

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 4 October – December 2021 35

Solving Multi-Pickup and Delivery Problem with

Time Windows using Ant Colony Optimization

Thuong Thanh Tran1,2, Maria Art Antonette Clariño1
1Institute of Computer Science, University of the Philippines Los Baños, Philippines

2 Thai Nguyen University, Vietnam.
ttran@up.edu.ph

Abstract — This paper presents a meta-heuristic approach for

the NP-hard multi-pickup and delivery problem with time

windows based on Ant Colony Optimization (ACO) algorithm.

ACO is an algorithm that mimics the behaviour of ant colonies

in efficiently finding the shortest path from the nest to a food

source. The Smooth Max-Min Ant System algorithm is used as

a rule to update pheromone in the ACO algorithm. Visual Studio

2019 is used as the program software. The test instances of 24

types are used in computational experiments. The experiments

have been tested with 100, 200, 500, 1000, 2000, and 3000

iterations. The results are then compared with those generated

by the CPLEX optimizer. Among three window types, the

instances belonging to Normal Time Windows produced the best

results. For the same node cases, the instances with long requests

were solved faster than those with short requests due to having

fewer requests that needed to work with than the latter. The

results were assessed via a comparison with the Adaptive Large

Neighborhood Search, CPLEX, in which the ACO algorithm

performed well in most instances. Since mathematical

programming could not handle instances with 400 nodes, it

could be said that the problem is complicated and complex. This

demonstrated the NP-hard characteristics of the multi-pickup

and delivery problem with the time windows problem.

Index Terms—Ant Colony Optimization; Multi-pickup and

Delivery Problem; Time Windows; Smooth Max-Min Ant

System Algorithm; NP-hard Problem; CPLEX Optimizer.

I. INTRODUCTION

A multi-pickup and delivery problem with time windows

(MPDPTW), which is introduced in [1], [2], is a variant of the

Vehicle Routing Problem that is in the class of NP-hard [1].

According to [1], [2], each request in MPDPTW is satisfied

by a vehicle picking up items from different locations to be

shipped and unloaded at one common delivery location.

Additionally, a time window (TW) is associated with each

node. This time window allows scheduled pick-ups and

deliveries concerning the node’s start and end times. TWs are

also indicated where the vehicles are contained to represent

operation hours. The main objective is to minimize the

route’s overall costs, ensuring that required pick-ups and

deliveries are satisfied.

In the MPDPTW, a mapping of one vehicle per request is

made such that the single vehicle has to fulfil a single route

made up of combined requests for pick-ups and deliveries.

Moreover, vehicle tours have to be developed for precedence

constraints (order in which nodes of a given request are

visited) while reducing the overall routing cost. These

constraints do not take precedence between the last visited

pick-up and delivery nodes. The requirement is to fulfil pick-

ups first and then visit the delivery node.

MPDPTW problem shares some characteristics with

problems previously studied in the literature, namely the

pick-up and delivery problem with time windows (PDPTW)

and the sequential ordering problem (SOP). As the MPDTW

is an extension of PDPTW and SOP, it is thus an NP-Hard

problem [3]. The MPDPTW is one of the combinatorial

optimization problems.

The Ant Colony Optimization proposed by [4] is a unique

approach in which the algorithm simulates the behaviour of

ant colonies, aiming to find the shortest path from the ant’s

nest to the food source based on the pheromone that the ants

left on the way. This approach can be applied to many

combinatorial optimization problems in the NP-hard class.

This paper applies an ACO algorithm based on smoothed

max-min for ant system for MPDPTW. The main

contributions of our paper are as follows:

- Presentation of a meta-heuristic approach (ACO with

smoothed max-min for ant system algorithm) for the

NP-hard Multi-pickup and Delivery Problem with

Time Windows;

- Implementation of experiments with test instances of

24 types. For each type, five instances have been

generated, resulting in a total of 120 instances in the

tests;

- Providing a favourable comparison of results of our

ACO method to ALNS and CPLEX.

In addition to this section, the rest of the paper includes (2)

a literature review that provides a summary of approaches

using previous works to solve MPDPTW, (3) Methodology

that describes our methods of applying ACO algorithm with

smooth max-min ant system for MPDPTW, (4) Results and

Discussion, and (5) Conclusion.

II. LITERATURE REVIEW

The first work on MPDPTW was that of Naccache et al.

