

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 3 July – September 2020 61

Design of an Efficient AXI-4 Protocol for High

Speed SOC Applications on FPGA Platform

Archana H. R1, C. R. Byrareddy2, and Narendra C. P2
 1Department of ECE, BMS College of Engineering, Bangalore, India

2Department of ECE, Bangalore Institute of Technology, Bangalore, India

archanahr.ece@bmsce.ac.in

Abstract—The system-on-chip(SoC) design process

encounters various challenges of communication between one to

another module. Thus, the Bus interconnection plays a

significant role in improving the system performance on a single

chip. The traditional bus interconnections cease its applicability

to meet the requirements of future generation SoC. This paper

proposes an efficient design of the AXI-4 protocol to achieve

high-speed data transfer in the SoC application. The proposed

AXI-4 Interface protocol includes the Master and Slave module,

which are designed using state flow and state diagrams. Both the

Master and Slave module operations support burst based

transactions and perform the five different channel transactions

that include “write address,” “write data,” “write a response,”

“read address,” “read data” along with “read response.” The

simulation results of the AXI-4 interface and its FPGA

realization on Artix-7 illustrate lower resource utilization, and

the performance benchmarking between proposed AXI-4 with

traditional AHB and Wishbone bus modules illustrates an

average minimization in area and increase in frequency by 40%

and 41% respectively.

Index Terms—AHB; AMBA; ASB; AXI-4; Burst; FPGA;

Master; Slave; SOC, Transaction.

I. INTRODUCTION

In recent years, the development of SoC and multicore

processors are gaining popularity because of their

advantages. The suitably designed bus interconnection

between the devices plays a vital role in improvising the

system performance. The high throughput and low latency

bus architectures are an essential part of the system

communication and interconnection. Many of the bus

interconnection system designs include Hyper transport, PCI,

and Quick Path Interconnect to provide high performance in

SoC, but it still faces congestion issues in system

performance [1].

In VLSI Field, the SoC is the fastest growing design

platform to achieve low cost, low power, and high-speed

constraints on a single chip rather than conventional board-

level design. In recent years, compared to ASIC design,

FPGA (Field-programmable gate array) has been widely used

due to its advantageous capacity of reconfigurability and its

easiness to realize and modify the design at the device level.

The programmable SoC architecture FPGA is the Zynq-7000

series, which supports the ARM- Cortex-A9 processing

system and 28nm Xilinx programmable logic on a single

chip. The Zynq SoC supports secured data transmission with

high performance and low latency embedded systems along

with shared memory access [2][3].

The performance and functionality aspects of the SoC in

the context of associated verification is a challenging task

within the constraints of the Master and Slaves configuration

along with dynamic topology, a total number of transaction

types, and different interface protocols. The verification

challenges are corrected by using new tools and technologies

with functional correctness, verification completeness,

protocol and conversion compliance, stress verification,

security, and power management [4]. The SoC bus

interconnections are designed based on the topologies and

protocol deployments in buses. The bus topologies include

single-level, multi-level shared structure, and Multi-bus

interconnection structure. The AMBA protocol used as a bus

module in the AXI (Advanced Extensible Interface) provides

communications to high-performance devices, and APB

(Advanced Peripheral Bus) provides transmission among

low-speed devices and peripherals [5].

The Bridge module is an essential component found in SoC

to establish communication between protocols [6]. For

multiple Master and multiple Slaves, the communication

interface plays an essential role in improving system

performance. The serial communications can transfer any

data, although it could not meet the complex system

requirements. The parallel systems transfer data from a

particular source to a destination using the AXI interface

protocol [7].

The proposed AXI-4 Interface protocol offers high-speed

interconnection to the SoC systems. The proposed design

follows the AMBA AXI Protocol specifications [8], which

supports bus-based transactions suitable for low latency and

high bandwidth designs to improve the system performance.

The proposed design overcomes the drawbacks of the

previous bus-based architectures like wishbone and AHB

interfaces. The AXI-4 Design uses five-channel transactions,

which includes write address, write data, write a response,

read address, and read data with read response. The AXI-4

Master and Slave interface modules are designed using state

flow and state diagrams. The data width is considered for 8-

bits wide. Further, these interface protocols are used in image

processing applications.

This paper is organized in six sections. After the

introduction, presented in Section I, Section II discusses the

existing works of interface protocols, AXI, and its related

technologies and research gaps findings. The methodology

adopted for the proposed work is discussed in section III.

Section IV explains the proposed system with detailed

descriptions. The results and analysis of the work are

elaborated in section V. Finally, section VI concludes the

overall system with improvements and future work.

Journal of Telecommunication, Electronic and Computer Engineering

62 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 3 July – September 2020

II. RELATED WORK

The review of the existing work on AXI protocol with

different functional architectures and for different

applications is described below.

