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Abstract— The control strategy for a two-wheeled robot is still 

continuously researched and developed due to its natural 

behavior (unstable and non-linear). In this research, the Model 

Reference Adaptive Control (MRAC) using the Lyapunov 

stability theorem was applied in a two-wheeled robot. MRAC 

was used to design adaptive controllers that work on the 

principle of adjusting controller parameters so that the actual 

output traces the output of the reference model, which has the 

same reference input. The adjusting mechanism was built to 

ensure stability and convergence from the adaptation errors. 

The verification experiment showed that with the adaptation 

gain 𝜸
𝟏
, 𝜸𝟐, 𝜸𝟑 are 1, 0.005, and 0.001, respectively, the response 

could follow  the reference model with a rising time and settling 

time 0.27 s and 0.87 s, respectively. 

  

Index Terms—Two-Wheeled robot; MRAC; Kalman Filter. 

 

I. INTRODUCTION 

 

An inverted pendulum is naturally dynamic, unstable, and 

prone to disturbance due to environmental conditions or  

robot load. One of the inverted pendulum applications is a 

two-wheeled robot. The two-wheeled robot is a robot with an 

inverted pendulum model that is placed on a two-wheeled 

cart. The input and output of a two-wheeled robot varies 

depending on the design, but the mechanics driven by the 

system are always the same [1]. A two-wheeled inverted 

pendulum robot has a working principle as an inverted 

pendulum and it is an unstable and non-linear robotic system. 

The dynamics of this system have become a research base to 

test various types of control methods.  

The balancing control of the two-wheeled robot has 

become a popular topic in the scientific community. Many 

authors have studied these robots for the purpose of finding 

the perfect mathematical model and characteristic structure. 

Exploration, search and rescue, materials handling, and 

entertainment are some examples of two-wheeled robot 

applications [2].  

Many researchers have studied the efficiency of control 

algorithms to solve balancing problems in two-wheeled 

robots or inverted pendulums. For example, [3]-[4] used a 

PID controller to balance the two-wheeled robot and kept it 

in a still upright position. They found the effectiveness of the 

controller designed in performing stabilization and trajectory.  

In [5], aiming to maintain system stability, they used the 

PID tunning method, where the correct parameter tunning 

process took a long time. The sliding mode control method 

has been applied in [6]-[7]. [8] used a proportional-feedback 

controller, where control parameters were obtained using a 

self-tunning algorithm. Research in [9] built a self-balancing 

robot by applying the PID control method; however, a rigid 

mechanical design and a control method that is unable to 

adapt to uncertainty made the system response to oscillate,  

causing less stability.  

While in [10], two different methods, namely Linear 

Quadratic Gaussian (LQG) and Model Predictive Control 

(MPC) were compared and applied to a two-wheeled robot. 

The results showed that the LQG control generates better 

performance. From the various control methods that have 

been mentioned, in general, there are deficiencies when using 

classical feedback controllers  as the accuracy of mobile robot 

movement has not been fully achieved. This is due to the 

dynamic uncertainties caused by environmental changes [11]. 

In this regard, an approach using adaptive control has been 

proposed as a solution to overcome the dynamic uncertainty 

and disturbances in the two-wheeled robot. This controller is 

adaptive to the environment so that it can modify the response 

behavior to change the process parameters. 

The two-wheeled robot model and design of the Model 

Reference Adaptive Control (MRAC) are discussed in this 

paper. The MRAC is used to design an adaptive controller 

that works on the principle of adjusting controller parameters 

so that the actual output tracks the output of the reference 

model, which has the same reference input. A mathematical 

approach, such as Lyapunov's theorem is employed to 

develop an adjusting mechanism to ensure stability and 

convergence from adaptation errors. 

 

II. MODEL DESCRIPTION OF TWO-WHEELED ROBOT 

 

A two-wheeled robot model is built based on an inverted 

pendulum system with an analysis based on the force acting 

on it. The modeling process on a two-wheeled robot begins  

from a simplification that is represented as an inverted 

pendulum, which can be seen in Figure 1 and Figure 2. The 

two-wheeled robot consists of three parts: a cart, pendulum, 

and case (a place to store a microcontroller, motor, and other 

devices required by the system).  