(2018) [2], in which they used both exact and heuristic

methods to solve the problem. While a branch-and-bound

approach was applied with a new formulation to find

solutions exactly, a hybrid adaptive large neighbourhood

search algorithm with improvement operations was also

proposed for the approximated solutions. The branch-and-cut

algorithm was also applied for this problem in the paper of

Aziez et al. (2020) [4], using several families of valid

inequalities to strengthen the linear programming relaxations

of the proposed formulations. As cited by [2] and [4], the

MPDTW problem has similar characteristics with the

sequential ordering problem and the pick-up and delivery

problem with time windows. Therefore, the literature review

of the two above problems is also considered. The following

mailto:ttran@up.edu.ph

Journal of Telecommunication, Electronic and Computer Engineering

36 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 4 October – December 2021

briefly reviews the sequential ordering problem and the pick-

up and delivery problem with time windows.

The sequential ordering problem (SOP) has been solved by

several methods such as local search, branch-and-cut, and

genetic. Local search algorithms were presented to address

SOP problems using the concept of k-interchange by

Savelsbergh (1985 [5], 1990 [6]). Ascheuer et al. (2001)

constructed a new model to solve the SOP problems with the

branch-and-cut algorithm [7]. A cooperative multi-thread

parallelization strategy has been applied in the paper of

Guerriero and Mancini (2003) [8]. The sequential algorithm

that paralleled the heuristic rollout method was proposed for

solving the SOP. Seo and Moon (2003) presented an

improvement of the genetic algorithm to tackle the SOP [9];

the Voronoi quantized crossover adopted the complete graph

representation was applied in their hybrid algorithm.

Letchford et al. (2015) studied mathematical programming

tools with two new multi-commodity flow formulations to

address the SOP [10].

Similar to SOP, several approaches have been applied for

the delivery problem with time windows (PDPTW). Pisinger

and Ropke (2007) used a heuristic framework: the adaptive

large neighbourhood search with robust algorithms to solve

the PDPTW [11]. A parallel algorithm for PDPTW was

proposed by Subramanian et al. (2010) [12]. The method was

the integration of a multi-start heuristic containing a variable

neighbourhood descent procedure and a random

neighbourhood ordering in an iterated local search. The

particle swarm optimization (PSO) was often used in works

on the PDPTW. Ai and Kachitvichyanukul (2009) introduced

a new formulation for the problem and a PSO algorithm that

was performed using the method of decoding and

representing a random key-based solution [13]. This year,

Zhang et al. presented a modified version of the PSO

algorithm for solving the PDPTW problem in which the

sweep algorithm was applied in the decoding process to

transform the particles to the matrices of vehicle allocation

[14]. The PSO approach was continued to address the

PDPTW in the paper of Goksal et al. (2013), in which a

heuristic method combining PSO and neighbourhood descent

algorithm applied for the local search was proposed [15].

Aside from these heuristic approaches, several exact

methods were also applied for solving the PDPTW. Ropke et

al. (2007) [16] built models for the problem based on two

novel formulations and used the branch-and-cut algorithms to

deal with the PDPTW. Ropke and Cordeau (2009) solved the

problem based on a branch-and-cut-and price method. In their

new proposed algorithm, they computed the lower bounds

using the column generation approach in which the pricing

subproblems consisting of the nonelementary and elementary

shortest path problem were considered [17]. Baldacci et al.

(2011) [18] introduced a novel algorithm for solving PDPTW

using a formulation named set-partitioning–like integer. The

branch-and-cut-and price algorithm was then applied in this

paper to solve the issue of the integrality gap. Another exact

algorithm for PDPTW was presented by Alyasiry et al.

(2019) [19], in which the relaxed network flow model was

constructed using fragments that were pick-up and delivery

requests series which were started as well as ended by an

empty vehicle.

Based on the above review, there are no doubt that only a

few studies on methods applied for solving the MPDPTW

problem. Hence, seeking other methods is still necessary.

Our paper focuses on using a meta-heuristic ACO

algorithm with smoothed max-min for the ant system to deal

with this MPDPTW problem.

III. METHODOLOGY

A. Problem Description

This section recalls the MPDPTW’s description by

Naccache et al. (2018) [15] as below:

There are n requests and m vehicles included in an

MPDPTW’s problem instance. P = {1, ..., p}, D = {p + 1, ...,

p + n}, and R = {𝑟1, ..., 𝑟𝑛} are the pick-up nodes set, the

delivery nodes set, and the requests to be routed set,

respectively, where |D| = n and 𝑝 ≤ 𝑛 in which each set of

pick-up nodes 𝑃𝑟 ⊆ P and delivery node 𝑑𝑟 ∈ D represents a

request 𝑟 ∈ R. Each pick-up node belongs to exactly one set,

and each request always contains at least one pick-up node.

We also have customer nodes set N = P ∪ D, r(i) is the request

associated with node 𝑖 ∈ 𝑁 and K = {1, ..., m} is the available

vehicles set.

