑

]𝛽

∑𝑑∈𝑆
𝑖
𝜑[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗

𝜑
]𝛽

           𝑗 ∈ 𝑆𝑖
𝜑

0                                      𝑗 ∉ 𝑆𝑖
𝜑

        (11) 

 

where Pij
φ

is the probability of selecting node 𝑗 from the 

current node 𝑖. 𝜏𝑖𝑗 identifies pheromone on the arc (𝑖 𝑗). Si
φ

is 

a set of qualified nodes that are visited after node i. 

Parameters 𝛼 and 𝛽 indicate the ratio of pheromone and 

heuristic information, respectively. 𝜂ij
φ

 is heuristic 

information used to train the ants. 

 

𝜂ij
𝜑

=
1

𝐻1 + 𝐻2

 (12) 

 

where H1, H2 are heuristic information that is identified as 

follows: 

 

H1 = w1*d𝑖𝑗; w1 ∈ [0,1] (13) 

 

H1 is the information showing the distance between node i 

and node j, and w1 is a parameter whose value is in [0,1]. In 

this work, the w1 = 0.1. 

 

H2 = w2*(departureTime - b𝑖); w2 ∈ [0,1] (14) 

 

H2 is the information showing the waiting time of ants to 

sever node j after visiting node i. departureTime is the total 

serving time up to the current time at node j. w2 is a similar 

parameter as w1, w2 is set by 0.6. 

A procedure of building solution is shown in Table 2. 

 
Table 2 

Procedure of MPDPTW Solution 

 

Procedure MPDPTW_Solution 

Begin 

Input: U: set of qualified nodes, ItMax1: number of 

loops, i: current request, t: ending time of request i 

Repeat 

U’ = U 

Initialize a route r starting at node i and time t 

Repeat  

Select randomly a node d ∈ U’ that respond 

constraints, remove d from U’ and insert it into r at the 

most suitable position 

If d is not inserted into r then  

Go back to U’=U 

End if 

Until U’ =   

           Until current loop =  ItMax1 or there exists a 

possible route responding to constraints in U 

  End; 

 

Local search procedure. According to [21], generally, the 

best performing ACO algorithms make intensive use of the 

optional local search phase of the ACO meta-heuristic. 

Following this trend, the local search algorithm improves the 

solutions constructed by ants in this work. The ACO algorithm 

for MPDPTW is shown in Table 3. 

Two heuristic algorithms, L1 and L2, are applied for 

MPDPTW, in which L1 relies on greedy strategy to reduce 

the travel distance for the identified route by exchanging the 

position of pick-up nodes in the same route randomly to 

derive the better route (if it is possible), L2 is similarly built 

as L1 except exchanging some requests of route i to any route 

j at the best position in the solution instead of exchanging 

pick-up nodes’ position such that the total cost is minimum. 
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Table 3 
ACO Algorithm for MPDPTW 

 
Procedure MPDPTW_ACO 

Begin 

Initialize parameters, pheromone matrix, and 

m ants 

Repeat 

For k =1 to m do 

      Ants build a solution responding 

to all constraints 

      Repeat  

Apply L1 and L2 

     Until the best solution cannot 

reduce the travel distance 

      Update the local pheromone 

End for 

Update the global pheromone 

           Until derive the best solution in the loop 

           Derive the best solution for the problem 

  End; 

 

Test instances. This work uses the test instances that were 

used by [2]. These test instances were built upon existing 

PDPTW instances from [25] and available at [26]. 

Each instance type is characterized by a Time Windows 

(TWs) type, the maximum length of the requests and the 

number of nodes (instance size). An instance is defined 

depending on the window types as without (the TWs of the 

original node is deleted), with Normal (the TWs is slightly 

enlarged by opening it 150 units earlier and closing it 100 

units later) or with Large TWs (the TWs is enlarged by 

opening it 300 units earlier and closing it 150 units later). For 

each instance, the minimum size of a request is two, as it 

includes one delivery point. Depending on the instance type, 

it can include at most 4 (Short requests) or 8 (Long requests) 

pick-up and delivery nodes. Finally, the instances contain 25, 

50, 100 or 400 nodes. Five instances have been generated for 

each of the 24 instance types, resulting in a total of 120 

instances in the tests [2]. 

A set of instances classified according to the characteristics 

is presented in Table 4. 
 