Sarojini et al. [9] presented the high optimized throughput

Memory Interface design, using AXI protocol as a Hardware

approach with separate read/write channels. The data is

passed through FIFO and accessed by AXI Master, while

AXI Core interconnect provides the interface between Master

and Slave. The slave DDR memory controller receives the

data and connects to the external world. The design is

speedup in terms of Mbps based on the clock frequency. The

design limits the Input-Output speed, which depends upon

the FPGA Hardware capabilities. Tidala [10] describes the

FPGA (Hardware approach) based on high-speed on-chip

communication using the AXI-4 protocol. The design

overcomes the many challenges concerning quality of

service, resolving the complexity issues in Network routing

interface, hence providing better data transmission. The

Network communication happens between Programmable

Logic device and Memory via AXI interconnect on FPGA.

For each burst data transaction, the Bandwidth is observed

and tabulated. Erfan et al. [11] reported that the AXI-4 is

based on interconnect as a software approach, and it is used

to improve the performance in terms of low latency, high

bandwidth, less traffic, and better execution timing for Smart

Memory Cube (SMC) Module.

Makni et al. [12] described ABMA based AXI4 bus

protocol as hardware/software (H/S) approach for Wireless

Sensor Network (WSN). SoC has three similar type

interconnect bus protocols namely stream, lite and burst type.

These interconnect bus protocols are configured and

optimized by High-Level Synthesis (HLS) techniques.

Compared with the benchmarked designs with

improvements, the optimization techniques include loop

pipelining, dataflow, and array partitioning. The functional

verifications of the digital system are done by Bus functional

Modelling (BFM) and Transaction-level modeling (TLM)

techniques. The transaction-based SOC system is designed

using the AXI-4 bus, interconnected with the help of VHDL

language to provide cost-effective solutions on hardware

[13].

 Sebastian et al. [14] presented a Verification of Serial

gigabit media independent interface (SGMII) IP core using

Universal Verification Methodology – (UVM-VC)

Verification component with AXI to Wishbone Bus (WB)

Bridge as a software approach. By using AXI Bus, the

coverage of SGMIII is improved along with the creation of a

a reusable, reliable verification environment.

The verification Intellectual Property (VIP) for AXI4 as a

software approach is designed in Prasad et al. [15], which

provides the verification and IP core based flow for SOC

designs. The functionality of five channel transactions and

the verification of out-of-order and multiple outstanding

transaction scenarios with the Questa tool. Sharma et al. [16]

presented the design of conventional AMBA AXI-3 bus

protocol as a software approach, which includes the write

and read burst based transactions with verification analysis

with the identification of code coverage findings. Panjkov et

al. [17] addressed the Bridging of the well-known protocols,

like AXI and OCP (Open core protocol), as a software

approach which supports the multiple transactions. The

Bridge mainly contains AXI Master, AXI downsizer, OCP

Slave, and OCP to AXI Kernel. The AXI Master is designed

using the write and read FSM to handle the handshake

mechanism between an AXI Interface and bridge. The AXI

bus interface module with the Master, Slave, and interconnect

module is designed as a hardware approach by Ramesh et al.

[18]. The interconnect module includes Master controller,

read-write arbiter and decoder, and Slave controller. The

AXI Bus interface supports 2 master and 4-slave

communications. Archana et al. [19] explained the imaging

chip concept using the AXI protocol for medical applications

on a hardware platform. Fabio et al. [20] presented a reliable

communication analysis between embedded processing

systems and programmable logic as a Hybrid (hardware and

software) approach, using AXI ports on ZYNQ-7000

Multicore ARM processor.

Research Gap: It has been noticed from the review works,

and existing approaches, the significant work carried on the

Interface-bus protocol designs are based either on software or

hardware approaches. The research gaps are explained from

the identification of existing approaches as follows:

1) Most of the interface modules, like bus-based

architectures, shared bus connections are used in many

SOC applications for communication purposes, which

are facing scalability and reliability problems on the

hardware platform.

2) Very few hardware-based designs work towards

AMBA based protocols like AHB, APB, and ASB.

Even with the AXI protocol, there has been very

limited work carried out and they have a lot of

constraints issues.

3) Many vendors designed soft-core AXI Protocol as an

IP core. Although it is used in most of the applications,

which includes MPSOC fast communications, they are

not customized to other hardware.

4) Most of the AXI-based interface protocol design on

hardware-based approaches are facing cost-effective

solutions over SOC platform.

5) The Complete AXI-4 interface protocol with high-

speed architecture is yet to come with optimized

constraints to improve the performance of the SOC

applications.

Hence an efficient, cost-effective solution with better

performance is required to fulfill the above research gaps.

The overview of the research methodology for the proposed

design to address the research gaps is described in the next

section.