The graph G = (V, A) contains the nodes V containing the

customer nodes, starting node, and ending depot or delivery

node. Each node i ∈ V has a service time s𝑖 and a TW [a𝑖, b𝑖].

The parameters of the time window TW for each node

corresponds to its start time a𝑖 and end time b𝑖 of operation.

The set of arcs is A = V × V minus arcs that lead to infeasible

solutions: we omit arc (i, j) if the following occurs:

- i is a pick-up node and j is its delivery node if b𝑗

< a𝑖 + s𝑖 + t𝑖𝑗
- i is a delivery node and j is its pick-up node

- i is the start depot and j is a delivery node

- i is a pick-up node and j is the end of depot

A distance d𝑖𝑗 ≥ 0 and a travel time t𝑖𝑗 ≥ 0 are associated

with each arc (i, j) ∈ A. Let A+ (i) and A− (i) be the sets of

outgoing and incoming arcs from node i ∈ V.

The goal is to optimize route cost and provide requests for

all vehicles, such as one request is only served by a vehicle.

A solution for MPDPTW is to optimize route cost and divide

requests for all vehicles such that one request is only served

by a vehicle. An example of MPDPTW [15] is described in

Figure 1.

Figure 1. An MPDPTW example: Requests Rq2 and Rq5 inserted into

route n

As shown in Figure 1, Rq2 and Rq5 are two requests; p1 -

p4 are the pick-up nodes, d1-d6 are delivery nodes, and a route

is associated with vehicle n. For instance, in the request in

Rq2, to collect items to be delivered to d2, p1 and p2 need to

be visited. Similarly, for the request Rq5, p4 and p5 are

necessary to be visited to collect items to be delivered to d5.

Note that p2 is not directly visited after p1 from the same

request. In addition, the delivery node of request Rq2 is

visited after all items have been collected from p1 and p2. The

same applies to the request Rq5. Node p4 is visited before

node p5 in the same request, and the delivery node d5 is visited

after all items have been collected from p5 and p4. Regarding

precedence constraints, the two requests Rq2 and Rq5, are

inserted into route n.

Solving Multi-Pickup and Delivery Problem with Time Windows using Ant Colony Optimization

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 4 October – December 2021 37

The mathematical formulation of MPDPT. The

mathematical formulation of the MPDPTW problem uses the

following decision variables:

 xij
k = 1 if arc (i, j) is traversed by vehicle k, 0

otherwise;

 𝑦𝑟𝑘 = 1 if request r is visited by vehicle k, 0

otherwise;

 S𝑖 indicates the beginning of service at node i ∈ V.

 The problem is then formulated as below:

Min
ij

(,)

k

ij
k K i j A

c x

 (1)

such that

ij ()
()

k

r i k
j A i

yx

 k K i N (2)

()

ji ()

i

k

r i k
j A

yx

k K i N (3)

0

(0)

1
k

j

j A
x

 k K (4)

1
rk

k K

y

 r R (5)

ij ij
(M)

k

j i i
k K

MS S s t x

 (i,j)A (6)

i i ia S b
i V (7)

rr
i i iddS S s t ,ri P r R (8)

ij

k

x , 0,1
rk

y (i,j)A, rR,

k K

(9)

0
iS

i V (10)

Function (1) is the objective function that minimizes the

overall transportation cost. The degree constraints (2) and (3)

are in order to guarantee all nodes of a request belonging to

the same vehicle. The constraint of at most K vehicles being

used in the solution is ensured by (4), (5) makes sure that a

request is to be served by only one vehicle. The schedule

feasibility concerning TWs is guaranteed by constraints (6)

and (7). Constraint (8) ensures the precedence order. The

constraints of nature and the domain of the variables are

imposed by (9) and (10). A big enough number M is equal to

max {bi + si + tij - aj, 0} for each constraint (7) [20].

B. Ant Colony Optimization

Ant colony optimization (ACO) and its most notable

applications were proposed by [21]. Based on the name, it

mimics how ant species demonstrate foraging by emitting

pheromones. The path by which the pheromones are released

creates a pattern that other colony members may follow. Ant

colony optimization uses the same approach by finding a

favourable path [21].

As shown in Table 1, four main factors decide the ACO

algorithm’s efficiency when it is applied for specified

problems: building a construction graph and partial solution,

determining heuristic information, and selecting update

pheromones’ rule.

