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Abstract—The system-on-chip(SoC) design process 

encounters various challenges of communication between one to 

another module. Thus, the Bus interconnection plays a 

significant role in improving the system performance on a single 

chip. The traditional bus interconnections cease its applicability 

to meet the requirements of future generation SoC. This paper 

proposes an efficient design of the AXI-4 protocol to achieve 

high-speed data transfer in the SoC application. The proposed 

AXI-4 Interface protocol includes the Master and Slave module, 

which are designed using state flow and state diagrams. Both the 

Master and Slave module operations support burst based 

transactions and perform the five different channel transactions 

that include “write address,” “write data,” “write a response,” 

“read address,” “read data” along with “read response.” The 

simulation results of the AXI-4 interface and its FPGA 

realization on Artix-7 illustrate lower resource utilization, and 

the performance benchmarking between proposed AXI-4 with 

traditional AHB and Wishbone bus modules illustrates an 

average minimization in area and increase in frequency by 40% 

and 41% respectively. 

 

Index Terms—AHB; AMBA; ASB; AXI-4; Burst; FPGA; 

Master; Slave; SOC, Transaction. 

 

I. INTRODUCTION 

 

In recent years, the development of SoC and multicore 

processors are gaining popularity because of their 

advantages. The suitably designed bus interconnection 

between the devices plays a vital role in improvising the 

system performance. The high throughput and low latency 

bus architectures are an essential part of the system 

communication and interconnection. Many of the bus 

interconnection system designs include Hyper transport, PCI, 

and Quick Path Interconnect to provide high performance in 

SoC, but it still faces congestion issues in system 

performance [1]. 

In VLSI Field, the SoC is the fastest growing design 

platform to achieve low cost, low power, and high-speed 

constraints on a single chip rather than conventional board-

level design. In recent years, compared to ASIC design, 

FPGA (Field-programmable gate array) has been widely used 

due to its advantageous capacity of reconfigurability and its 

easiness to realize and modify the design at the device level. 

The programmable SoC architecture FPGA is the Zynq-7000 

series, which supports the ARM- Cortex-A9 processing 

system and 28nm Xilinx programmable logic on a single 

chip. The Zynq SoC supports secured data transmission with 

high performance and low latency embedded systems along 

with shared memory access [2][3]. 

The performance and functionality aspects of the SoC in 

the context of associated verification is a challenging task 

within the constraints of the Master and Slaves configuration 

along with dynamic topology, a total number of transaction 

types, and different interface protocols. The verification 

challenges are corrected by using new tools and technologies 

with functional correctness, verification completeness, 

protocol and conversion compliance, stress verification, 

security, and power management [4]. The SoC bus 

interconnections are designed based on the topologies and 

protocol deployments in buses. The bus topologies include 

single-level, multi-level shared structure, and Multi-bus 

interconnection structure. The AMBA protocol used as a bus 

module in the AXI (Advanced Extensible Interface) provides 

communications to high-performance devices, and APB 

(Advanced Peripheral Bus) provides transmission among 

low-speed devices and peripherals [5]. 

The Bridge module is an essential component found in SoC 

to establish communication between protocols [6]. For 

multiple Master and multiple Slaves, the communication 

interface plays an essential role in improving system 

performance. The serial communications can transfer any 

data, although it could not meet the complex system 

requirements. The parallel systems transfer data from a 

particular source to a destination using the AXI interface 

protocol [7]. 

The proposed AXI-4 Interface protocol offers high-speed 

interconnection to the SoC systems. The proposed design 

follows the AMBA AXI Protocol specifications [8], which 

supports bus-based transactions suitable for low latency and 

high bandwidth designs to improve the system performance. 

The proposed design overcomes the drawbacks of the 

previous bus-based architectures like wishbone and AHB 

interfaces. The AXI-4 Design uses five-channel transactions, 

which includes write address, write data, write a response, 

read address, and read data with read response. The AXI-4 

Master and Slave interface modules are designed using state 

flow and state diagrams. The data width is considered for 8-

bits wide. Further, these interface protocols  are used in image 

processing applications. 