III. RESEARCH METHODOLOGY

An efficient AXI-4 protocol is a high speed interface bus

protocol, which corrects the drawbacks of existing bus

interface protocols with better performance. The schematic

flow of the proposed High-speed AXI-4 Interface is

represented in Figure 1. The model includes AXI-4 Master

Module, interconnect module, and AXI4 Slave module.

These modules are interconnected, each based on AMBA-

AXI-4 Input-outputs with its specifications, which are:

Define the AXI-4 Master and slave Input-output (IO) as per

ARM –AXI-4 Specifications [8] and Assign the Input-output

connections as per five channels. The Master and Slave

modules are designed using FSM (Finite state machine) along

with five transactions which are: write address channel

(WAC), write data channel(WDC), write response channel

 Design of an Efficient AXI-4 Protocol for High Speed SOC Applications on FPGA Platform

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 3 July – September 2020 63

(WRC), read address channel (RAC) and read data channel

(RDC) with the response.

The proposed module provides a high speed interface

between Master and slave modules via interconnection. The

AXI-4 Interconnect provides a comman interface between

Master and slave using a state machine. The AXI-4 Slave

Module performs different transcations, which include write

address ready signal generation, write address latching with

different burst transactions, write ready and response signal

generation, read address ready signal with burst transactions,

memory-mapped register select, read logic signal generation

and design the Block RAM (BRAM) to access the master

data.

Define AXI-4 Master-Slave Input-Outputs

AXI-4 Input-Outputs Connections for Five Channels

Write

Address

Channel

(WAC)

Write

Data

Channel

(WDC)

Write

Respons

e

Channel

(WRC)

Read

Address

Channel

(RAC)

Read

Data

Channel

(RDC)

Master- FSM Module

AXI-4 Interconnect

Write

address

generatio

n

Write

ready

generatio

n

 Read

Address

ready

Read

logic

generatio

n

Write

response

generatio

n

Design of Block RAM (BRAM)

Slave Module

Figure 1: Schematic flow of proposed AXI-4 interface module

The study outcome offers high throughput, reduced

resource consumption, and better performance in a single

chip for low-cost SOC applications. It is also anticipated that

the proposed scheme overcomes the drawbacks of traditional

interface protocols with the constraints and performance

improvements. The next section describes the proposed AXI-

4 Master-slave design with FSM models with different Input-

output functionality for high-speed SOC applications.

IV. PROPOSED SYSTEM

This section discusses the proposed AXI-4 Master-Slave

Modules using FSM and state flow with AXI-4 Input-output

functionality. The AXI protocol offers the latest key features

for the next-generation technology in high-speed

interconnection. The Features include the AXI-4 interface

protocol, which suits low latency and high bandwidth

designs, memory controller designs with low latency,

interconnect architecture flexibility, backward compatible

with previous ASP, AHB, and APR interface protocols.

The AXI-4 protocol supports write response requirement

updation, up to 256 beats burst length support, Updated cache

signal details, QoS signaling, and provides ordering

requirements information. The AXI-4 protocol provides a

burst-based transaction. In the address channel, every

transaction has control and address information that deals

with the type of data to be transferred. The data is

transformed from the Master to the Slave module using a

write data channel. The write response channel provides the

completion of the transaction details in Slave to module using

response and acknowledges signals. Data is transferred from

slave to master along with the response to the Slave using

read data channel. The detailed design description about

master and slave is explained below.

A. AXI-4 Master Module Operation

The AXI-4 Master module is designed using five signal

transactions. First, define the AXI-4 Master input-output port

signals with many transactions and data width for write

address channel, write data channel, write response channel,

read address channel, and read data channel with a response.

Next, the AXI-4 internal temporary signals for channel

transactions are defined using AXI-4 Master input-outputs.

The local parameter is set for a targeted Slave with the base

address to 8’h80, and the Master module waits for start-

counter, which is set to 16 clock cycles before initiating the

write transaction. In the Master module, the burst size and

burst length are allotted based on the total number of burst

transfers. The write and read burst counters are used to find

the number of burst transfers based on burst length.

The AXI-4 Master Input-output connections are set for five

channel transactions. The master AXI address (AWADDR)

is the concatenation of the targeted salve base address and

active offset range (axi_awaddr). The write Burst length

(AWLEN) is defined as based on the number of transactions

minus one. The burst size (AWSIZE) is set to 3, which is 2^3

and equal to 8-bit data. The 2-bit increment burst type

(AWBURST) is selected and set 2’b01. The master cache

type (AWCACHE) is set 4’b0011, which indicates to

cacheable and bufferable type. The write address valid

(AWVALID) is set to 1, if valid address and control

information is present, otherwise 0.