Table 1

Algorithm of ACO Meta-Heuristic

Procedure ACO Meta-heuristic

Begin

Set parameters, initialize pheromone-

marked paths

while termination condition not met do

Construct Ant Solutions

Apply Local Search (optional)

Update Pheromones

End while

Optimized solution

 End;

Building a construction graph and partial solution depends

on the problem’s characteristics. The update pheromones’

rule demonstrates the learning strategy of the algorithm. It is

a common factor and is used to distinguish ACO algorithms.

The rule, which is used in this report, is smoothed Max-Min

Ant System.

C. Smoothed Max-Min Ant System

This Smoothed Max-Min Ant System (SMMAS) [22] is an

improvement over the Max-Min Ant System algorithm [23].

This algorithm is simpler and more efficient than Max-Min

Ant System. Its performance is tested experimentally through

standard problems such as Traveling Salesman Problem and

Production Scheduling Problem.

The SMMAS updates general pheromone for all trails

instead of updating the pheromone trails of only the best ants.

The rule that SMMAS follows will be shown in the next

section.

D. ACO Algorithm using SMMAS for MPDPTW

In this section, MPDPTW is solved by an ACO algorithm

based on L.P. Tran’s work of ACO for vehicle routing

problems [24], in which the SMMAS is applied for updating

the pheromone step.

Construction graph. Given N is a set of customers

(including pick-up nodes and delivery nodes) with N = n1, n2,

. . ., n𝑛, M is a set of requests (including vehicle capacity,

window times, combinations of picking-up before delivery)

with M = m1, m2, . . ., m𝑛 and E is a set of edges that connect

nodes belonging to possible solutions, where a construction

graph G = (N, E) for dealing with this combinatorial

optimization problem by ACO is built, as shown in Figure 2.

The graph contains n levels in which V𝑜 is the start and end

node of each route. Each layer Vi includes customer nodes

(both pick-up nodes and delivery nodes). Ants build a partial

solution. Each ant that starts at V𝑜 visits partially from layer

1 to layer n. At each layer, a random node will be selected to

visit such that it would not break the constraints, and this

selection relies on the probability that is calculated based on

heuristic information and pheromone value following the

SMMAS method.

Journal of Telecommunication, Electronic and Computer Engineering

38 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 4 October – December 2021

Figure 2. Construction Graph for MPDPTW

A solution for MPDPTW. A set of identified routes, and

each route is served by a vehicle, is a solution for this

problem. Each ant builds routes of the solution partially. Ants

insert nodes into the current route such that these nodes would

break the constraints. If the current solution cannot be

inserted more nodes and is still unvisited, ants suspend this

route and start a new one.

Let 𝜑 is a current unfinished solution executed by 𝑟−1

finished route and a route 𝑟𝑡ℎ in building solution. Suppose

that 𝑖 is the final node that is visited in the route 𝑟, Q𝑟 is the

capacity of the vehicle after visiting node 𝑖 and U is a set of

candidates that can visit after 𝑖. A node j is qualified if it has

not been fulfilled and falls under one of the following

conditions:

1. 0 < 𝑗 ≤ 𝑝 and there exists a route that responds to all

constraints in U ∪ {𝑝 + 𝑖}.

2. 𝑝 < 𝑗 ≤ (𝑝 + 𝑛) ⋀ 𝑗 − 𝑝 ∈ 𝑟 here exists a route that

responds to all constrains in V\{𝑗}.

These parameters prove that a possible route responds to all

constraints after visiting node j. The problem is a Hamilton

cycle.

𝑗, which is inserted into the current solution 𝜑, is randomly

selected using the following equation:

𝑃𝑖𝑗
𝜑

= {

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗
𝜑

]𝛽

∑𝑑∈𝑆
𝑖
𝜑[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗

𝜑
]𝛽

 𝑗 ∈ 𝑆𝑖
𝜑

0 𝑗 ∉ 𝑆𝑖
𝜑

 (11)

where Pij
φ

is the probability of selecting node 𝑗 from the

current node 𝑖. 𝜏𝑖𝑗 identifies pheromone on the arc (𝑖 𝑗). Si
φ

is

a set of qualified nodes that are visited after node i.

Parameters 𝛼 and 𝛽 indicate the ratio of pheromone and

heuristic information, respectively. 𝜂ij
φ

 is heuristic

information used to train the ants.

𝜂ij
𝜑

=
1

𝐻1 + 𝐻2

 (12)

where H1, H2 are heuristic information that is identified as

follows:

H1 = w1*d𝑖𝑗; w1 ∈ [0,1] (13)

H1 is the information showing the distance between node i

and node j, and w1 is a parameter whose value is in [0,1]. In

this work, the w1 = 0.1.