 

 
 

Figure 1: Illustration of simplified two-wheeled robot 
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Figure 2: Inverted pendulum forces 

 

The two-wheeled robot mathematical model is based on the 

Newton-Euler equation. An analysis has been performed 

based on the forces that affect it. As shown in Figure 2, the 

pendulum and the wheel were analyzed separately so that this 

modeling will produce two non-linear dynamic movements: 

the movement of the cart and the pendulum. The two-wheeled 

robot system modeling has been explained in [12]. The 

position, speed, and acceleration of the cart are denoted by 

(x, ẋ, ẍ) while the position, speed, and angular acceleration 

pendulum are denoted by (ϕ, ϕ̇, ϕ̈). The state-space equation 

of the two-wheeled robot is shown in Equations (1) and (2). 
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𝑦 = [
1 0 0 0
0 0 1 0

] [

x
ẋ
ϕ

ϕ̇

] + [
0
0
] u 

 

(2) 

 

In this paper, the position and velocity carts (𝑥, �̇�) are not 

used; thus, the state space can be simplified as Equations (3) 

and (4). 

 

[
�̇�

�̈�
] = [

0 1
𝑚𝑔𝑙(𝑀+𝑚)

𝐼(𝑀+𝑚)+𝑀𝑚𝑙2
0] [

𝜙

�̇�
] + [

0
𝑚𝑙2

𝐼(𝑀+𝑚)+𝑀𝑚𝑙2
] 𝑢  

(3) 

 

𝑦 = [1 0] [
𝜙

�̇�
] (4) 

 

where M is the mass of the cart, m is the mass of the 

pendulum, I is the moment of inertia, g is the gravity and l is 

the length of the pendulum's equilibrium point. The 

parameters of the plant can be seen in Table 1. 

Table 1 

Two-Wheeled Robot Parameters 
 

Symbol Parameter Value 

I Moment of inertia 0.003639165 Kgm2 

M Mass of the cart  0.285 Kg 

m Mass Pendulum  0.285 Kg 

l The length of the pendulum's  

equilibrium point  

0.0565 m 

g Gravity  9.8 m/s2 

III. MODEL REFERENCE ADAPTIVE CONTROL (MRAC) 

 

The two-wheeled robot is a non-linear, unstable, and 

uncertain system. The strategy of implementing controllers at 

this plant is a challenge itself. The controller type is 

determined from the purpose of the design control goals. 

Adaptive controllers can be a solution to certain control 

problems that involve understanding the character of the plant 

as well as other requirements for plant performance. The 

Model Reference Adaptive Control (MRAC) was used in this 

research. MRAC is a control system with the desired 

specifications given in the form of a reference model, which 

is illustrated on the block diagram (Figure 3). The ideal 

behavior of the reference model should be achieved for 

adaptive control systems. 

There are two approaches to creating MRAC, the MIT rule, 

and the Lyapunov stability theory. Based on [12]-[13], the 

approach with Lyapunov's theory has low difficulty and 

physical realization is comparatively more feasible than the 

MIT rule. 

 

 
 

Figure 2: Block diagram of MRAC [14] 

 

MRAC consists of two loops: the first loop is for the 

feedback control and the second loop is for the parameter 

adaptive adjustment controller. The reference model provides 

information on how the process output should respond to the 

desired command signal. Output reference model and plant 

were compared, and the error between them was given as 

feedback through an adaptive adjustment loop. Controller 

parameters were updated such as minimizing errors to zero. 

The nonlinear reference model can also be used to formulate 

the reference model from the LTI model, but it requires more 

complex design techniques. The general equation for the 

control signal (u) in MRAC is shown in Equation (5). 
 

𝑢 =  𝑘𝑥  (𝑡)𝑥 + 𝑘𝑟  (𝑡)𝑟 (5) 

 

with 𝑘𝑥 (𝑡)𝑥 and 𝑘𝑟 (𝑡)𝑟 is adjustable gain control. 

The error equation (6) is defined as 

 
𝑒 = 𝑦𝑚 − 𝑦 (6) 

 

where y is the actual plant output and ym is the reference 

model signal output, which only depends on the reference 

signal (r). 