This paper is organized in six sections. After the 

introduction, presented in Section I, Section II discusses the 

existing works of interface protocols, AXI, and its related 

technologies and research gaps findings. The methodology 

adopted for the proposed work is discussed in section III. 

Section IV explains the proposed system with detailed 

descriptions. The results and analysis of the work are 

elaborated in section V. Finally, section VI concludes the 

overall system with improvements and future work. 
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II. RELATED WORK 

 

The review of the existing work on AXI protocol with 

different functional architectures and for different 

applications is described below.  

Sarojini et al. [9] presented the high optimized throughput 

Memory Interface design, using AXI protocol as a Hardware 

approach with separate read/write channels. The data is 

passed through FIFO and accessed by AXI Master, while 

AXI Core interconnect provides the interface between Master 

and Slave. The slave DDR memory controller receives the 

data and connects to the external world. The design is 

speedup in terms of Mbps based on the clock frequency. The 

design limits the Input-Output speed, which depends upon 

the FPGA Hardware capabilities. Tidala [10] describes the 

FPGA (Hardware approach) based on high-speed on-chip 

communication using the AXI-4 protocol. The design 

overcomes the many challenges concerning quality of 

service, resolving the complexity issues in Network routing 

interface, hence providing better data transmission. The 

Network communication happens between Programmable 

Logic device and Memory via AXI interconnect on FPGA. 

For each burst data transaction, the Bandwidth is observed 

and tabulated. Erfan et al. [11] reported that the AXI-4 is 

based on interconnect as a software approach, and it is used 

to improve the performance in terms of low latency, high 

bandwidth, less traffic, and better execution timing for Smart 

Memory Cube (SMC) Module. 

Makni et al. [12] described ABMA based AXI4 bus 

protocol as hardware/software (H/S) approach for Wireless 

Sensor Network (WSN). SoC has three similar type 

interconnect bus protocols namely stream, lite and burst type. 

These interconnect bus protocols are configured and 

optimized by High-Level Synthesis (HLS) techniques. 

Compared with the benchmarked designs with 

improvements, the optimization techniques include loop 

pipelining, dataflow, and array partitioning. The functional 

verifications of the digital system are done by Bus functional 

Modelling (BFM) and Transaction-level modeling (TLM) 

techniques. The transaction-based SOC system is designed 

using the AXI-4 bus, interconnected with the help of VHDL 

language to provide cost-effective solutions on hardware 

[13]. 

 Sebastian et al. [14] presented a Verification of Serial 

gigabit media independent interface (SGMII) IP core using 

Universal Verification Methodology – (UVM-VC) 

Verification component with AXI to Wishbone Bus (WB) 

Bridge as a software approach. By using AXI Bus, the 

coverage of SGMIII is improved along with the creation of a 

a reusable, reliable verification environment. 

The verification Intellectual Property (VIP) for AXI4 as a 

software approach is designed in Prasad et al. [15], which 

provides the verification and IP core based flow for SOC 

designs. The functionality of five channel transactions and 

the verification of out-of-order and multiple outstanding 

transaction scenarios with the Questa tool. Sharma et al. [16] 

presented the design of conventional AMBA AXI-3 bus 

protocol as a  software approach, which includes the write 

and read burst based transactions with verification analysis 

with the identification of code coverage findings. Panjkov et 

al. [17] addressed the Bridging of the well-known protocols, 

like AXI and OCP (Open core protocol), as a software 

approach which supports the multiple transactions. The 

Bridge mainly contains AXI Master, AXI downsizer, OCP 

Slave, and OCP to AXI Kernel. The AXI Master is designed 

using the write and read FSM to handle the handshake 

mechanism between an AXI Interface and bridge. The AXI 

bus interface module with the Master, Slave, and interconnect 

module is designed as a hardware approach by Ramesh et al. 

[18]. The interconnect module includes Master controller, 

read-write arbiter and decoder, and  Slave controller. The 

AXI Bus interface supports 2 master and 4-slave 

communications. Archana et al. [19] explained the imaging 

chip concept using the AXI protocol for medical applications 

on a hardware platform. Fabio et al. [20] presented a reliable 

communication analysis between embedded processing 

systems and programmable logic as a Hybrid (hardware and 

software) approach, using AXI ports on ZYNQ-7000 

Multicore ARM processor. 