H2 = w2*(departureTime - b𝑖); w2 ∈ [0,1] (14)

H2 is the information showing the waiting time of ants to

sever node j after visiting node i. departureTime is the total

serving time up to the current time at node j. w2 is a similar

parameter as w1, w2 is set by 0.6.

A procedure of building solution is shown in Table 2.

Table 2

Procedure of MPDPTW Solution

Procedure MPDPTW_Solution

Begin

Input: U: set of qualified nodes, ItMax1: number of

loops, i: current request, t: ending time of request i

Repeat

U’ = U

Initialize a route r starting at node i and time t

Repeat

Select randomly a node d ∈ U’ that respond

constraints, remove d from U’ and insert it into r at the

most suitable position

If d is not inserted into r then

Go back to U’=U

End if

Until U’ =

 Until current loop = ItMax1 or there exists a

possible route responding to constraints in U

 End;

Local search procedure. According to [21], generally, the

best performing ACO algorithms make intensive use of the

optional local search phase of the ACO meta-heuristic.

Following this trend, the local search algorithm improves the

solutions constructed by ants in this work. The ACO algorithm

for MPDPTW is shown in Table 3.

Two heuristic algorithms, L1 and L2, are applied for

MPDPTW, in which L1 relies on greedy strategy to reduce

the travel distance for the identified route by exchanging the

position of pick-up nodes in the same route randomly to

derive the better route (if it is possible), L2 is similarly built

as L1 except exchanging some requests of route i to any route

j at the best position in the solution instead of exchanging

pick-up nodes’ position such that the total cost is minimum.

Solving Multi-Pickup and Delivery Problem with Time Windows using Ant Colony Optimization

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 4 October – December 2021 39

Table 3
ACO Algorithm for MPDPTW

Procedure MPDPTW_ACO

Begin

Initialize parameters, pheromone matrix, and

m ants

Repeat

For k =1 to m do

 Ants build a solution responding

to all constraints

 Repeat

Apply L1 and L2

 Until the best solution cannot

reduce the travel distance

 Update the local pheromone

End for

Update the global pheromone

 Until derive the best solution in the loop

 Derive the best solution for the problem

 End;

Test instances. This work uses the test instances that were

used by [2]. These test instances were built upon existing

PDPTW instances from [25] and available at [26].

Each instance type is characterized by a Time Windows

(TWs) type, the maximum length of the requests and the

number of nodes (instance size). An instance is defined

depending on the window types as without (the TWs of the

original node is deleted), with Normal (the TWs is slightly

enlarged by opening it 150 units earlier and closing it 100

units later) or with Large TWs (the TWs is enlarged by

opening it 300 units earlier and closing it 150 units later). For

each instance, the minimum size of a request is two, as it

includes one delivery point. Depending on the instance type,

it can include at most 4 (Short requests) or 8 (Long requests)

pick-up and delivery nodes. Finally, the instances contain 25,

50, 100 or 400 nodes. Five instances have been generated for

each of the 24 instance types, resulting in a total of 120

instances in the tests [2].

A set of instances classified according to the characteristics

is presented in Table 4.

Table 4

Test Instances [2]

Instance

size

Without TWs Normal TWs Large TWs

Short

requests

Long

requests

Short

requests

Long

requests

Short

requests

Long

requests

25 W_4_25 W_8_25 N_4_25 N_8_25 L_4_25 L_8_25

50 W_4_50 W_8_50 N_4_50 N_8_50 L_4_50 L_8_50

100 W_4_100 W_8_100 N_4_100 N_8_100 L_4_100 L_8_100

400 W_4_400 W_8_400 N_4_400 N_8_400 L_4_400 L_8_400

For example, the instances of type l_8_400 represent Large

TWs, long requests, 400 nodes. The format of each instance

is as follows:

 The first row: The number of vehicles; The

capacity of vehicle

 The second row: The depot (Starting and ending

point of each route)

 Row 3𝑟𝑑 to n: Nodes

 Each row contains 8 parts corresponding to 8

columns:

- Column 1: Node ID

- Column 2: X

- Column 3: Y

- Column 4: Demand (Noted that the pick-up

node ’s demand < 0)

- Column 5: Star TWs

- Column 6: End TWs

- Column 7: Node’s status (depot: 0; pickup

node: 0; delivery node: 1)

- Column 8: The request ID

IV. RESULTS AND DISCUSSION

The experiments have been performed on three computers,

including a Core i7 4690 CPU, 32GB RAM, graphic card

GTX1070 one (for Without TWs instances), a Xeon 1270p

CPU, 32GB RAM, graphic card RTX3060Ti (for Normal

TWs instances), and a Xeon E5-2673V3 CPU, 64GB RAM,

graphic card GTX1070Ti (for Large TWs instances).

