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Abstract— This paper proposed a semi-analytical solution 

for evaluation of field distributions around the surface of a 

ferromagnetic metallic half space, which contains a hidden long 

crack and excited by a three-dimensional arbitrary frequency 

current-carrying inducer. The solution was obtained by using 

the method of separation of variables in three dimensions. This 

research assumed that the conductor as a lossy dielectric and 

used the concept of a rectangular waveguide, which is partially 

loaded with dielectric to expand all TM and TE field 

components in the problem. To obtain convergent results, the 

eigenvalue equation associated with TE modes in the flawed 

region. By imposing boundary conditions and using the mode 

matching technique, we obtained a linear system of AX=B was 

obtained, which is solved to attain the unknown coefficients. The 

accuracy and efficiency of the modelling technique is confirmed 

by comparing the results with those obtained by CST finite 

integration code. 

 

Index Terms— Analytical Modeling; Eddy Currents; Mode 

Matching; Nondestructive Testing. 
 

I. INTRODUCTION 

 

The Eddy Current (EC) [1-3] and the Alternating Current 

Field Measurement (ACFM) techniques [4-7] are among the 

electromagnetic techniques used for detection and sizing 

flaws in metals. In these two techniques, a coil is used to 

induce the eddy currents in the test specimen, and the flaws 

in the tested specimen result in perturbation of magnetic 

fields, which can be measured for detection and sizing flaws. 

In the EC method, the change of the impedance of inducing 

coil is measured to reveal the metal surface condition, 

whereas in the ACFM method, the output of a magnetic field 

sensor attached to the coil is used to monitor metal condition. 

The problem of ACFM and EC techniques includes a 

solution to obtain magnetic fields in the vicinity of a flawed 

metal excited by a current-carrying inducer. In comparison to 

the numerical solution methods, the analytical methods are 

often more efficient because they need relatively fewer 

computation resources. Therefore, the analytical solution 

plays an important role in solving the so-called “inverse 

problem”. In this case, the unknown geometry of a crack is 

determined iteratively by repetitive calculation of probe 

output signal for an estimated crack geometry [8]. The 

analytical solutions also give more insight to the distribution 

of eddy currents. 

In the EC and ACFM testing, we can increase the 

penetration depth of eddy currents by lowering the exciting 

frequency. Thus, we can inspect the test specimen at various 

depths in a single scan by using multi-frequency/pulsed 

excitation [9-12]. 

Analytical solutions for arbitrary-frequency excitation are 

available for flawless metallic slabs [13-15] and cylinders 

[16-18]. In the case of a flawed workpiece, there are only a 

few case studies, such as the effect of a long crack in a 

metallic slab excited by a two-dimensional (2-D) inducer [19] 

at arbitrary frequency and the problem of a right-angled 

conductive wedge in the vicinity of a three-dimensional (3-

D) coil [20-22].  

In our recent works, we solved the problems of field 

distribution due to a 3D inducer around long cracks in a 

conductive half space [23-25] and a cylinder [26] 

analytically. In this work, we extended the problems solved 

analytically for field distributions around a hidden long crack 

in a "ferromagnetic" metallic half space excited by a 3D 

inducer. To model the problem, we assumed the metal as a 

lossy material with a very large loss tangent. Then, we 

expanded all TM and TE modes in the flawed workpiece. 

Then, we changed the eigenvalue equation associated with 

the TE modes to obtain convergent results. 

The paper is organized as follows. In Section II, we briefly 

present the problem and its formulation where the problem is 

divided in two: even- and odd-symmetry problems. The 

solutions for even and odd problems are described in Sections 

III and IV, respectively. In Section V, the results for field 

distribution due to a 3-D inducer are predicted and compared 

with those obtained using a commercial finite integration 

code. 