Research Gap: It has been noticed from the review works, 

and existing approaches, the significant work carried on the 

Interface-bus protocol designs are based either on software or 

hardware approaches. The research gaps are explained from 

the identification of existing approaches as follows:  

1) Most of the interface modules, like bus-based 

architectures, shared bus connections are used in many 

SOC applications for communication purposes, which 

are facing scalability and reliability problems on the 

hardware platform.  

2) Very few hardware-based designs work towards 

AMBA based protocols like AHB, APB, and ASB. 

Even with the AXI protocol, there has been very 

limited work carried out and they have a lot of 

constraints issues.   

3) Many vendors designed soft-core AXI Protocol as an 

IP core. Although it is used in most of the applications, 

which includes MPSOC fast communications, they are 

not customized to other hardware.    

4) Most of the AXI-based interface protocol design on 

hardware-based approaches are facing cost-effective 

solutions over SOC platform. 

5) The Complete AXI-4 interface protocol with high-

speed architecture is yet to come with optimized 

constraints to improve the performance of the SOC 

applications.  

Hence an efficient, cost-effective solution with better 

performance is required to fulfill the above research gaps.  

The overview of the research methodology for the proposed 

design to address the research gaps is described in the next 

section. 

  

III. RESEARCH METHODOLOGY 

 

An efficient AXI-4 protocol is a high speed interface bus 

protocol, which corrects the drawbacks of existing bus 

interface protocols with better performance. The schematic 

flow of the proposed High-speed AXI-4 Interface is 

represented in Figure 1. The model includes AXI-4 Master 

Module, interconnect module, and AXI4 Slave module. 

These modules are interconnected, each based on AMBA-

AXI-4 Input-outputs with its specifications, which are: 

Define the AXI-4 Master and slave Input-output (IO) as per 

ARM –AXI-4 Specifications [8] and Assign the Input-output 

connections as per five channels. The Master and Slave 

modules are designed using FSM (Finite state machine) along 

with five transactions which are: write address channel 

(WAC), write data channel(WDC), write response channel 
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(WRC), read address channel (RAC) and read data channel 

(RDC) with the response. 

The proposed module provides a high speed interface 

between Master and slave modules via interconnection. The 

AXI-4 Interconnect provides a comman interface between 

Master and slave using a state machine. The AXI-4 Slave 

Module performs different transcations, which include write 

address ready signal generation, write address latching with 

different burst transactions, write ready and response signal 

generation, read address ready signal with burst transactions, 

memory-mapped register select, read logic signal generation 

and design the Block RAM (BRAM) to access the master 

data. 

 

Define AXI-4 Master-Slave Input-Outputs

AXI-4 Input-Outputs Connections for Five Channels

Write 
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Figure 1: Schematic flow of proposed AXI-4 interface module 

 

The study outcome offers high throughput, reduced 

resource consumption, and better performance in a single 

chip for low-cost SOC applications. It is also anticipated that 

the proposed scheme overcomes the drawbacks of traditional 

interface protocols with the constraints and performance 

improvements. The next section describes the proposed AXI-

4 Master-slave design with FSM models with different Input-

output functionality for high-speed SOC applications. 

 

IV. PROPOSED SYSTEM 

 

This section discusses the proposed AXI-4 Master-Slave 

Modules using FSM and state flow with AXI-4 Input-output 

functionality. The AXI protocol offers the latest key features 

for the next-generation technology in high-speed 

interconnection. The Features include the AXI-4 interface 

protocol, which suits low latency and high bandwidth 

designs, memory controller designs with low latency, 

interconnect architecture flexibility, backward compatible 

with previous ASP, AHB, and APR interface protocols. 

The AXI-4 protocol supports write response requirement 

updation, up to 256 beats burst length support, Updated cache 

signal details, QoS signaling, and provides ordering 

requirements information. The AXI-4 protocol provides a 

burst-based transaction. In the address channel, every 

transaction has control and address information that deals 

with the type of data to be transferred. The data is 

transformed from the Master to the Slave module using a 

write data channel. The write response channel provides the 

completion of the transaction details in Slave to module using 

response and acknowledges signals. Data is transferred from 

slave to master along with the response to the Slave using 

read data channel. The detailed design description about 

master and slave is explained below. 