The parameters and their corresponding values are shown

below:

 nAnt (Number of Ants): 100

 maxiteractions (Number of iterations): 2000

 rho (𝜌: Evaporation rate): 0.03

 alpha and beta (𝛼 & 𝛽: the rates of pheromone and

heuristic information): 1.0 and 2.0, respectively.

 These parameter values are initialized to the values reported

in [24]. The experiments have been tested with 100, 200, 500,

1000, 2000, 3000 iterations, as shown in Table 2. The running

times rose significantly while the improvement of results did

not change after reaching 2000 iterations. Hence, the option

of 2000 iterations was selected.

Table 5

Iteration Testing

Instance Cost Time (s) Iteration

N_4_100_1 14523.81 6.94 100

 14523.81 13.02 200

 14523.81 19.50 300
 14521.05 31.92 500

 14515.76 64.38 1000

 14515.76 122.07 2000

W_4_100_3 9901.19 11.44 100

 9650.39 22.13 200

 9656.66 49.99 500
 9622.24 98.36 1000

 9477.66 196.32 2000

 9477.66 299.89 3000

N_8_400_1 54242.75 514.88 1000

 53958.59 1021.84 2000

 53958.59 1486.39 3000

L_8_400_5 51470.27 913.59 1000

 51442.78 1824.17 2000

 51442.78 2553.83 3000

Table 5 illustrates the experiment’s results of performing

24 instance types with the deviation being computed from the

best solution value and the average solution. Due to the

approximate characteristic of ACO, these results are

computed from the average over each instance’s replications.

The ACO algorithm executes ten times over each instance.

Journal of Telecommunication, Electronic and Computer Engineering

40 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 4 October – December 2021

Table 6
Experiment Results

Instance

Requests

Node

Best

Solution

Average

Solution

Time

(ms)

Deviation

(%)

W_4_25 7.8 26 2,541.45 3,079.90 13,665 17.48%

W_8_25 5 26.8 2,674.16 3,096.94 13,164 13.65%

W_4_50 17.2 50.6 4,450.24 5,123.91 43,658 13.15%

W_8_50 9.8 51 4,467.74 5,156.74 37,527 13.36%

W_4_100 33.8 101.2 8,182.58 8,683.25 165,441 5.77%

W_8_100 21.6 103.2 8,993.44 10,102.86 133,528 10.98%

W_4_400 132.4 400.8 28,387.84 30,064.51 883,492 5.58%

W_8_400 81.24 402.4 35,517.31 37,712.10 600,744 5.82%

N_4_25 7.8 26 4,186.68 4,734.83 12,296 11.58%

N_8_25 5 26.8 4,223.51 4,694.74 12,128 10.04%

N_4_50 16.2 50.6 7,763.31 8,928.98 37,971 13.05%

N_8_50 9.8 51 7,631.97 8,532.99 32,638 10.56%

N_4_100 34.2 156.6 14,270.24 15,391.04 119,898 7.28%

N_8_100 21.6 103.2 15,832.66 16,898.61 106,296 6.31%

N_4_400 133.8 401 45,632.10 49,274.44 1,199,176 7.39%

N_8_400 81.4 402.4 53,958.59 59,775.23 907,472 9.73%

L_4_25 7.48 24.8 3,101.33 3,977.96 12,772 22.04%

L_8_25 5 24 3,681.02 4,424.05 13,037 16.80%

L_4_50 10 47.8 6,221.15 7,500.54 35,179 17.06%

L_8_50 10.8 50.6 6,221.15 7,500.54 35,268 17.06%

L_4_100 34.2 101.2 11,179.40 12,224.99 131,668 8.55%

L_8_100 21.6 103.2 13,694.16 14,618.17 125,016 6.32%

L_4_400 133.8 401 38,483.84 40,877.26 600,976 5.86%

L_8_400 81.6 402.4 45,673.95 50,530.35 1,808,086 9.61%

Table 6 indicates that ACO performed well with 25, 50,

100 nodes than 400 nodes. The results of ACO in the former

node cases were around those of ALNS. Among three

window types, the instances belonging to Normal TWs got

the best results. This suggested future work to find a better

solution for a dataset of large TWs. For the same node cases,

the instances with long requests were solved faster than those

with short requests because the former had less numbers of

requests that needed to work with than the latter. However,

their cost is more expensive.

The analysis continues with a comparison of the ACO

algorithm’s results with Adaptive Large Neighborhood

Search (ANLS) and CPLEX [2]. The results of this work will

be assessed based on the ANLS and CPLEX output. A

comparison of the ACO algorithm’s results with ALNS is

present in Table 7. The achieved results for all algorithms are

the overall transportation cost (the objective function) tested

on instances with a limit of 400 nodes.