The master AXI Write data (WDATA) is 8-bit wide write

data. Write strobe (WSTRB) is used to indicate which byte is

used to update the memory. The Write Last (WLAST) is the

last data transaction in a write burst. The write valid

(WVALID) is set to 1, if data is valid, otherwise 0. The write

response (BREADY) provides the response information, if it

is 1= Master is ready, 0= Master is not ready. The AXI-4

Master Read address (ARADDR), the read burst length

(ARLEN), the read burst size (ARSIZE), read increment

burst type (ARBURST), Read cache type (ARCACHE), the

read address valid (ARVALID) and read ready (ARREADY)

is set the same as the write transactions.

B. Write Address Channel (WAC)

The address and control information is requested for all the

transactions and processes for the write operation as early as

possible. In the initial process, the valid address signal

(awvalid) is reset, the initial next transaction is set, if the

previous address is not valid. In the next clock cycle,

awvalid=1. Once valid is set, wait for the AWREADY signal

to accept the transactions. Once the AWREADY indicates the

previous address is accepted, the next address is set based on

the burst size and burst length.

C. Write Data Channel (WDC)

The write data is continuously forwarding to the slave via

interface signals. If the valid (WVALID) and ready

(WREADY) signals are high, the next transaction (wnext)

will be started. Reset the write valid signal (wvalid) initially,

start the next transaction, if it is not valid previously. In next

clock cycle, wvalid=1. When many write transactions are in

Journal of Telecommunication, Electronic and Computer Engineering

64 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 3 July – September 2020

the process (wnext), and till last burst (wlast), the WVALID

signal must wait to complete the write process. The write

counter is used to synchronize the last write data when it is

full. The write last (wlast) is active only, write counter is

equal to burst length along with the next transactions. Burst

counter is used with an additional counter to perform the next

transactions to avoid the decoding logic in AXI-4

interconnection. The write data (wdata) is generated based on

the wnext logic, with incrementing till the burst count.

D. Write Response Channel (WRC)

The write response channel assures that all the write

transactions are ready to store in slave memory. The

BREADY is response ready. If it is 1, the master is ready to

accept the slave response information. If it is 0, the master is

not ready to receive the slave response information. Reset the

write response ready (bready) initially; when the Write

response valid (BVAILD) is valid from the slave and master

is not ready to respond, Then, the next clock cycle, the master

is ready to respond (axi_bready=1). If the Master is not ready,

it retains its previous(axi_bready) value, as presented in

Figure 2.

RESETN = 0

N

axi_bready = 0
Y

BVALID && ~ axi_bready = 1 axi_bready = 1

N

Y

axi_bready = 1

N

axi_bready = 0
Y

Define Inputs: RESETN, BVALID;

 Output: axi_bready

Start

Stop

Figure 2: AXI-4 master write response state flow

E. Read Address Channel (RAC) and Read Data Channel

(RDC) with Response

The read address channel works similarly to the write

address channel. Instead of write address signals, read

address signals are the process to complete all the read

transactions. The Read data is continuously forwarding to the

master via interface signals. If the valid (RVALID) and ready

(RREADY) signals are high, the next transaction (rnext) will

be started. The read last (rlast) is active only; the read counter

is equal to burst length along with its next read transactions.

When the read valid (RVAILD) is valid from the master, the

slave is not ready to respond. Then, the next clock cycle, the

slave is ready to respond (axi_rready=1). If the Slave is not

ready, it retains its previous (axi_rready) value. When

RVALID indicates that the required read is available and read

transaction can complete according to the response and

master ready.

Any data mismatch during the write and read transactions

leads to read or write interface errors. If any read mismatch

happens or error in write and read response, these error data

are stored in the error register. The write and read burst

counter are used to track the total number of burst

transactions, which is initiated against the individual number

of burst transactions for master or salve to initiate.

F. Master Interface Finite State Machine

The Master interface Finite state machine (FSM) is used to

compare and validate the write and read transactions. The

FSM mainly has five states, which include the IDLE,

COUNTER, WRITE, READ, and FINAL states, as presented

in Figure 3.

IDLE

STATE

COUNTER

STATE

WRITE

STATE

READ

STATE

FINAL

STATE count = count+1

count = 0

 init_burst_write =

0

 init_ burst_read =

0

 c_ done = 0

Write_done = 0

init_brust_write =

1

Write_done = 1

init_brust_write = 0

Read_done = 0

init_burst_read = 1read_done = 1

c_done =

0

count = 16

c_done = 1

c_done = 0

Figure 3: AXI-4 master interface finite state machine

The IDLE state is used to reset to initial values under reset

condition and assign the next transition to COUNTER state.

The COUNTER state initializes the counter and waits for

start counter, which is set to 16 clock cycles, before initiating

the write transaction, and once counting is done, the next

transition to WRITE State is assigned. The Write state

initiates the write transactions. It remains active till burst

write signal (init_burst_write) is asserted, If the burst write

signal is zero, the write transactions will stop and write done

signal will be high and assign next transition to READ state.

The Read state initiates the read transactions. It will remain

active till burst read signal (init_burst_read) is asserted. If the

burst read signal is zero, the read transactions will stop, and

the read done signal will be high and the next transition to the

FINAL state is assigned.