 

A. AXI-4 Master Module Operation 

The AXI-4 Master module is designed using five signal 

transactions. First, define the AXI-4 Master input-output port 

signals with many transactions and data width for write 

address channel, write data channel, write response channel, 

read address channel, and read data channel with a response. 

Next, the AXI-4 internal temporary signals for channel 

transactions are defined using AXI-4 Master input-outputs. 

The local parameter is set for a targeted Slave with the base 

address to 8’h80, and the Master module waits for start-

counter, which is set to 16 clock cycles before initiating the 

write transaction. In the Master module, the burst size and 

burst length are allotted based on the total number of burst 

transfers. The write and read burst counters are used to find 

the number of burst transfers based on burst length. 

The AXI-4 Master Input-output connections are set for five 

channel transactions. The master AXI address (AWADDR) 

is the concatenation of the targeted salve base address and 

active offset range (axi_awaddr). The write Burst length 

(AWLEN) is defined as based on the number of transactions 

minus one. The burst size (AWSIZE) is set to 3, which is 2^3 

and equal to 8-bit data. The 2-bit increment burst type 

(AWBURST) is selected and set 2’b01. The master cache 

type (AWCACHE) is set 4’b0011, which indicates to 

cacheable and bufferable type. The write address valid 

(AWVALID) is set to 1, if valid address and control 

information is present, otherwise 0. 

The master AXI Write data (WDATA) is 8-bit wide write 

data. Write strobe (WSTRB) is used to indicate which byte is 

used to update the memory. The Write Last (WLAST) is the 

last data transaction in a write burst. The write valid 

(WVALID) is set to 1, if data is valid, otherwise 0.   The write 

response (BREADY) provides the response information, if it 

is 1= Master is ready, 0= Master is not ready. The AXI-4 

Master Read address (ARADDR), the read burst length 

(ARLEN), the read burst size (ARSIZE), read increment 

burst type (ARBURST), Read cache type (ARCACHE), the 

read address valid (ARVALID) and read ready (ARREADY) 

is set the same as the write transactions. 

 

B. Write Address Channel (WAC) 

The address and control information is requested for all the 

transactions and processes for the write operation as early as 

possible. In the initial process, the valid address signal 

(awvalid) is reset, the initial next transaction is set, if the 

previous address is not valid. In the next clock cycle, 

awvalid=1. Once valid is set, wait for the AWREADY signal 

to accept the transactions. Once the AWREADY indicates the 

previous address is accepted, the next address is set based on 

the burst size and burst length. 

 

C. Write Data Channel (WDC) 

The write data is continuously forwarding to the slave via 

interface signals. If the valid (WVALID) and ready 

(WREADY) signals are high, the next transaction (wnext) 

will be started. Reset the write valid signal (wvalid) initially, 

start the next transaction, if it is not valid previously. In next 

clock cycle, wvalid=1. When many write transactions are in 
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the process (wnext), and till last burst (wlast), the WVALID 

signal must wait to complete the write process. The write 

counter is used to synchronize the last write data when it is 

full. The write last (wlast) is active only, write counter is 

equal to burst length along with the next transactions. Burst 

counter is used with an additional counter to perform the next 

transactions to avoid the decoding logic in AXI-4 

interconnection. The write data (wdata) is generated based on 

the wnext logic, with incrementing till the burst count. 

 

D. Write Response Channel (WRC) 

The write response channel assures that all the write 

transactions are ready to store in slave memory. The 

BREADY is response ready. If it is 1, the master is ready to 

accept the slave response information. If it is 0, the master is 

not ready to receive the slave response information. Reset the 

write response ready (bready) initially; when the Write 

response valid (BVAILD) is valid from the slave and master 

is not ready to respond, Then, the next clock cycle, the master 

is ready to respond (axi_bready=1). If the Master is not ready, 

it retains its previous(axi_bready) value, as presented in 

Figure 2. 