Lyapunov stability theorem can be used to describe the 

parameter adjusting algorithm in MRAC. Therefore, the 

MRAC design in this research used the Lyapunov stability 

concept. In a linear system, the Lyapunov candidate function 

is given by 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 where 𝑃 ∈ 𝑅𝑛×𝑛 is a symmetric 

matrix. The system is said to be asymptotically stable if the 

function 𝑉(𝑥): 𝑅𝑛 → 𝑅 fulfills the Lyapunov stability 

constraints as follows [15]: 
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Theorem 1: 𝑉(𝑥 = 0) = 0; always fulfill for 𝑉(𝑥) if the 

equilibrium point of the system is at the origin, then 

Lyapunov's function at the equilibrium point is locally 

positive definite. 

Theorem 2: 𝑉(𝑥) > 0, ∀𝑥 ≠ 0; global asymptotic system 

when there is a definite positive P matrix, or it can be 

written P > 0. 

Theorem 3: �̇�(𝑥) < 0, ∀𝑥 ≠ 0; where �̇�(𝑥) is expressed as 

Equation (7) 

 
�̇�(𝑥) = �̇�𝑇𝑃𝑥 + 𝑥𝑇𝑃�̇� = (𝐴𝑥 + 𝐵𝑢)𝑇𝑃𝑥 + 𝑥𝑇𝑃(𝐴𝑥 +

𝐵𝑢)  
(7) 

 

by choosing 𝑢 = 0, the stability analysis of the open-loop 

system becomes Equation (8): 

 
�̇�(𝑥) = 𝑥𝑇[𝐴𝑇𝑃 + 𝑃𝐴]𝑥 < 0 (8) 

 

then Theorem 3 is satisfied only if it fulfills the quadratic 

Equation (9): 

 
𝐴𝑇𝑃 + 𝑃𝐴 < 0 (9) 

 

if the input 𝑢 = −𝐾𝑥, then Theorem 3 is satisfied only if the 

linear system fulfills the following Equation (10): 

 
(𝐴 − 𝐵𝐾)𝑇𝑃 + 𝑃(𝐴 − 𝐵𝐾) = −𝑄 (10) 

 
IV. CONTROL SYSTEM DESIGN 

 

A. The Block Diagram 

The block diagram of the two-wheeled robot control 

system can be seen in Figure 4. A two-wheeled robot block 

consists of one driver and two DC motors. The output from 

the plant is the position and the angle of the plant. The output 

is read by the Gyro sensor, the reading process will be 

converted from radians to degrees.  

To remove noise from the output of the two-wheeled robot, 

the signal must be firstly filtered, then the results of filtering 

are processed to be compared with a reference model and 

become an error signal. The error value and filtering results 

are included in the adaptive law. The output of the adaptive 

law is the controller parameters (θ1, θ2, and θ3). The controller 

parameters will be compared with the desired reference (r) on 

the controller block. The two-wheeled robot will move 

according to the control signal generated by the controller so 

that it can be stable. 

 

 
 

Figure 4: Block diagram of two-wheeled robot control system 
 

B. Model Reference Design 

The reference model is made based on the desired system 

specifications as shown in Table 2. 
 

Tabel 2 
The specification for model reference design 

 

Symbol Parameters  Value 

𝑇𝑠 Settling time for 2% standard 1 s 

Mp Overshoot 0-10% 

 

According to Table 2, Equations (11) and (12) were used 

to obtain both damping ratio (𝜁) and natural frequency (𝜔𝑛). 

These parameters were substituted to Equation (13) to obtain 

the reference model as stated in Equation (14). 
 

%𝑀𝑝 = 𝑒
(−

𝜁

√1−𝜁2
)𝜋

 × 100% 
(11) 

 

𝑇𝑠 =  
4

𝜁𝜔𝑛
 

(12) 

 

The reference model can be defined in nonlinear or linear 

equations form. In this research, reference model design was 

performed using a second-order system approach, defined as 

Equation (13). 