 
II. PROBLEM FORMULATION 

 
A schematic of the problem is illustrated in Figure 1. A 

ferrous conductive half space test specimen with constant 

conductivity , relative permeability μr and constant 

dielectric  contains a hidden long crack of width g at the 

depth d. The crack consists of two faces, which are 

perpendicular to the surface of the test specimen, lying in the 

direction of the x-axis. The surface of the test specimen is 

interrogated by the field of an inducer consisting of an 

arbitrary-shape current-carrying wire. The inducer carries an 

alternating current of arbitrary frequency f and magnitude I. 

To solve the problem posed above, we recognize three 

regions, namely region I (outside the metal in air), region II 

(above the long crack in the metal) and region III (inside the 

metal including the crack). The solution of the problem is 

similar to the problem of a hidden long crack in a 

nonmagnetic metallic half space [25]. Therefore, we follow 
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the solution technique described in [25], except in metallic 

regions, in which the term 𝜇0must be replaced to  𝜇0𝜇r. 

For simplicity, we split the solution into two even and odd 

solutions with respect to the y- direction [19, 23-25], which 

are described in the following section. 

 

 
 
Figure 1: A rectangular inducer above a ferrous half space with a hidden 

long crack 

 

A. Even Symmetry Solution 

As described in [25], we have a potential function 𝜙 with 

Laplacian distribution in region I. By truncating the solution 

at a large distance from the inducer such as ℎ𝑥 and ℎ𝑦 in the 

x- and y- directions, respectively, the expression for 𝜙 in 

region I is derived as follows:  
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where:  𝑘𝑚𝑛

2 = 𝛼𝑚
2 + 𝛽𝑛

2  
 m = Mode numbers 

 n = Mode numbers  

 𝛼𝑚 = Space frequencies in x direction 

 𝛽𝑛 = Space frequencies in y direction  

 

Both 𝛼𝑚 and 𝛽𝑛 are selected such that the tangential 

components of 𝐻⃗⃗  become zero at a large distance from the 

inducer. Hence, 𝛼𝑚 = (2𝑚 − 1)π/(2ℎ𝑥) and 𝛽𝑛 = (2𝑛 −
1)π/(2ℎ𝑦). The coefficients C and D are the amplitude of 

even incident, and they are reflected fields in region I. 

Using equations (5) and (6) in [25] and replacing 𝜇0with 

𝜇0𝜇r, the expressions for 𝐴𝑦 and 𝐹𝑦 in region II are derived 

as: 
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(3) 

 

Similarly, one can use (9) and (10) in [25] and replace 𝜇0 

with 𝜇0𝜇r for the metallic parts of region III to derive the 

expressions for the components of 𝐴𝑦 and 𝐹𝑦, respectively, as 

follows: 
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(5) 

 

where:  𝑐 = 𝑔/2   

 𝑘2 = 𝜔2𝜇0𝜀0 ≪ i𝜔𝜇0𝜇𝑟𝜎 and 𝛼𝑚
2  

 

The eigenvalues associated with TM modes are obtained as 

described in [25]. However, for the TE modes, we have: 
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Solving equation (7) leads to large values for rn and sn 

which leads to divergent results. To have appropriate 

eigenvalues for TE modes, we change equation (7) to the 

following equation: 
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wherein (8) is solved iteratively for values of  𝑠𝑛 by the 

Newton-Raphson method [19]. The expressions for y-

component of  𝐴 ′ are derived as follow [21]: 
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(9) 

 

where: 𝑞𝑛
′ = 𝑛𝜋 (ℎ𝑦 − 𝑐)⁄  

 𝑎𝑛
′ = 0   

 

To obtain field perturbation coefficients𝐷𝑚𝑛
𝑝

, we match the 

magnetic field components at the interfaces 𝑧 = 0 and 𝑧 =
−𝑑, whereas the field component 𝐻𝑥 is matched at interface 

𝑧 = −𝑑 twice. Further, the field component 𝐸𝑥 is to be 

matched at 𝑧 = −𝑑 [27]. 