 

RESETN = 0

N

axi_bready = 0
Y

BVALID && ~ axi_bready = 1 axi_bready = 1

N

Y

axi_bready = 1

N

axi_bready = 0
Y

Define Inputs:  RESETN, BVALID;

 Output: axi_bready

Start

Stop

 
 

Figure 2: AXI-4 master write response state flow 

 

E. Read Address Channel (RAC) and Read Data Channel 

(RDC) with Response 

The read address channel works similarly to the write 

address channel. Instead of write address signals, read 

address signals are the process to complete all the read 

transactions. The Read data is continuously forwarding to the 

master via interface signals. If the valid (RVALID) and ready 

(RREADY) signals are high, the next transaction (rnext) will 

be started. The read last (rlast) is active only; the read counter 

is equal to burst length along with its next read transactions. 

When the read valid (RVAILD) is valid from the master, the 

slave is not ready to respond. Then, the next clock cycle, the 

slave is ready to respond (axi_rready=1). If the Slave is not 

ready, it retains its previous (axi_rready) value. When 

RVALID indicates that the required read is available and read 

transaction can complete according to the response and 

master ready. 

Any data mismatch during the write and read transactions 

leads to read or write interface errors. If any read mismatch 

happens or error in write and read response, these error data 

are stored in the error register. The write and read burst 

counter are used to track the total number of burst 

transactions, which is initiated against the individual number 

of burst transactions for master or salve to initiate. 

 

F. Master Interface Finite State Machine  

The Master interface Finite state machine (FSM) is used to 

compare and validate the write and read transactions. The 

FSM mainly has five states, which include the IDLE, 

COUNTER, WRITE, READ, and FINAL states, as presented 

in Figure 3.  

 

IDLE

STATE

COUNTER 

STATE

WRITE

STATE

READ

STATE
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STATE count = count+1

count = 0

 init_burst_write = 

0

 init_ burst_read = 

0

 c_ done = 0

Write_done = 0 

init_brust_write = 

1

Write_done = 1 

init_brust_write = 0

Read_done = 0 

init_burst_read = 1read_done = 1

c_done = 

0

count = 16

c_done = 1

c_done = 0

 
 

Figure 3: AXI-4 master interface finite state machine 

 

The IDLE state is used to reset to initial values under reset 

condition and assign the next transition to COUNTER state. 

The COUNTER state initializes the counter and waits for 

start counter, which is set to 16 clock cycles, before initiating 

the write transaction, and once counting is done, the next 

transition to WRITE State is assigned. The Write state 

initiates the write transactions. It remains active till burst 

write signal (init_burst_write) is asserted, If the burst write 

signal is zero, the write transactions will stop and write done 

signal will be high and assign next transition to READ state. 

The Read state initiates the read transactions. It will remain 

active till burst read signal (init_burst_read) is asserted. If the 

burst read signal is zero, the read transactions will stop, and 

the read done signal will be high and the next transition to the 

FINAL state is assigned. 

The FINAL State provides the final comparison of written 

data with read data. If any data mismatch are found, the error 

flag will set and assign the error data to error register and 

assign the next transition to IDEAL or COUNTER state. If 

the comparison is carried out (c_done) with no error, it 

indicates the transaction is completed. 

The write and read done signals are activated based on the 

last write and read transactions, and which are dependent on 

write and read the response, ready and valid signals.  

 

G. AXI-4 Slave Module Operation 

The AXI-4 slave module supports burst based transactions 

and it is implemented with Block Random Access Memory 

(B-RAM). The slave module receives the master output 

signals as input signals through interconnects. The slave 

module write and read the data based on the five signal 
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transactions. The slave address and data width are fixed to 8, 

and the slave module receives the master write data and issue 

the read data. First, define the AXI-4 slave input-output port 

signals of write address, write data, write a response, read 

address, and read data channel with the response. Also, define 

the AXI-4 internal temporary signals for channels transaction 

using AXI-4 slave input-outputs. 