 
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 

(13) 

 

 
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=  

45.83

𝑠2 + 7.98𝑠 + 45.83
 

(14) 

 
The reference model state equation is derived by Equations 

(15) and (16), 

 
�̇�𝑚 = 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑟 (15) 

 

where, 𝑥𝑚 = [
𝑦𝑚

�̇�𝑚
] 

𝐴𝑚 = [
0 1

−𝜔𝑛
2 −2𝜁𝜔𝑛

] 

𝐵𝑚 = [
0

𝜔𝑛
2] 

(16) 

 

with Am and Bm are the state matrix and input matrix of the 

model reference, respectively. The value 𝜁 = 0.59 and 𝜔𝑛
2= 

45.83 is obtained from Equation (11) and (12), substituted 

into Equation (16), then the values of Am  and Bm are obtained, 

Equation (17), 

 

𝐴𝑚 = [
0 1

−45.83 −7.98
] 

  𝐵𝑚 = [
0

45.83
]. 

(17) 

 

C. Controller (MRAC) Design 

MRAC is an adaptive controller where the desired 

specifications are formed in the reference model so that the 

actual plant response can follow the reference model output, 

where the reference model has the same value as the input 

reference. Generally, the MRAC design on a two-wheeled 

robot uses a state-space model. The derivative of the error 

equation and the selection of the Lyapunov function is used 

to update the parameters so that the error will be zero [13]. 

The first step in the controller design is to define the state 

equation of the two-wheeled robot, as seen in Equations (18) 

and (19) , which then define the control signal. 
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1. State-space model 

�̇� = 𝐴𝑥 + 𝐵𝑟 
𝑦 = 𝐶𝑥 

 

(18) 

where 𝑥 = [
𝜙

�̇�
], 

substituting the plant parameter values in Table 1 into 

Equations (3) and (4), then it gives Equation (19),  
 

𝐴 = [
0 1

38.54 0
] 

𝐵 = [
0

6.9
] 

𝐶 = [1 0] 

(19) 

 

where A is a state matrix, B is an input matrix, and C is an 

output matrix of the two-wheeled robot. 

 

2. Control signal is usually represented by the number of 

adjustable controller parameters (θ). Due to the plant 

specifications and reference model (second-order system 

model), the controller for the two-wheeled robot has three 

adjustment parameters, (θ1, θ2, and θ3) [16]. Usually, these 

three control parameters depend on the adaptation gain (γ) 

which can change the control algorithm of the adaptation 

mechanism. The form of the control signal (u) is as seen in 

Equation (20): 

 
𝑢 =  𝜃1𝑟 − 𝜃2𝑦 − 𝜃3�̇� (20) 

 

subtitute Equation (20) into (18), then its gives Equation (21), 

 
�̇� = 𝐴𝑐𝑡𝑥 + 𝐵𝑐𝑡𝑟         (21) 

 

with 𝑥 = [𝑦 �̇�]𝑇, 

 

𝐴𝑐𝑡 = [
0 1

38.54 𝜃2 6.9𝜃3
] ;  𝐵𝑐𝑡 = [

0
6.9𝜃1

] (22) 

 

Act is a new state matrix, Bct is a new input matrix of the plant. 

The Lyapunov method is used to state the adjustment 

mechanism, where MRAC must be able to guarantee the 

stability and convergence of adaptation errors. Therefore,  the 

differential equation of adaptation error is as follows: 

 
�̇�𝑒 = 𝐴𝑚𝑥𝑒 + (𝐴𝑚 − 𝐴𝑐𝑡)𝑥 + (𝐵𝑚 − 𝐵𝑐𝑡)𝑟 (23) 

 

where 𝑥𝑒 = [𝑒 �̇�]𝑇, and the error signal is denoted in 

Equation (6).  