Applying the continuity of 𝐻𝑥  , 𝐻𝑦 and 𝐵𝑍fields at the 

interfaces 𝑧 = 0 and 𝑧 = −𝑑 and using mode-matching 

technique [21]respectively, it gives: 

 



 Analytical Modeling of the Interaction of a Finite Inducer with a Hidden Long Crack in Ferromagnetic Metals 

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 13 No. 1 January – March 2021 77 

(i) (p)

(a_c) (a_c) (f_c) (f_c)

0

( )

i
( ) ( )m m

m m m

d dm
m m m m m

r

e e





 

 

 

  

C D

C D C D
  

 
(10) 

  

(a_c) (a_c)

(f_c) (f_c)

0

(a) (a) (f)

a b c

( )
2

i
( )

2

m

m

y d

m m m

y d

m m m

r

m m m m m m

h
e

h
e D

 









 

   

C D

C

M C M C M C









 

 (11) 

  

0

0

( )

i
( i ( i ) )( )m

m m

d

r m m

r

e
   

 





    

(i) (p)

(f_c) (f_c)
I

C D

C D






 
(12) 

  

0( i ( i ) ) ( )
2

m
y d

r m m

r

m

h
e   




    



(f_c) (f_c)

(f)

d

I C D

M C

  
(13) 

  
(i) (p) (a_c) (a_c)

(f_c) (f_c)

0

( ) ( )

i
( )

m

m

d

m m m r m m m

d

m m m

e

e

 








  

 

k C D C D

C D





 
(14) 

  

(a_c) (a_c)

(f_c) (f_c)

0

(a) (a) (f)

a b c

( )
2

i
( )

2

m

m

y d

r m m m

y d

m m m

m m m r m m m

h
e

h
e

 



  







 

    

C D

C D

M C M C M C







 (15) 

 

where: 𝑪𝑚 = Column vector 

 𝑫𝑚 = Column vector 

 

Both 𝑪𝑚 and 𝑫𝑚 have expansion coefficients for a 

particular value of 𝛼𝑚, which is limited to 𝑁𝑦 components. 

The 𝜆𝑚𝑛 , 𝛽𝑛 , 𝛾𝑚𝑛 , 𝛾′𝑚𝑛 , 𝑘𝑚𝑛 and 𝜁𝑚𝑛 have been formed 

into 𝑁𝑦 × 𝑁𝑦 diagonal matrices 𝝀𝑚, 𝜷, 𝜸𝑚 , 𝜸′𝑚, 𝒌𝑚 and 𝜻𝑚, 

respectively, based on the following equation: 
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By first matching 𝐻𝑥 field at the crack's mouth and using 

mode-matching technique, we derive: 
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Applying the continuity of 𝐸𝑥 at the interface 𝑧 = −𝑑and 

using the mode-matching technique [21] gives: 
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Matrices Ma, Mb, c, Me, Mf, Mg, Mh and Mi are given in 

[25]. The unknown coefficients in (10)-(15) and (20)-(21) can 

be derived as in equation (22). The matrix inversion is 

performed for all values of 𝛼𝑚. 
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(22) 

 

where: 𝜶𝑚 = Diagonal matrix whose diagonal elements are 𝛼𝑚 (m = 1, 2, … 𝑁𝑥) 

 𝑁𝑥 = Truncation limit.  
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B. Odd Symmetry Solution 

The expression for the odd component of 𝜙 in region I is 

as follows [25]: 

 

(i) (p)

1 1

0

( , , ) cos( ) sin( )( )

0 , 0 ,0

mn mnk z k z

m n mn mn

m n

x y

x y z x y C e D e

x h y h z z

  
 



 

 

     

 

 

(23) 

 

Where: 𝛼𝑚 = (2𝑚 − 1)𝜋/(2ℎ𝑥) 

 𝛽𝑛 = 𝑛𝜋/ℎ𝑦  

 

Using equations (5) and (6) in [25] and replacing 𝜇0with 

𝜇0𝜇r, the expressions for 𝐴𝑦 and 𝐹𝑦 in region II are obtained 

as follows: 
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Similarly, one can use (9) and (10) in [25] and replace 𝜇0 

with  𝜇0𝜇r for the metallic parts of region III to derive the 

expressions for the components of 𝐴𝑦 and𝐹𝑦, in region III as 

follows: 
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(27) 

