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Abstract—Skin detection is a preliminary step in many 

machine vision applications. In this paper, we propose applying 

the Gamma, Beta, and Laplace distributions for modelling skin 

color pixels in arbitrary chromaticity spaces used for parametric 

skin detection. Since the proposed distributions do not inherently 

consider the correlation between the chromaticity components, a 

method to eliminate the correlation between the skin 

chrominance information is also proposed. This enables skin 

modelling without concerning about the data correlation. We 

model the skin color pixels by applying the proposed 

distributions in five different color spaces. The Compaq dataset 

was used for evaluating the performance of the proposed method. 

The accuracy of skin detection on the Compaq data set was 88% 

and showed improvement compared to previous statistical 

methods. 

 

Index Terms—Skin Detection; Beta Distribution; Gamma 

Distribution; Laplace Function; Gaussian Distribution; 

Parametric Modelling. 

 

I. INTRODUCTION 

 

Many machine vision applications related to humans require 

to identify the human skin region in arbitrary images as a 

preliminary step. Face detection [1], eye detection [2], 

objectionable image filtering [3], and hand gesture recognition 

[4] are among the applications that use skin detection as a 

preliminary step to find the region of interest for more 

sophisticated processing in later stages of their algorithms. 

Two main trends are available for detecting human skin: 

Pixel-based and Regional-based skin detection. Pixel-based 

methods rely on skin color model obtained from a set of skin 

pixel, and the skin model is used to determine if an input test 

pixel is a skin pixel or not [5]. Regional-based methods use 

the color and texture information of a subset of image pixels to 

determine the skin region in an image [6, 7]. Pixel-based skin 

detection presents a fast and easy way to implement skin 

detection system, but they are not as accurate as regional 

based methods. However, easy implementation and low 

computation overhead makes these methods attractive for 

many machine vision applications where computation 

complexity is of a significant matter [8]. 

Parametric skin detection is a conventional pixel-based skin 

detection strategy that uses statistics of sample skin pixels for 

skin detection. To implement the method, first a skin color 

histogram is built from a collection of sample skin pixels, and 

the histogram is used to calculate the Probability Distribution 

Function (PDF) of skin pixels with an appropriate 

mathematical function. Gaussian distribution is the most 

common model for skin color modelling when parametric 

models are used [9].   

In this paper we propose the use of three statistical 

functions, Gamma, Beta, and the Laplace distributions for 

modelling skin color pixels.  These functions present 

additional shape control parameters compared with the 

Gaussian distribution, which promises better skin detection 

accuracy. However, as opposed to the Gaussian distribution 

that inherently takes into account the data correlation, the 

proposed distributions do not consider data correlation. Hence, 

we present a transformation that enables modelling the skin 

PDF using the Gamma, Beta and Laplace distributions without 

requiring to consider data correlation. We test several color 

space for skin detection and use the COMPAQ skin dataset for 

training and test stages.  

The rest of the paper is organized as follows: Section II 

reviews pixel-based skin detection methods. In Section III, the 

details of the proposed method is explained. Experimental 

results are shown in Section IV and Section V concludes the 

paper 

 

II. RELATED WORK 

 

Three steps for skin detecting skin pixels using color 

information have to be considered: (1) choosing an 

appropriate color space to represent image pixels, (2) model 

skin and non-skin pixels using a suitable distribution and (3) 

classification of the modelled distributions. We review some 

of the most frequent color spaces and distributions used for 

representing and modelling the skin color distribution in the 

following subsections. 

 

A. Color spaces 

Choosing an appropriate color space is the first step in 

detecting skin pixels. RGB is the default color space for many 

image formats. Other color spaces are derived from RGB 

space by linear or non-linear transforms. It has been shown 

that skin pixels vary more in intensity, so it is conventional to 

drop the luminance color and only use chromaticity 

information for skin detection [9]. 

 

i. RGB and normalized RGB color spaces 

RGB is the most frequent color space for storing digital 

images. High correlation between the color channels and 

mixing of luminance and chrominance information makes this 
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space inappropriate for image processing application. 

However, the fact that no color transformation is required, 

RGB space has been used for skin detection [10]. Figure 1(a) 

shows the distribution of skin pixels in the RGB color space. 