The main problem in Lyapunov's is determining the 

positive definite function of the function 𝑉(𝑡, 𝑥𝑒). Based on 

Lyapunov's Theorem 2, the quadratic function of V  is given 

in Equation (24) as follows: 

 

𝑉 = 
1

2
{
𝛾𝑥𝑒

𝑇𝑃𝑥𝑒 + 𝑡𝑟{(𝐴𝑐𝑡 − 𝐴𝑚)𝑇(𝐴𝑐𝑡 − 𝐴𝑚)} +

𝑡𝑟{(𝐵𝑐𝑡 − 𝐵𝑚)𝑇(𝐵𝑐𝑡 − 𝐵𝑚)}
} (24) 

 

This function will be zero if the error is zero and the controller 

parameters (𝜃1, 𝜃2, and 𝜃3) match the desired values. The 

derivative of Equation (24) is given in Equations (25), (26), 

and (27) [14]: 

�̇� =
1

2
{2𝛾𝑥𝑒

𝑇𝑃(𝐴𝑚𝑥𝑒 + (𝐴𝑐𝑡 − 𝐴𝑚)𝑥 + (𝐵𝑐𝑡 − 𝐵𝑚)𝑟)

+ 2𝑡𝑟{(𝐴𝑐𝑡 − 𝐴𝑚)𝑇(𝐴𝑐𝑡 − 𝐴𝑚)}

+ 2𝑡𝑟{(𝐵𝑐𝑡 − 𝐵𝑚)𝑇(𝐵𝑐𝑡 − 𝐵𝑚)} 

 

(25) 

�̇� =  −
1

2
𝛾𝑥𝑒

𝑇𝑄𝑥𝑒 + 𝑡𝑟{(𝐴𝑐𝑡 − 𝐴𝑚)𝑇(𝐴𝑐𝑡
̇ + 𝛾𝑃𝑥𝑒𝑥

𝑇)}

+ 𝑡𝑟{(𝐵𝑐𝑡 − 𝐵𝑚)𝑇(𝐵𝑐𝑡
̇ + 𝛾𝑃𝑥𝑒𝑟

𝑇)} 
(26) 

where, 

𝐴𝑚
𝑇𝑃 + 𝑃𝐴𝑚 = −𝑄 (27) 

 

𝑄 is an identity matrix and �̇� is a negative definite. Therefore, 

the solution is asymptotically stable if we choose the 

adaptation laws for closed-loop systems, given in Equations 

(28) and (29) as follows [16]: 

 
𝑑𝐴𝑐𝑡

𝑑𝑡
= −𝛾𝑃𝑥𝑒𝑥

𝑇 

𝑑𝐵𝑐𝑡

𝑑𝑡
= −𝛾𝑃𝑥𝑒𝑟

𝑇 

(28) 

 
(29) 

 

by substituting the identity matrix (𝑄) into Equation (27), the 

matrix solution P is obtained as seen in Equation (30). 

 

𝑃 =

[
 
 
 
1

𝜔𝑛
(𝜁 + (1 + 𝜔𝑛

2)/4𝜁
1

2𝜔𝑛
2

1

2𝜔𝑛
2

1

4𝜁𝜔𝑛
(1 + 1/𝜔𝑛

2)
]
 
 
 

 
 

(30) 

 

The controller parameters are obtained as  
 

𝜃1̇ = 𝛾1[𝑃12𝑒 + 𝑃22�̇�]𝑟      (31) 

𝜃2̇ = −𝛾2[𝑃12𝑒 + 𝑃22�̇�]𝑦 (32) 

𝜃3̇ = −𝛾3[𝑃12𝑒 + 𝑃22�̇�]�̇� (33) 

 

where P12 and P22 are the elements of the matrix P and γ1, γ2, 

γ3 are the adaptive gains. 

 

V. METHODOLOGY OF EXPERIMENT 

 

A quantitative approach is used in this research. The first 

experiment was performed by modeling a two-wheeled robot 

plant. The system state-space matrix is obtained as stated in 

Equation (3)-(4). If the robot parameter values in Table 1 are 

substituted into equation (3), then the robot state space is 

stated in equation (19), then the design of the reference model 

is as in Equation (17). 

The Accelero-Gyro sensor (MPU6050) was used as 

feedback from the robot position. Kalman Filter has been 

designed to minimize measurement noise. The Lyapunov 

stability analysis method was used to find the stability of the 

system represented by matrix solution P (Equation 30), and 

the control parameters were obtained in Equations (31)-(33). 

The results of the MRAC design were tested through 

simulation, and the results were analyzed to obtain the best 

control parameters. The final experiment step is 

implementing the MRAC algorithm into the embedded 

system in this study, the Arduino-Uno as the controller board. 