 

As discussed in [25], the TM mode associated with 

eigenvalues pn and qn has an insignificant value. For TE 

modes we have: 
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Where we change equation (29) to the following equation, 

and solve equation (30) for values of sn using Newton-

Raphson method [19]. 
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The expressions for y-component of 𝐴 ′ are derived as 

follow [21]: 
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(31) 

 

where: 𝑞𝑛
′ = 𝑛𝜋 (ℎ𝑦 − 𝑐)⁄  

 𝑎𝑛
′ = 0 

 

To obtain field perturbation coefficient 𝐷𝑚𝑛
(p)

 , the magnetic 

field components 𝐻𝑥  , 𝐻𝑦 and 𝐵𝑧 are matched at interfaces 

𝑧 = 0 and 𝑧 = −𝑑. Also the field component 𝐸𝑥 is to be 

matched at the interface𝑧 = −𝑑. 

Applying the continuity of 𝐻𝑥  , 𝐻𝑦and 𝐵𝑍 fields at 𝑧 = 0 

and 𝑧 = −𝑑, respectively, the followings are derived: 
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Where Mc[n, n’], Md[n, n’] and M’c[n,n’] are as follows: 
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Applying the continuity of  𝐸𝑥 at the interface  𝑧 = −𝑑 and 

using the mode-matching technique result in the following: 
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(41) 

 

where:  Mb = Given in [25] 

 Mh = Given in [25] 

 Mi = Given in [25] 

 

The unknown coefficients in (32)-(37) and (41) can be 

determined using the matrix given in equation (42), where the 

matrix inversion is performed for all values of 𝛼𝑚. 
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(42) 

 

III. RESULTS 
 

To demonstrate the validity of the proposed modelling 

technique, results of various simulations are presented. 

Results are associated with a current carrying rectangular 

inducer above the surface of a steel half space (𝜇𝑟 = 100  and 

σ = 6106 S/m) containing a hidden long crack with g = 0.4 

mm and is excited by an alternating current source of I = 1A. 

To evaluate the performance of the proposed technique in a 

general case where both the even- and odd- symmetry 

solutions exist, the centre of the inducer (point o' in Figure 1) 

is located at x = 0, y = 2 mm and z0 = 5 mm. 

We present the theoretical and simulation results for a finite 

rectangular inducer which represents a 3-D problem. With 

reference to Figure 1, a rectangular inducer with length b = 

20 mm and width a =10 mm is located parallel to the y- and 

x- axis, respectively. To achieve accurate results, the values 

of ℎ𝑥 and ℎ𝑦 are selected 20 times greater than the exciter 

dimensions. The values of 𝑁𝑥 and 𝑁𝑦 are also selected 40 and 

200, respectively. 

We examine the y-component of magnetic field 

distributions along the y-axis at a lift-off distance 𝑧𝑠 = 0.7 

mm. Variations of magnitude and phase of 𝐻𝑦along the 

scanning path for operating frequencies f = 500 Hz, 1 kHz and 

2 kHz when the crack is located at depth d = 1 mm are shown 

in Figures. 2, 3, and 4, respectively. To validate these results, 

we have repeated the simulations, using the well-known CST 

finite integration code [28]. The code has been used in 

magnetoquasistatic regime with adaptive meshing for 1e-4 

accuracy. The final number of hexahedral mesh cells is 

280500, taking 2minutes for simulation on a 2.83 GHz Quad 

core CPU with 3.25 GB of RAM. A comparison of the results 

shown in Figures 2, 3, and 4 confirms the accuracy of the 

proposed model. The computation time required in the finite 

integration method is about 1.5 times more than that required 

in the method described in this paper. 
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Figure 2: (a) Magnitude and (b) phase of Hy along the y-axis at a lift-off 

distance zs= 0.7 mm below a rectangular inducer with a = 10 mm, b = 20 

mm and o' = (0, 2 mm, 5 mm) in Figure 1, when the inducer is located in 
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air and above steel half space containing a long hidden crack with gap 

distance g = 0.4 mm at depth 1 mm. For these plots, f = 500 Hz. 