For better visualization, color quantization has been 

performed. As  Figure 1(a) shows, skin pixels spread in a very 

large area of the RGB space; hence, it is not easy to cluster the 

skin pixels in a small area of the space. In order to neutralize 

the effect of luminance, a normalization on the RGB space can 

be performed as: 
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In this equation, R, G and B represent Red, Green and Blue 

channel of the RGB space. Since r + g + b = 1, two 

components hold the required information, and the third 

component becomes redundant. Since this representation holds 

less luminance information, and easily obtained from the RGB 

space, normalized RGB space has been vastly used for skin 

detection [11-13]. The distribution of skin pixels from the 

training set of images used in this paper is shown in Figure 

1(b). As it can be seen, in this space, the skin color pixels 

cluster in a smaller are of the chromaticity plane, which is a 

desirable fact for skin detection. 

 

 

 

(a) skin color distribution in RGB 

space 

(b) skin color distribution in normalize 

RGB space 

 
 

(c) Skin color distribution in CbCr 

chromaticity space 

(d) Skin color distribution in Hue-

Saturation chromaticity space 

 
Figure 1: Skin color distribution in different color space. The histograms are 

obtained from the skin pixels in the training set used in this paper for skin 

detection. 

 

ii. Orthogonal color spaces 

Orthogonal color spaces reduce the redundancy of RGB 

color space and describe color as uncorrelated as possible. In 

these spaces, Luminance is described as a linear combination 

of the R, G, and B values. The other two components are the 

difference between the luminance value and the components 

of the RGB value. Such color spaces that have been frequently 

used for skin detection include: YUV [14, 15] and YCbCr 

space [3, 13]. YCbCr space being the most attractive 

orthogonal space for skin detection is calculated from the 

RGB space as [9]: 
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Figure 1(c) shows the distribution of skin pixels in the Cb-

Cr chrominance plane.   

  

iii. Perceptual color space for skin detection 

Perceptual color spaces are used to describe the color 

properties with numbers that are more understandable by the 

human mind [16]. These spaces are not linearly convertible 

from the RGB space, but many non-linear transformations 

have been made available for this purpose. One of the most 

widely used perceptual color spaces for skin detection is the 

HSV color space. Were H stands for Hue information, S 

shows the saturation, and V is for value. Transformation from 

RGB to HSV is obtained as in Equation 3, where 

max=max(R,G,B). Skin pixel distribution in the Hue-

saturation plane is shown in Figure 1(d). As shown in the 

figure, skin pixels scatter widely along the saturation axis. On 

the other hand, on the Hue axis skin pixels cluster in a small 

region.  Robustness against illumination variations makes this 

color space attractive for skin detection [17]. 
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iv. CIE-XYZ color space for skin detection 

The CIE_1931 color spaces are the first defined quantitative 

links between physical pure colors (i.e. wavelengths) in the 

electromagnetic visible spectrum, and physiological perceived 

colors in human color vision. CIE-Lab and CIE-LUV color 

spaces are derived from the CIE-XYZ space which have been 

attractive for skin detection [18, 19]. Similar to the RGB 

space, it is desirable to normalize this space to reduce the 

correlation among the color channels of the XYZ space. XYZ 

space is obtained from the RGB space via the following 

equation: 
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B. Pixel-based skin detection 

Explicit rule based skin detection, Bayes rule, and 

parametric skin detection are the conventional methods for 
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detecting skin pixels using pixel level information [20]. 

Explicit rule based skin detection is based on the idea that skin 

pixels cluster in a small region of an appropriate color space. 

It is possible to define rules applied to color components of 

one or multiple color components and use them to classify 

pixels as skin or non-skin. Although this method is easily 

implemented, low detection accuracy makes it unfavourable 

for skin detection, unless it is used to estimate a prior 

estimation of the skin region in an image. In [21], the HSV 

color space is used to find an initial estimate of the skin 

region. The rules are defined as: H  [1, 50], and S  [.6, 1], 

where Hue is scaled in the range of [0 359] and S is in the 

range of [0 1].     

Bayes rule has also been used for skin detection extensively 

and can be defined as: 
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where P(-skin) and P(c|skin) can be calculated as: 
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where c is the color of a skin pixel. For each pixel if  

TskincP )|( then, c is classified as skin [19]. T is a suitable 

threshold. Incompleteness of the samples representing the skin 

histogram might lead to unsatisfactory skin classification 

results. Hence, to reduce the effect of incomplete data, 

parametric models for skin detection have been proposed. 

In order to model the skin color distribution in a desired color 

space, parametric skin detection methods have been 

introduced [10, 13]. Parametric methods resolve the 

shortcoming of the methods based on the Bayes rule by using 

a statistical model to present the skin color pixels distribution. 