The AXI-4 slave Input-output connections are set for 

write-read transactions. The master Output signals are input 

to the slave interface module. The slave output signals 

include  thewrite address ready (AWREADY), which 

receives the address and control information, when it is set to 

1 slave is ready to accept, and 0 slave is not to accept the 

information. The write ready (WREADY), which receives 

the data information, when set to 1 slave is ready to accept, 

and 0 slave is not to accept the write data information. The 2-

bit write response (BRESP), which provides write transaction 

status information with a response like OKAY, EXOKAY, 

etc. The write response valid (BVALID) signal provides a 

valid write response if it is set to 1, otherwise set to 0 when it 

is not available. The write response ID (BID) is a write 

response identification tag if it matches with AWID, then the 

slave will respond to write transactions. 

The read address ready (ARREADY), which receives the 

read address and control information, when set to 1 slave is 

ready to accept, and 0 slave is not to accept the information. 

The 2-bit Read response (RRESP) which provides read 

transaction status information with the response. The read 

response valid (RVALID) signal provides a valid read 

response if it is set to 1 otherwise 0. The Read Last (RLAST) 

is the last data transaction in a read burst. The Read ID (RID) 

is read identification tag if it is matched with ARID, then the 

slave will respond to read transactions. The slave AXI read 

data (RDATA) is 8-bit wide read data, which receives the 

block memory data as final data output. 

The proper valid and response transactions are supported 

from the write flag (axi_flagw) and read flag (axi_flagr) 

registers. The write flags are reset to generate write address 

ready (axi_awaddr). If the AWVALID and previous control 

signals like write and read flags are set, then AWREADY will 

be active along with the write flag. If the WLAST is set high, 

the Slave is ready to accept the next address transactions after 

completion of the present write transaction. 

 

H. Write Address Generation 

The write address offset is defined based on the write 

address size and length. If both the AWVALID and 

WVALID signals are valid, the process of write address 

latching is started. Reset the write address (axi_awaddr) and 

burst length counter (axi_len_cnt). If the AWVALID and 

previous write flag (axi_flagw) is valid, then set the write 

address (axi_awaddr) using AWADDR [7:0] and burst length 

counter using AWLEN. The 2-bit burst type transaction is 

performing, which includes fixed burst (00), incremental 

burst (01) based on the burst sizes—wrapping burst (10) 

based on the wrap boundary. 

 

I. Write Ready Generation 

The write address (AWVALID) and write valid 

(WVALID) are valid when the write ready (axi_wready) is 

ready to accept them for the number of burst transactions 

(wdata). The write ready (axi_wready) is generated, when the 

WVALID and previous control signals like write flags are 

set, then axi_wready will be active. If the WLAST is set high, 

the slave is ready to accept the next address transactions after 

the completion of the present write transaction. 

 

J. Write Response Logic Generation 

The Slave module declares the valid response and write 

response signals when the WVALID and axi_wready are set, 

results in the response type is (00- OKAY) and valid response 

(bvalid). The master module’s Ready response (BREADY) 

and slave’s valid response (bvalid) are active, which results 

in the write transaction is accepted from the slave module. 

 

K. Read Address Generation 

The read address generation is similar to write address 

generation except, use the read address signals than write 

address signals. It also supports the read burst type. 

 

L. Read Logic Generation 

Reset the previous read response (rresp) and valid response 

(rvalid). Set the Read flag (axi_flagr), to access the slave 

module read data (axi_rdata) when rvalid =1 and read 

response (rresp=00) is OKAY. The master accepts the valid 

response when RREADY=1 is represented in Figure 4. 

 

M. Block RAM Module 

The block RAM is designed, and it supports up to 256 

memory locations, each allocates 8-bit at a time. Based on the 

write and read flag set, the memory location is allocated. 

 

RESETN = 0

N

axi_rvalid = 0

axi_rresp = 0

Y

axi_rvalid  =1

axi_rresp = 2'b00

N

Y

axi_rvalid && 

RREADY  = 1
axi_rvalid  =0Y

~axi_rvalid && 

axi_flagr =1

Define Inputs: RESETN, axi_rvalid, axi_flagr, RREADY;

 Output: axi_rvalid, axi_rresp;

Start

Stop

 
 

Figure 4: AXI-4 slave read response state flow 

 

V. RESULTS AND ANALYSIS 

 

The proposed AXI-4 Master-slave Protocol results are 

described in detail in the below section. The Complete AXI-

4 Master-slave Protocol is designed using Verilog HDL over 

the Xilinx ISE Platform and simulated on Modelsim 

simulator and Hardware prototyped on low-cost Artix-7 

FPGA.  