 

 
 

(a) 

 
 

(b) 

 
Figure 3: (a) Magnitude and (b) phase of Hy along the y-axis at a lift-off 

distance zs = 0.7 mm below a rectangular inducer with a = 10 mm, b = 20 

mm and o' = (0, 2 mm, 5mm) in Figure 1, when the inducer is located in 
air and above steel half space containing a long-hidden crack with gap 

distance g = 0.4 mm at depth 1 mm. For these plots, f = 1 kHz. 
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Figure 4: (a) Magnitude and (b) phase of Hy along the y-axis at a lift-off 

distance 𝑧𝑠= 0.7 mm below a rectangular inducer with a = 10 mm, b = 20 

mm and o' = (0, 2 mm, 5 mm) in Figure 1, when the inducer is located in 
air and above steel half space containing a hidden long crack with gap 

distance g = 0.4 mm at depth 1 mm. For these plots, For these plots, f = 2 

kHz. 
 

In the next set of simulations, we study the effect of 

frequency on the sensitivity of crack detection. In these 

simulations, the crack is assumed to be at depth d = 1 mm 

while the exciting frequency varies. Variations of magnitude 

and phase of crack signals for operating frequencies f = 

500Hz, 1 kHz and 2 kHz are shown in Figure 5. The crack 

signal is obtained by subtracting the fields of ferrous half 

space [13-15] from that of flawed ferrous half space. The 

study of crack signals in this figure clearly demonstrates that 

the magnitude of crack signal tends to decrease as the exciting 

frequency increases. 

Finally, we study the effect of crack depth on the sensitivity 

of crack detection. In the simulations carried out, the 

frequency is assumed to be f = 1 kHz, while the crack depth 

takes various values. Variations of magnitude and phase of 

crack signals for cracks at depths d = 1 mm, 2mm and 3mm 

are shown in Figure 6. A comparison of the results in Figure 

6 demonstrates that for a given operating frequency, the 

magnitude of crack signal tends to decrease severely as it is 

located deeper in the metal. 
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(b) 

 

Figure 5: (a) Magnitude and (b) phase of crack signal (Hy,c) along the y-
axis at a lift-off distance zs = 0.7 mm below a rectangular inducer with a 

= 10 mm, b = 20 mm and o' = (0, 2 mm, 5 mm) in Figure 1, when the 

inducer is located in air and above steel half space containing a long 
hidden crack with gap distance g = 0.4 mm at depth 1 mm. 

 

 
 

(a) 

 
 

(b) 
 

Figure 6: (a) Magnitude and (b) phase of crack signal (Hy,c) along the y-

axis at a lift-off distance zs = 0.7 mm below a rectangular inducer with a 
= 10 mm, b = 20 mm and o' = (0, 2 mm, 5 mm) in Figure 1, when the 

inducer is located in air and above steel half space containing a long 

hidden crack with gap distance g = 0.4 mm at different depths. For these 
plots, f = 1 kHz. 

 

IV. CONCLUSION 

 

A semi-analytical modeling technique was proposed to 

determine the magnetic field distributions due to an arbitrary-

shape wire inducer around a hidden long crack in a ferrous 

metal. The modeling technique based on the waveguide 

theory hypothesizes a waveguide partially filled with a lossy 

dielectric, whose enclosure lies at infinity and the metal 

represents the lossy dielectric. The eigenvalue equation 

associated with TE modes in flawed region is changed to 

obtain convergent results. The mode-matching technique is 

used to solve the resultant boundary value problem. The 

accuracy of the proposed technique was confirmed by 

comparing the results with those obtained using the CST 

finite integration code. It has been found the proposed 

technique is computationally more efficient than the finite 

integration technique. 
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