The hardware setup shows in Figure 5. 
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Figure 5: The Hardware Setup [12] 

 

VI. RESULTS AND DISCUSSION 

 

This section shows the results of the research, which 

consist of the hardware realization of two-wheeled robots and 

the implementation of constructed control structures in the 

plants. The two-wheeled robot plant, as shown in Figure 6, 

consists of two wheels, two DC motors, and an embedded 

controller above it. 

 

 
 

Figure 6: Two-wheeled robot 
 

 
 

Figure 7: Response using Kalman Filter 

 

The two-wheeled robot is built using an Accelero-Gyro 

sensor as a feedback robot position that is above the robot. 

Therefore, Kalman Filter is added to solve the noise problem 

in the feedback sensor. Based on the explanation in [12], 

matrix Qacc = {0.4; 0.01; 0.001}, Qgyro = {0.2; 0.03; 0.003}, 

and the matrix value R = {1; 50; 100} were used in this 

research. The system response using the filter is shown in  

Figure 7. 

As shown in Equations (31) - (33), the adaptive gain that 

affects the angular position of the pendulum is 𝛾2, Therefore, 

the controller test was performed by setting the adaptive gain 

value 𝛾1, 𝛾3 as constant, while 𝛾2 varies. The first controller 

test was performed by selecting the adaptive gain value of 𝛾1 

= 1, 𝛾2 = 0.005, and 𝛾3 = 0.001. The test results are shown in 

Figure 8. 

 

 
 

Figure 8: The response with 𝛾1 = 1, 𝛾2= 0.005, and 𝛾3= 0.001 
 

Figure 8 shows that the response can reach settling conditions 

at 2.1 seconds, with a maximum undershoot of -4 °. 

Furthermore, the value of 𝛾2 changed to 0.1, while the 

adaptive gain 𝛾1, 𝛾3 have a fixed value, 1 and 0.001, 

respectively. The system response in Figure 9 shows that the 

two-wheeled robot takes a long time to stabilize, which is 5 

seconds with a maximum overshoot of 5 ° of rod tilt. 

 

 
 

Figure 9: The response with 𝛾1 = 1, 𝛾2 = 0.1, and 𝛾3 = 0.001 

 

Lyapunov stability theory is used to obtain the solution 

matrix of P (as stated in Equation 30) so that the controller 

parameters of MRAC are formulated as in Equations (31) - 

(33). The system response performance is also affected by the 

change of adaptive gain values (𝛾1, 𝛾2, 𝛾3). Where the value 

of adaptive gain 𝛾1 affects the reference model, adaptive gain 

𝛾2 affects the angular position, and adaptive gain 𝛾3affects 

the angular velocity of the plant. It can be seen from Figure 8 

– 9 that the smaller the adaptive gain value 𝛾2, the faster the 

plant reaches a stable position. 

To see the robustness of the system, the test was performed 

by giving external disturbance (the plant is forced by hand) to 

the system with a slope of 6˚. The system response with 
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external disturbance is shown in Figure 10, where the system 

takes 4.72 seconds to stabilize at the origin point. 

 

 
 

Figure 10: Response against the disturbance 
 

VII. CONCLUSION 

 

The design of the Model Reference Adaptive Control 

(MRAC) using the Lyapunov stability theory is discussed in 

this paper. The model reference is determined based on the 

desired transient response of the two-wheeled robot. In this 

research, the desired overshoot and settling time are 0-10% 

and 1 s, respectively. The MARC design process begins by 

comparing the two-wheeled robot output with the reference 

model output. Lyapunov stability theorem is used to obtain a 

control signal (𝑢 =  𝜃1𝑟 − 𝜃2𝑦 − 𝜃3�̇�) that can make a zero 

error signal (asymptotic stable). To get the adjustment 

parameters (𝜃1, 𝜃2, and 𝜃3), it is necessary to tune the 

adaptation gain (𝛾1, 𝛾2, 𝛾3). 

The experiment results show that for adaptation gain 

𝛾1, 𝛾2, 𝛾3 are 1, 0.005 and 0.001, respectively, the response 

could follow  the reference model with rise time and settling 

time 0.27 s and 0.87 s, respectively. The proposed control 

method can also overcome the presence of external 

disturbance. 
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