The AXI-4 Master-slave Protocol simulation results are 

represented in Figure 5. The global clock (ACLK) is 
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activated with toggling with a positive edge. The Global 

asynchronous Reset Negedge (ARESETN) signal is initially 

set low, then keep it high to start the AXI-4 master-slave 

operations. The AXI-4 Master Module receives the incoming 

signals after the AXI-4 Slave response and, based on Master 

Module operation, generates the Master output signals, which 

are input signals to the AXI-4 Slave module through AX-4 

interconnect signals. After the slave process, the AXI-4 Slave 

output signals will be generated after the response, and again 

slave output signals are input to the AXI-4 Master Module. 

The same process repeats till the data and address transaction 

happens. 

The transactions are performed based on AXI- 4 Master-

slave specifications, which includes write address (WA), 

Write Data (WD), Write Response (WR), Read Address (RA) 

and Read data (RD). These transactions are explained below 

as per simulation results. 

 

 

 
 

Figure 5: Simulation results of AXI-4 master-slave module 

 

A. Master-Slave Write Address Transaction 

The Write address valid output signal (AWVALID) will be 

high, followed by write address ready slave input signal 

(AWREADY=1) from the slave module to initialize the AXI-

4 process. When both AWVALID and AWREADY are high, 

the master write address (AWADDR) initiates the address for 

each transaction and set to 1, 2 and 3 which is followed by 

master output signals like 8-bit Burst Length (AWLEN=0), 

3-bit Burst size (AWSIZE = 000), 2-bit increment address 

Burst type (AWBURST=01) and 4-bit cache type 

(AWCACHE=0011) which is bufferable and cacheable are 

allocated. 

 

B. Master-Slave Write Data Transaction 

Write data transaction will perform parallelly with write 

address, the master output valid (WVALID=1) signal 

followed by slave ready (WREADY =1), when the write data 

(WDATA) transact the data for each transaction with an 

address. The 8-bit WDATA is 8-bit image data 

(IMAGE_IN) is set to 10, 20, and 30 to the corresponding 1, 

2, and 3 address. 

 

C. Master-Slave Write Response Transaction 

For each data transactions, the master input or slave output 

write response valid (BVALID=1) signal followed by 

response ready (BREADY=1) signal will be high for one 

clock, both the signals will be low, till the new transaction 

happens and it will be followed till the last address and data 

transactions. The 2-bit master write a response (BRESP=00), 

which is an OKAY response about the transaction. 

 

D. Master-Slave Read Address Transaction 

When the write transactions are over, the read address 

transaction will start. The read address master valid output 

signal (ARVALID=1) will be high, followed by write address 

ready slave output (master input) signal (ARREADY=1) to 

initialize the AXI-4 read process. When both ARVALID and 

ARREADY are high, the master read address (ARADDR) 

initiates the address for each transaction and set to 1, 2, and 3, 

which is followed by master output signals like ARLEN=0, 

ARSIZE = 000, 2-bit ARBURST=01 and AWCACHE=0011 

which are allocated. 

 

E. Master-Slave Read Data Transaction 

Read data transaction will perform parallelly with read 

address, the slave output valid (RVALID) signal followed by 

master ready (RWREADY) will be high, when the 8-bit read 

data (RDATA) receives 10, 20 and 30  data for each read 

address transaction completion. The Last read (RLAST) 

signal will be high for each read data transaction, and The 2-

bit Read response (RRESP=00) indicates the OKAY 

response to receives the correct data. 

The performance analysis of the proposed AXI-4 Master-

Slave module and its sub-modules resource utilization in 

terms of Area (Slices) are presented in Table 1. 