Table 4 

Test Instances [2] 

 

Instance 

size 

Without TWs Normal TWs Large TWs 

Short 

requests 

Long 

requests 

Short 

requests 

Long 

requests 

Short 

requests 

Long 

requests 

25 W_4_25 W_8_25 N_4_25 N_8_25 L_4_25 L_8_25 

50 W_4_50 W_8_50 N_4_50 N_8_50 L_4_50 L_8_50 

100 W_4_100 W_8_100 N_4_100 N_8_100 L_4_100 L_8_100 

400 W_4_400 W_8_400 N_4_400 N_8_400 L_4_400 L_8_400 

For example, the instances of type l_8_400 represent Large 

TWs, long requests, 400 nodes. The format of each instance 

is as follows: 

 The first row: The number of vehicles; The 

capacity of vehicle 

 The second row: The depot (Starting and ending 

point of each route) 

 Row 3𝑟𝑑 to n: Nodes 

 Each row contains 8 parts corresponding to 8 

columns: 

- Column 1: Node ID 

- Column 2: X 

- Column 3: Y  

- Column 4: Demand (Noted that the pick-up 

node ’s demand < 0) 

- Column 5: Star TWs 

- Column 6: End TWs 

- Column 7: Node’s status (depot: 0; pickup 

node: 0; delivery node: 1) 

- Column 8: The request ID 

 

IV. RESULTS AND DISCUSSION 

 

The experiments have been performed on three computers, 

including a Core i7 4690 CPU, 32GB RAM, graphic card 

GTX1070 one (for Without TWs instances), a Xeon 1270p 

CPU, 32GB RAM, graphic card RTX3060Ti (for Normal 

TWs instances), and a Xeon E5-2673V3 CPU, 64GB RAM, 

graphic card GTX1070Ti (for Large TWs instances). 

The parameters and their corresponding values are shown 

below:  

 nAnt (Number of Ants): 100 

 maxiteractions (Number of iterations): 2000 

 rho (𝜌: Evaporation rate): 0.03 

 alpha and beta (𝛼 & 𝛽: the rates of pheromone and 

heuristic information): 1.0 and 2.0, respectively. 

 

   These parameter values are initialized to the values reported 

in [24]. The experiments have been tested with 100, 200, 500, 

1000, 2000, 3000 iterations, as shown in Table 2. The running 

times rose significantly while the improvement of results did 

not change after reaching 2000 iterations. Hence, the option 

of 2000 iterations was selected. 
 

Table 5 

Iteration Testing 

 
Instance Cost Time (s) Iteration 

N_4_100_1 14523.81 6.94 100 

  14523.81 13.02 200 

  14523.81 19.50 300 
  14521.05 31.92 500 

  14515.76 64.38 1000 

  14515.76 122.07 2000 

W_4_100_3 9901.19 11.44 100 

  9650.39 22.13 200 

  9656.66 49.99 500 
  9622.24 98.36 1000 

  9477.66 196.32 2000 

  9477.66 299.89 3000 

N_8_400_1 54242.75 514.88 1000 

  53958.59 1021.84 2000 

  53958.59 1486.39 3000 

L_8_400_5 51470.27 913.59 1000 

  51442.78 1824.17 2000 

  51442.78 2553.83 3000 

 

Table 5 illustrates the experiment’s results of performing 

24 instance types with the deviation being computed from the 

best solution value and the average solution. Due to the 

approximate characteristic of ACO, these results are 

computed from the average over each instance’s replications. 

The ACO algorithm executes ten times over each instance.  
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Table 6 
Experiment Results 

 

Instance 
# 

Requests 

# 

Node 

Best 

Solution 

Average 

Solution 

Time 

(ms) 

Deviation 

(%) 