The FINAL State provides the final comparison of written

data with read data. If any data mismatch are found, the error

flag will set and assign the error data to error register and

assign the next transition to IDEAL or COUNTER state. If

the comparison is carried out (c_done) with no error, it

indicates the transaction is completed.

The write and read done signals are activated based on the

last write and read transactions, and which are dependent on

write and read the response, ready and valid signals.

G. AXI-4 Slave Module Operation

The AXI-4 slave module supports burst based transactions

and it is implemented with Block Random Access Memory

(B-RAM). The slave module receives the master output

signals as input signals through interconnects. The slave

module write and read the data based on the five signal

 Design of an Efficient AXI-4 Protocol for High Speed SOC Applications on FPGA Platform

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 3 July – September 2020 65

transactions. The slave address and data width are fixed to 8,

and the slave module receives the master write data and issue

the read data. First, define the AXI-4 slave input-output port

signals of write address, write data, write a response, read

address, and read data channel with the response. Also, define

the AXI-4 internal temporary signals for channels transaction

using AXI-4 slave input-outputs.

The AXI-4 slave Input-output connections are set for

write-read transactions. The master Output signals are input

to the slave interface module. The slave output signals

include thewrite address ready (AWREADY), which

receives the address and control information, when it is set to

1 slave is ready to accept, and 0 slave is not to accept the

information. The write ready (WREADY), which receives

the data information, when set to 1 slave is ready to accept,

and 0 slave is not to accept the write data information. The 2-

bit write response (BRESP), which provides write transaction

status information with a response like OKAY, EXOKAY,

etc. The write response valid (BVALID) signal provides a

valid write response if it is set to 1, otherwise set to 0 when it

is not available. The write response ID (BID) is a write

response identification tag if it matches with AWID, then the

slave will respond to write transactions.

The read address ready (ARREADY), which receives the

read address and control information, when set to 1 slave is

ready to accept, and 0 slave is not to accept the information.

The 2-bit Read response (RRESP) which provides read

transaction status information with the response. The read

response valid (RVALID) signal provides a valid read

response if it is set to 1 otherwise 0. The Read Last (RLAST)

is the last data transaction in a read burst. The Read ID (RID)

is read identification tag if it is matched with ARID, then the

slave will respond to read transactions. The slave AXI read

data (RDATA) is 8-bit wide read data, which receives the

block memory data as final data output.

The proper valid and response transactions are supported

from the write flag (axi_flagw) and read flag (axi_flagr)

registers. The write flags are reset to generate write address

ready (axi_awaddr). If the AWVALID and previous control

signals like write and read flags are set, then AWREADY will

be active along with the write flag. If the WLAST is set high,

the Slave is ready to accept the next address transactions after

completion of the present write transaction.

H. Write Address Generation

The write address offset is defined based on the write

address size and length. If both the AWVALID and

WVALID signals are valid, the process of write address

latching is started. Reset the write address (axi_awaddr) and

burst length counter (axi_len_cnt). If the AWVALID and

previous write flag (axi_flagw) is valid, then set the write

address (axi_awaddr) using AWADDR [7:0] and burst length

counter using AWLEN. The 2-bit burst type transaction is

performing, which includes fixed burst (00), incremental

burst (01) based on the burst sizes—wrapping burst (10)

based on the wrap boundary.

I. Write Ready Generation

The write address (AWVALID) and write valid

(WVALID) are valid when the write ready (axi_wready) is

ready to accept them for the number of burst transactions

(wdata). The write ready (axi_wready) is generated, when the

WVALID and previous control signals like write flags are

set, then axi_wready will be active. If the WLAST is set high,

the slave is ready to accept the next address transactions after

the completion of the present write transaction.

J. Write Response Logic Generation

The Slave module declares the valid response and write

response signals when the WVALID and axi_wready are set,

results in the response type is (00- OKAY) and valid response

(bvalid). The master module’s Ready response (BREADY)

and slave’s valid response (bvalid) are active, which results

in the write transaction is accepted from the slave module.

K. Read Address Generation

The read address generation is similar to write address

generation except, use the read address signals than write

address signals. It also supports the read burst type.

L. Read Logic Generation

Reset the previous read response (rresp) and valid response

(rvalid). Set the Read flag (axi_flagr), to access the slave

module read data (axi_rdata) when rvalid =1 and read

response (rresp=00) is OKAY. The master accepts the valid

response when RREADY=1 is represented in Figure 4.

M. Block RAM Module

The block RAM is designed, and it supports up to 256

memory locations, each allocates 8-bit at a time. Based on the

write and read flag set, the memory location is allocated.