As shown in Table 7, for best solution, ACO showed a

better performance in most instances excepting W_4_400 and

W_4_400 compared with ANLS and CPLEX while ANLS

and CPLEX have the same results. However, mathematical

programming (CPLEX) could not address instances with 400

nodes [2]. Similar to ANLS, ACO could handle the instances

with 400 nodes in which ACO performed better in the Normal

window type and the Large window type with long requests,

whilst an opposite pattern was seen in the remained instances

with 400 nodes.

V. CONCLUSION

This work presents a meta-heuristic solution to the NP-hard

Multi-pickup and Delivery Problem with Time Windows

(MPDPTW) based on the Ant Colony Optimization (ACO)

algorithm in which an improvement of Max-Min Ant System

(MMAS). This improved version is the Smoothed Max-Min

Ant System (SMMAS) applied for the pheromone section.

The performance of this ACO algorithm was tested on 24

instance types. Among three window types, the instances

belonging to Normal Time Windows produced the best

results. The results were assessed via a comparison with the

ANLS, CPLEX wherein the ACO algorithm performed well

in most instances. The MPDPTW problem is NP-hard due to

the rapid increase in running time and complexity as the input

data increases. This is proven by the inability of the solution

(optimization) to handle 400 nodes.

Table 7

Comparison among algorithms’ results

Instance ACO ALNS [15]
CPLEX

[15]
Derivation to

ANLS CPLEX

W_4_25 2,541.45 3,079.90 3,079.90 -17.48% -17.48%

W_8_25 2,674.16 3,047.18 3,047.18 -12.24% -12.24%

W_4_50 4,450.24 5,108.32 5,108.32 -12.88% -12.88%

W_8_50 4,467.74 4,970.50 4,970.50 -10.11% -10.11%

W_4_100 8,182.58 8,432.62 8,432.62 -2.97% -2.97%

W_8_100 8,993.44 9,221.80 9,221.80 -2.48% -2.48%

W_4_400 28,387.84 24,523.29 - 15.76% -

W_8_400 35,517.31 29,462.98 - 20.55% -

N_4_25 4,186.68 4,734.83 4,734.83 -11.58% -11.58%

N_8_25 4,223.51 4,646.16 4,646.16 -9.10% -9.10%

N_4_50 7,763.31 8,923.03 8,923.03 -13.00% -13.00%

N_8_50 7,631.97 8,521.67 8,521.67 -10.44% -10.44%

N_4_100 14,270.24 15,217.64 15,217.64 -6.23% -6.23%

N_8_100 15,832.66 16,894.20 16,894.20 -6.28% -6.28%

N_4_400 45,632.10 47,004.53 - -2.92% -

N_8_400 53,958.59 58,130.75 - -7.18% -

L_4_25 3,101.33 4,117.56 4,117.56 -24.68% -24.68%

L_8_25 3,681.02 4,424.05 4,424.05 -16.80% -16.80%

L_4_50 6,221.15 7,213.16 7,213.16 -13.75% -13.75%

L_8_50 6,221.15 7,368.10 7,368.10 -15.57% -15.57%

L_4_100 11,179.40 12,060.54 12,060.54 -7.31% -7.31%

L_8_100 13,694.16 13,930.92 13,930.92 -1.70% -1.70%

L_4_400 38,483.84 36,971.82 - 4.09% -

L_8_400 45,673.95 46,406.75 - -1.58% -

REFERENCES

[1] C. Archettia, D. Feilletb, M. Gendreauc and M. G. Speranza,

“Complexity of the VRP and SDVRP,” Transportation Research Part
C: Emerging Technologies, vol. 5, no. 19, pp. 741-750, 2011.

[2] S. Naccache, J. F. Côté and L. C. Coelho, “The multi-pickup and

delivery problem with time windows,” European Journal of
Operational Research, vol. 1, no. 269, pp. 353-362, 2018.

[3] S. Naccache, J. F. Côté and L. C. Coelho, An Adaptive Large

Neighborhood Search for the Multi-Pickup and Delivery Problem with
Time Windows, CIRRELT, 2017.

[4] I. Aziez, J. F. Côté and L. C. Coelho, “Exact algorithms for the multi-

pickup and delivery problem with time windows,” European Journal
of Operational Research, vol. 3, no. 284, pp. 906-919, 2020.

[5] M. W. Savelsbergh, “Local search in routing problems with time

windows,” Annals of Operations research, vol. 4, no. 1, pp. 285-305,
1985.