W_4_25 7.8 26 2,541.45 3,079.90 13,665 17.48% 

W_8_25 5 26.8 2,674.16 3,096.94 13,164 13.65% 

W_4_50 17.2 50.6 4,450.24 5,123.91 43,658 13.15% 

W_8_50 9.8 51 4,467.74 5,156.74 37,527 13.36% 

W_4_100 33.8 101.2 8,182.58 8,683.25 165,441 5.77% 

W_8_100 21.6 103.2 8,993.44 10,102.86 133,528 10.98% 

W_4_400 132.4 400.8 28,387.84 30,064.51 883,492 5.58% 

W_8_400 81.24 402.4 35,517.31 37,712.10 600,744 5.82% 

N_4_25 7.8 26 4,186.68 4,734.83 12,296 11.58% 

N_8_25 5 26.8 4,223.51 4,694.74 12,128 10.04% 

N_4_50 16.2 50.6 7,763.31 8,928.98 37,971 13.05% 

N_8_50 9.8 51 7,631.97 8,532.99 32,638 10.56% 

N_4_100 34.2 156.6 14,270.24 15,391.04 119,898 7.28% 

N_8_100 21.6 103.2 15,832.66 16,898.61 106,296 6.31% 

N_4_400 133.8 401 45,632.10 49,274.44 1,199,176 7.39% 

N_8_400 81.4 402.4 53,958.59 59,775.23 907,472 9.73% 

L_4_25 7.48 24.8 3,101.33 3,977.96 12,772 22.04% 

L_8_25 5 24 3,681.02 4,424.05 13,037 16.80% 

L_4_50 10 47.8 6,221.15 7,500.54 35,179 17.06% 

L_8_50 10.8 50.6 6,221.15 7,500.54 35,268 17.06% 

L_4_100 34.2 101.2 11,179.40 12,224.99 131,668 8.55% 

L_8_100 21.6 103.2 13,694.16 14,618.17 125,016 6.32% 

L_4_400 133.8 401 38,483.84 40,877.26 600,976 5.86% 

L_8_400 81.6 402.4 45,673.95 50,530.35 1,808,086 9.61% 

Table 6 indicates that ACO performed well with 25, 50, 

100 nodes than 400 nodes. The results of ACO in the former 

node cases were around those of ALNS. Among three 

window types, the instances belonging to Normal TWs got 

the best results. This suggested future work to find a better 

solution for a dataset of large TWs. For the same node cases, 

the instances with long requests were solved faster than those 

with short requests because the former had less numbers of 

requests that needed to work with than the latter. However, 

their cost is more expensive. 

The analysis continues with a comparison of the ACO 

algorithm’s results with Adaptive Large Neighborhood 

Search (ANLS) and CPLEX [2]. The results of this work will 

be assessed based on the ANLS and CPLEX output. A 

comparison of the ACO algorithm’s results with ALNS is 

present in Table 7. The achieved results for all algorithms are 

the overall transportation cost (the objective function) tested 

on instances with a limit of 400 nodes. 

As shown in Table 7, for best solution, ACO showed a 

better performance in most instances excepting W_4_400 and 

W_4_400 compared with ANLS and CPLEX while ANLS 

and CPLEX have the same results. However, mathematical 

programming (CPLEX) could not address instances with 400 

nodes [2]. Similar to ANLS, ACO could handle the instances 

with 400 nodes in which ACO performed better in the Normal 

window type and the Large window type with long requests, 

whilst an opposite pattern was seen in the remained instances 

with 400 nodes. 

 

V. CONCLUSION 

 

This work presents a meta-heuristic solution to the NP-hard 

Multi-pickup and Delivery Problem with Time Windows 

(MPDPTW) based on the Ant Colony Optimization (ACO) 

algorithm in which an improvement of Max-Min Ant System 

(MMAS). This improved version is the Smoothed Max-Min 

Ant System (SMMAS) applied for the pheromone section. 

The performance of this ACO algorithm was tested on 24 

instance types. Among three window types, the instances 

belonging to Normal Time Windows produced the best 

results. The results were assessed via a comparison with the 

ANLS, CPLEX wherein the ACO algorithm performed well 

in most instances. The MPDPTW problem is NP-hard due to 

the rapid increase in running time and complexity as the input 

data increases. This is proven by the inability of the solution 

(optimization) to handle 400 nodes.  

 
Table 7 

Comparison among algorithms’ results 

 

Instance ACO ALNS [15] 
CPLEX 

[15] 
Derivation to 

ANLS CPLEX 

W_4_25 2,541.45 3,079.90 3,079.90 -17.48% -17.48% 

W_8_25 2,674.16 3,047.18 3,047.18 -12.24% -12.24% 

W_4_50 4,450.24 5,108.32 5,108.32 -12.88% -12.88% 

W_8_50 4,467.74 4,970.50 4,970.50 -10.11% -10.11% 

W_4_100 8,182.58 8,432.62 8,432.62 -2.97% -2.97% 

W_8_100 8,993.44 9,221.80 9,221.80 -2.48% -2.48% 

W_4_400 28,387.84 24,523.29 - 15.76% - 

W_8_400 35,517.31 29,462.98 - 20.55% - 

N_4_25 4,186.68 4,734.83 4,734.83 -11.58% -11.58% 

N_8_25 4,223.51 4,646.16 4,646.16 -9.10% -9.10% 

N_4_50 7,763.31 8,923.03 8,923.03 -13.00% -13.00% 

N_8_50 7,631.97 8,521.67 8,521.67 -10.44% -10.44% 

N_4_100 14,270.24 15,217.64 15,217.64 -6.23% -6.23% 

N_8_100 15,832.66 16,894.20 16,894.20 -6.28% -6.28% 

N_4_400 45,632.10 47,004.53 - -2.92% - 

N_8_400 53,958.59 58,130.75 - -7.18% - 

L_4_25 3,101.33 4,117.56 4,117.56 -24.68% -24.68% 

L_8_25 3,681.02 4,424.05 4,424.05 -16.80% -16.80% 

L_4_50 6,221.15 7,213.16 7,213.16 -13.75% -13.75% 

L_8_50 6,221.15 7,368.10 7,368.10 -15.57% -15.57% 

L_4_100 11,179.40 12,060.54 12,060.54 -7.31% -7.31% 

L_8_100 13,694.16 13,930.92 13,930.92 -1.70% -1.70% 

L_4_400 38,483.84 36,971.82 - 4.09% - 

L_8_400 45,673.95 46,406.75 - -1.58% - 
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