RESETN = 0

N

axi_rvalid = 0

axi_rresp = 0

Y

axi_rvalid =1

axi_rresp = 2'b00

N

Y

axi_rvalid &&

RREADY = 1
axi_rvalid =0Y

~axi_rvalid &&

axi_flagr =1

Define Inputs: RESETN, axi_rvalid, axi_flagr, RREADY;

 Output: axi_rvalid, axi_rresp;

Start

Stop

Figure 4: AXI-4 slave read response state flow

V. RESULTS AND ANALYSIS

The proposed AXI-4 Master-slave Protocol results are

described in detail in the below section. The Complete AXI-

4 Master-slave Protocol is designed using Verilog HDL over

the Xilinx ISE Platform and simulated on Modelsim

simulator and Hardware prototyped on low-cost Artix-7

FPGA.

The AXI-4 Master-slave Protocol simulation results are

represented in Figure 5. The global clock (ACLK) is

Journal of Telecommunication, Electronic and Computer Engineering

66 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 3 July – September 2020

activated with toggling with a positive edge. The Global

asynchronous Reset Negedge (ARESETN) signal is initially

set low, then keep it high to start the AXI-4 master-slave

operations. The AXI-4 Master Module receives the incoming

signals after the AXI-4 Slave response and, based on Master

Module operation, generates the Master output signals, which

are input signals to the AXI-4 Slave module through AX-4

interconnect signals. After the slave process, the AXI-4 Slave

output signals will be generated after the response, and again

slave output signals are input to the AXI-4 Master Module.

The same process repeats till the data and address transaction

happens.

The transactions are performed based on AXI- 4 Master-

slave specifications, which includes write address (WA),

Write Data (WD), Write Response (WR), Read Address (RA)

and Read data (RD). These transactions are explained below

as per simulation results.

Figure 5: Simulation results of AXI-4 master-slave module

A. Master-Slave Write Address Transaction

The Write address valid output signal (AWVALID) will be

high, followed by write address ready slave input signal

(AWREADY=1) from the slave module to initialize the AXI-

4 process. When both AWVALID and AWREADY are high,

the master write address (AWADDR) initiates the address for

each transaction and set to 1, 2 and 3 which is followed by

master output signals like 8-bit Burst Length (AWLEN=0),

3-bit Burst size (AWSIZE = 000), 2-bit increment address

Burst type (AWBURST=01) and 4-bit cache type

(AWCACHE=0011) which is bufferable and cacheable are

allocated.

B. Master-Slave Write Data Transaction

Write data transaction will perform parallelly with write

address, the master output valid (WVALID=1) signal

followed by slave ready (WREADY =1), when the write data

(WDATA) transact the data for each transaction with an

address. The 8-bit WDATA is 8-bit image data

(IMAGE_IN) is set to 10, 20, and 30 to the corresponding 1,

2, and 3 address.

C. Master-Slave Write Response Transaction

For each data transactions, the master input or slave output

write response valid (BVALID=1) signal followed by

response ready (BREADY=1) signal will be high for one

clock, both the signals will be low, till the new transaction

happens and it will be followed till the last address and data

transactions. The 2-bit master write a response (BRESP=00),

which is an OKAY response about the transaction.

D. Master-Slave Read Address Transaction

When the write transactions are over, the read address

transaction will start. The read address master valid output

signal (ARVALID=1) will be high, followed by write address

ready slave output (master input) signal (ARREADY=1) to

initialize the AXI-4 read process. When both ARVALID and

ARREADY are high, the master read address (ARADDR)

initiates the address for each transaction and set to 1, 2, and 3,

which is followed by master output signals like ARLEN=0,

ARSIZE = 000, 2-bit ARBURST=01 and AWCACHE=0011

which are allocated.

E. Master-Slave Read Data Transaction

Read data transaction will perform parallelly with read

address, the slave output valid (RVALID) signal followed by

master ready (RWREADY) will be high, when the 8-bit read

data (RDATA) receives 10, 20 and 30 data for each read

address transaction completion. The Last read (RLAST)

signal will be high for each read data transaction, and The 2-

bit Read response (RRESP=00) indicates the OKAY

response to receives the correct data.

The performance analysis of the proposed AXI-4 Master-

Slave module and its sub-modules resource utilization in

terms of Area (Slices) are presented in Table 1.

Table 1

Resource Utilization of AX-4 Master-Slave Module on Atrix-7

Logic

Utilization

AXI-4

Master

AXI-4

Slave

AXI-4 Master-

Slave

Slice Registers 49 24 63

Slice LUTs 61 28 77

LUT-FF pairs 48 17 56

The AXI-4 Master, Slave, and Complete AXI-4 Master-

slave models area utilization after PAR (Place and Route) is

obtained on the Atrix-7 Device environment. The AXI-4

Master-slave Utilizes 63 Slice registers, 77 Slice LUT’s, and

56 LUT-FF pairs. The Complete AXI-4 works at a high

frequency of 561.07 MHz. The AXI4 Design fits low-cost

Artix-7 FPGA device at high speed. The total power

consumption of the AXI-4 Master-slave Module from the X-

Power Analyzer tool is 0.085W with a clock frequency of 100

MHz. The AXI-4 Full design utilizes less Area, power, and

process at high speed on any low-cost FPGA Devices.