[6] M. W. Savelsbergh, “An efficient implementation of local search

algorithms for constrained routing problems,” European Journal of
Operational Research, vol. 1, no. 47, pp. 75-85, 1990.

[7] N. Ascheuer, M. Fischetti and M. Grötschel, “Solving the asymmetric

travelling salesman problem with time windows by branch-and-cut,”
Mathematical programming, vol. 90, no. 3, pp. 475-506, 2001.

[8] F. Guerriero and M. Mancini, “A cooperative parallel rollout

algorithm for the sequential ordering problem,” Parallel Computing,
vol. 5, no. 29, pp. 663-677, 2003.

[9] D. I. Seo and B. R. Moon, “A hybrid genetic algorithm based on

complete graph representation for the sequential ordering problem,”
in Genetic and Evolutionary Computation Conference, Seattle, WA,

USA, 2004.

[10] A. N. Letchford and J. J. Salazar-González, “Stronger multi-
commodity flow formulations of the capacitated vehicle routing

problem,” European Journal of Operational Research, vol. 3, no. 244,

pp. 730-738, 2015.

Solving Multi-Pickup and Delivery Problem with Time Windows using Ant Colony Optimization

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 4 October – December 2021 41

[11] D. Pisinger and S. Ropke, “A general heuristic for vehicle routing

problems,” Computers & operations research, vol. 8, no. 34, pp. 2403-
2435, 2007.

[12] A. Subramaniana, L. Drummonda and C. Bentesb, “A parallel

heuristic for the vehicle routing problem with simultaneous pick-up
and delivery,” Computers & Operations Research, vol. 11, no. 37, pp.

1899-1911, 2010.

[13] T. J. Ai and V. Kachitvichyanukul, “A particleswarm optimization for
the vehicle routing problemwith simultaneous pick-up and delivery,”

Computers & Operations Research, vol. 36, no. 5, pp. 1693-1702,

2009.

[14] I. Zhang, G. Sun, Y. Wu and F. Geng, “A modified particle swarm

optimization for the vehicle routing problem with simultaneous pick-

up and delivery,” in 7th Asian Control Conference. IEEE, 2009.

[15] F. P. Goksal, I. Karaoglan and F. Altiparmak, “A hybrid discrete

particle swarm optimization for vehicle routing problem with

simultaneous pick-up and delivery,” Computers & industrial
engineering, vol. 1, no. 65, pp. 39-53, 2013.

[16] S. Ropke, J. F. Cordeau and G. Laporte, “Models and branch-and-cut

algorithms for pick-up and delivery problems with time windows,”
Networks: An International Journal, vol. 4, no. 49, pp. 258-272, 2007.

[17] S. Ropke and J. F. Cordeau, “Branch and cut and price for the pick-up

and delivery problem with time windows,” Transportation Science,
vol. 3, no. 43, pp. 267-286, 2009.

[18] R. Baldacci, E. Bartolini and A. Mingozzi, “An exact algorithm for

the pick-up and delivery problem with time windows,” Operations
research, vol. 2, no. 59, pp. 414-426, 2011.

[19] A. M. Alyasiry, M. Forbes and M. Bulmer, “An exact algorithm for

the pick-up and delivery problem with time windows and last-in-first-
out loading,” Transportation Science, vol. 6, no. 53, pp. 1695-1705,

2019.

[20] G. Desaulniers, O. Madsen and S. Ropke, “Chapter 5: The vehicle
routing problem with time windows,” in Vehicle Routing: Problems,

Methods, and Applications, Second Edition, Society for Industrial and

Applied Mathematics, 2014, pp. 119-159.

[21] M. Dorigo, M. Birattari and T. Stutzle, “Ant colony optimization,”

IEEE computational intelligence magazine 1, vol. 4, no. 1, pp. 28-39,

2006.

[22] D. Do, “Ant colony optimization and its application,” Ph.D.

Dissertation, DHQGHN, 2012.

[23] T. Stützle and H. H. Hoos, "MAX–MIN ant system," Future
generation computer systems, vol. 16, no. 8, pp. 889-914, 2000.

[24] T. Tran, “Ant colony optimization for vehicle routing problems,”

Master thesis, DHQGHN, 2019.

[25] H. Li and A. Lim, “A metaheuristic for the pick-up and delivery

problem with time windows,” International Journal on Artificial

Intelligence Tools, vol. 02, no. 12, pp. 173-186, 2003.

[26] H. Li and A. Lim, "Li Lim benmark," [Online]. Available:

https://www.sintef.no/projectweb/ top/pdptw/li-lim-benchmark/Li

and Andrew Lim.. [Accessed 10 November 2020].