 
Table 1 

Resource Utilization of AX-4 Master-Slave Module on Atrix-7 

 

Logic 

Utilization 

AXI-4 

Master 

AXI-4 

Slave 

AXI-4 Master-

Slave 

Slice Registers 49 24 63 

Slice LUTs 61 28 77 

LUT-FF pairs 48 17 56 

 

The AXI-4 Master, Slave, and Complete AXI-4 Master-

slave models area utilization after PAR (Place and Route) is 

obtained on the Atrix-7 Device environment. The AXI-4 

Master-slave Utilizes 63 Slice registers, 77 Slice LUT’s, and 

56 LUT-FF pairs.  The Complete AXI-4 works at a high 

frequency of 561.07 MHz. The AXI4 Design fits low-cost 

Artix-7 FPGA device at high speed. The total power 

consumption of the AXI-4 Master-slave Module from the X-

Power Analyzer tool is 0.085W with a clock frequency of 100 

MHz. The AXI-4 Full design utilizes less Area, power, and 

process at high speed on any low-cost FPGA Devices. 

The comparative analysis in terms of Area utilization of the 

proposed AXI-4 Master-Slave module with AHB Protocol 

[21] on the same FPGA Spartan-3E device is tabulated in 

Table 2. The proposed AXI-4 improved in terms of Slice 

Registers around 6.80%, Slice LUT 40%, and LUT-FF Pairs 

33.33% overhead over AHB Protocol. The AXI-4 works at 

234.36, whereas AHB Protocol frequency is not mentioned 

by [21]. 

In a similar passion, the proposed AXI-4 module is 

compared with Wishbone Shared Bus Protocol [22] in terms 

of Area and frequency on the same FPGA device. The 

proposed AXI-4 improves in terms of Slice Registers Slice 

LUT, and LUT-FF Pairs is around 84 % over Wishbone 

Shared Bus Protocol [22]. The maximum frequency 

utilization of AXI-4 was improved around 41 % over 

Wishbone Shared Bus. 
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Table 2 

Area Comparison of Proposed AX-4 with AHB-Bus [21] 

 

Logic Utilization AHB- Bus [21] AXI-4 Proposed 

FPGA Device Spartan 3E-1600 Spartan 3E-1600 

Slice Registers 44 41 

Slice LUTs 95 57 

LUT-FF pairs 96 64 

Frequency(MHz) - 234.36 

 
Table 3 

Resource Comparison of Proposed AXI-4 with Wishbone-Shared-Bus [22] 

 

Logic Utilization Wishbone-shared Bus [22] AXI-4   Proposed 

FPGA Device Spartan 3E-500 Spartan 3E-500 

Slice Registers 292 41 

Slice LUTs 416 57 

LUT-FF pairs 459 64 

Frequency (MHz) 118.312 201.572 

 

 
 

Figure 6: Comparative analysis of AXI-4 with other bus protocols 
 

The AXI-4 protocol is compared with the traditional AHB 

and Wishbone bus protocols with improvements in hardware 

design constraints. Table 2 and Table 3 clearly show that the 

AXI-4 bus protocol is more efficient than the AHB and 

Wishbone bus protocols. 

For communication and interconnection to multiple devices 

on SoC,  the platform, the AXI-4, is highly commendable 

because of its  ow cost, flexible less area and power utilization.  

It also works at a higher speed. The overview of comparative 

analysis is presented in Figure 6. The proposed AXI-4 utilizes 

less area overhead than the other two similar functionally 

working bus protocols, namely the AHB and Wishbone Bus 

protocol. 

 

VI. CONCLUSION 

 

In this paper, an efficient AMBA-AXI-4 interface protocol 

which offers high-speed communication between the 

processing elements has been designed,. The limitations of the 

conventional bus-based communications are overcome with 

the inclusion of Optimized AXI-4 interface protocol for high-

speed SOC usage. The proposed AMBA-AXI-4 protocol 

module contains a Master, Interconnect model, and slave 

module. These modules are designed using efficient state 

machines. The simulation results of complete AXI-4 Master-

slave are presented with a detailed description. The proposed 

model consumes very less area utilization and is tabulated 

after place and route on a low-cost FPGA device. The model 

work at high speed with an operating frequency of 561.07 

MHz and utilize a small amount of power 0.085W. The 

proposed AXI-4 protocol provides a notable improvement in 

slice LUT’s around 40% over the AHB bus protocol. When 

compared to wishbone bus architecture, a huge margin in area 

improvement and around 41% overhead in frequency. In the 

future, these models can be incorporated to image processing 

applications to process and monitor the images at high speed 

as an imaging chip. 
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