The comparative analysis in terms of Area utilization of the

proposed AXI-4 Master-Slave module with AHB Protocol

[21] on the same FPGA Spartan-3E device is tabulated in

Table 2. The proposed AXI-4 improved in terms of Slice

Registers around 6.80%, Slice LUT 40%, and LUT-FF Pairs

33.33% overhead over AHB Protocol. The AXI-4 works at

234.36, whereas AHB Protocol frequency is not mentioned

by [21].

In a similar passion, the proposed AXI-4 module is

compared with Wishbone Shared Bus Protocol [22] in terms

of Area and frequency on the same FPGA device. The

proposed AXI-4 improves in terms of Slice Registers Slice

LUT, and LUT-FF Pairs is around 84 % over Wishbone

Shared Bus Protocol [22]. The maximum frequency

utilization of AXI-4 was improved around 41 % over

Wishbone Shared Bus.

 Design of an Efficient AXI-4 Protocol for High Speed SOC Applications on FPGA Platform

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 3 July – September 2020 67

Table 2

Area Comparison of Proposed AX-4 with AHB-Bus [21]

Logic Utilization AHB- Bus [21] AXI-4 Proposed

FPGA Device Spartan 3E-1600 Spartan 3E-1600

Slice Registers 44 41

Slice LUTs 95 57

LUT-FF pairs 96 64

Frequency(MHz) - 234.36

Table 3

Resource Comparison of Proposed AXI-4 with Wishbone-Shared-Bus [22]

Logic Utilization Wishbone-shared Bus [22] AXI-4 Proposed

FPGA Device Spartan 3E-500 Spartan 3E-500

Slice Registers 292 41

Slice LUTs 416 57

LUT-FF pairs 459 64

Frequency (MHz) 118.312 201.572

Figure 6: Comparative analysis of AXI-4 with other bus protocols

The AXI-4 protocol is compared with the traditional AHB

and Wishbone bus protocols with improvements in hardware

design constraints. Table 2 and Table 3 clearly show that the

AXI-4 bus protocol is more efficient than the AHB and

Wishbone bus protocols.

For communication and interconnection to multiple devices

on SoC, the platform, the AXI-4, is highly commendable

because of its ow cost, flexible less area and power utilization.

It also works at a higher speed. The overview of comparative

analysis is presented in Figure 6. The proposed AXI-4 utilizes

less area overhead than the other two similar functionally

working bus protocols, namely the AHB and Wishbone Bus

protocol.

VI. CONCLUSION

In this paper, an efficient AMBA-AXI-4 interface protocol

which offers high-speed communication between the

processing elements has been designed,. The limitations of the

conventional bus-based communications are overcome with

the inclusion of Optimized AXI-4 interface protocol for high-

speed SOC usage. The proposed AMBA-AXI-4 protocol

module contains a Master, Interconnect model, and slave

module. These modules are designed using efficient state

machines. The simulation results of complete AXI-4 Master-

slave are presented with a detailed description. The proposed

model consumes very less area utilization and is tabulated

after place and route on a low-cost FPGA device. The model

work at high speed with an operating frequency of 561.07

MHz and utilize a small amount of power 0.085W. The

proposed AXI-4 protocol provides a notable improvement in

slice LUT’s around 40% over the AHB bus protocol. When

compared to wishbone bus architecture, a huge margin in area

improvement and around 41% overhead in frequency. In the

future, these models can be incorporated to image processing

applications to process and monitor the images at high speed

as an imaging chip.

REFERENCES

[1] W. Su, J. Wang, H, Wang, and L. Wang, “An Optimized Solution for

Cross-Domain System Bus Transaction Processing”, In Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), 14th ACIS International
Conference on IEEE, 2013, pp. 165-170

[2] Z. Li, J. Li, Y. Zhao, C. Rong, & J. Ma, “A SoC Design and

Implementation of H. 264 Video Encoding System Based on FPGA”,

In Intelligent Human-Machine Systems and Cybernetics (IHMSC),

2014 Sixth International Conference on IEEE, Vol. 2,2014, pp.321-
324

[3] S. Ramagond, S. Yellampalli and C. Kanagasabapathi, “A review and

analysis of communication logic between PL and PS in ZYNQ AP
SoC”, In 2017 International Conference on Smart Technologies for

Smart Nation (Smart Tech-Con), 2017, pp. 946-951

[4] A. B. Mehta, “SoC Interconnect Verification”, In ASIC/SoC

Functional Design Verification, Springer, Cham, 2018, pp. 273-284

[5] D.C. Liang, “Hard real-time bus architecture and arbitration algorithm

based on AMBA”, 2015, pp. 1-7

[6] G. Mahesh and S.M. Sakthivel, “Functional verification of the

Axi2OCP Bridge using system verilog and effective bus utilization

calculation for AMBA AXI 3.0 protocol”, In Innovations in
Information, Embedded and Communication Systems (ICIIECS),

International Conference on IEEE, 2015, pp. 1-5

[7] P.R. Ronak and S. Jagtap, “Design and verification of flexible interface

for multicore system using PCIe IO virtualization”, In Recent Trends

in Electronics, Information & Communication Technology (RTEICT),

IEEE International Conference on IEEE, 2016, pp. 623-627

[8] AMBA, “AXI-Protocol Specification V2”, 0. ARM Holdings plc. Std,

2010

[9] C. Sarojini and J. Thangaraj “Implementation and Optimization of

Throughput in High Speed Memory Interface Using AXI Protocol”,
In 2018 9th International Conference on Computing, Communication,

and Networking Technologies (ICCCNT), 2018, pp. 1-5

[10] N.Tidala, “High-Performance Network on Chip using AXI4 protocol

interface on an FPGA”, In 2018 Second International Conference on

Electronics, Communication and Aerospace Technology (ICECA),
2018, pp. 1647-1651

[11] E. Azarkhish, D. Rossi, I. Loi, and L. Benini,”High-performance AXI-

4.0 based interconnect for extensible smart memory cubes”,
In Proceedings of the 2015 Design, Automation & Test in Europe

Conference & Exhibition, 2015, pp. 1317-1322

[12] M. Makni, M. Baklouti, S. Niar, and M. Abid, “Performance

Exploration of AMBA AXI4 Bus Protocols for Wireless Sensor

Networks”, In Computer Systems and Applications (AICCSA), 2017
IEEE/ACS 14th International Conference on IEEE, 2017, pp. 1163-

1169

[13] D.C. Kho and K. Munusamy, “Transaction-based SoC design

techniques for AMBA AXI4 bus interconnects using VHDL”,

In Electrical Engineering/Electronics, Computer, Telecommunications
and Information Technology (ECTI-CON), 2014 11th International

Conference on IEEE, 2014, pp. 1-6

[14] M. Gayathri, R. Sebastian, S.R. Mary, and A. Thomas, “A SV-UVM

framework for verification of SGMII IP core with reusable AXI to WB

Bridge UVC”, In Advanced Computing and Communication Systems
(ICACCS), 3rd International Conference on IEEE, 2016, pp. 1-4

[15] R.H. Prasad and C.S. Rani, “Development of VIP for AMBA AXI-4.0

Protocol”, Indian Journal of Science and Technology, Vol.9, 2016, pp.
48

[16] S. Sharma, and S.M. Sakthivel, “Design and Verification of AMBA

AXI3 Protocol”, In VLSI Design: Circuits, Systems, and Applications,

Springer, Singapore, 2016, pp. 247-259

[17] Z. Panjkov, J. Haas, M. Aigner, H. Rosmanith, T. Liu, “Poppenreiter

& R. Hagelauer, “OCP2XI Bridge: An OCP to AXI Protocol Bridge”,

In International Symposium on Applied Reconfigurable Computing ,
2016, pp. 179-190

0

100

200

300

400

500

Wishbhone-shared Bus AHB- Bus AXI-4 Proposed

Slice Registers
Slice LUTs
LUT-FF pairs

Journal of Telecommunication, Electronic and Computer Engineering

68 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 3 July – September 2020

[18] R. Bhaktavatchalu, B.S. Rekha, G.A. Divya, and V.U.S Jyothi,

“Design of AXI bus interface modules on FPGA”, In Advanced

Communication Control and Computing Technologies (ICACCCT),
International Conference on IEEE, 2016, pp. 141-146

[19] H.R. Archana, and K.V. Patel, “A Novel Design and Implementation

of Imaging Chip Using AXI Protocol for MPSOC on FPGA”,
In Proceedings of the Computational Methods in Systems and

Software Springer, Cham, 2018, pp. 44-57

[20] F. Benevenuti and F.L. Kastensmidt, “Reliability evaluation on

interfacing with AXI and AXI-S on Xilinx Zynq-7000 AP-SoC”,

In Test Symposium (LATS), IEEE 19th Latin-American, 2018, pp. 1-6

[21] A. Gaur, P. Sharma, and S.P. Pandey, “HDL and timing analysis of

AMBA AHB on FPGA platform”, In Control, Automation & Power

Engineering (RDCAPE), Recent Developments in IEEE, 2017, pp. 22-
27

[22] A.K. Swain, and K. Mahapatra, “Design and verification of

WISHBONE bus interface for System-on-Chip integration”, In India
Conference (INDICON), Annual IEEE, 2010, pp. 1-4