The Gaussian distribution proposed by [10] calculates the skin 

probability of a pixel by the Gaussian distribution defined as: 
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where μ is a vector containing the mean value of skin color 

pixels in each color component, and ∑ is the covariance 

matrix. Figure 2 shows the skin color PDF in the nRGB color 

space using the Gaussian distribution function in two different 

views. The elliptic boundary model [13] and the Since [22] 

function have also been proposed for detecting skin pixels 

using parametric modelling of skin pixels. 

 

  
Figure 2: Skin color model obtained from the Gaussian distribution in two 

different views 

III. STATISTICAL MODELS FOR SKIN DETECTION 

 

Choosing a distribution function that tightly fits the skin 

color pixels is an essential step in the skin detection process. If 

more than one color component is chosen for representing skin 

color pixels which is the most common way to represent skin 

color, then any statistical distribution can be adapted for 

modelling skin color pixels. If the skin pixel data are no 

correlated, and the skin distribution in each color component 

is represented by Pi(x), i = 1,…N where N is the number of 

color component that represents skin pixels, the joint 

probability of  Pi  can be calculated as:  

 




N

i
i xPxP

1

)()(  (8) 

 

In most cases, the color components are correlated and (8) 

will not be sufficient for modelling the skin color. When 

Gaussian distribution is used for skin detection, the covariance 

matrix required for calculating P(c|skin) inherently holds the 

correlation between data and is calculated as: 
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where E12 = E21 show the correlation between X1 and X2. If X1 

and X2 are independent then X12=X21=0. The covariance 

matrix can be represented by eigenvalues and eigenvectors of 

its components as: 
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where D is the dimension of data, u is the eigenvector matrix, 

and λ is the eigenvalues vector. For D R2, u is a 2×2 matrix 

where each column shows the direction for which data are 

distributed along it with the most and least variance. The 

eigenvectors of the data are perpendicular to each other. If the 

data are not correlated, the eigenvectors are further made 

parallel to the axis of the representative space; otherwise the 

eigenvectors are not parallel with the axis of the data space 

(Figure 3) [23]. 

 

 
 

Figure 3: Eigenvector configuration for correlated data in 2Dspace. 

 

In the Gaussian distribution, the covariance matrix is 

inherently considered in the calculation of the skin color 
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model. For the Beta, Gamma, and Laplace functions, we 

present a transformation so that in the covariance matrix, 

elements E12 = E21 = 0. This is equivalent to a rotation and 

linear translation of the data, so that the eigenvectors of the 

data are parallel to the chromaticity space axis.  

The proposed transformation has two stages: First, the skin 

color cluster in any desired chromaticity space is transformed 

to the center of the space. Then, the covariance matrix of the 

data is calculated and the eigenvectors of the skin color cluster 

are obtained. Having the eigenvectors, it is possible to rotate 

the data so that the eigenvectors of the data are parallel to the 

chromaticity space axis. When this task is performed, it can be 

implied that the data are transformed in a way that there is no 

correlation between X1 and X2. Having such a cluster of data, 

any function can be used to build a 2D version of the 

distribution fitted to the skin pixels using (8). When the skin 

color model is obtained, it is possible to rotate the data and 

transform it back to its original point in the chromaticity plane. 

To formulate this process, the following steps were 

implemented: Two mesh grids were constructed as: 
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and were shifted to the center of the chromaticity space. The 

covariance of the data is then calculated by: 
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where σ represents variance and Corr represents the 

correlation between the data. Upon calculation of the 

covariance matrix, it is possible to find the eigenvectors and 

eigenvalues of the covariance matrix which are shown as νx 

and λx respectively. These values are calculated by solving the 

equation: 
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and the eigenvalues are substituted back into (14) to find the 

eigenvectors. The required transformation needed to make the 

eigenvectors parallel to the chromaticity axis is: 
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By applying (16) the Gridnew(X1, X2) now holds the data that 

are not correlated. This transformation on skin color pixels in 

the YCbCr space is shown in Figure 4. 

 

 
Figure 4: Un-correlated data in the YCbCr color space using the proposed 

transformation method. 

 

Since data are uncorrelated under this transformation, (8) 

can now be used to calculate the joint probability of data 

without concerning about their correlation. Using the above 

transformation, the proposed skin detection method can be 

implemented in two phases: training and test phase. The 

training phase is conducted to obtain the skin color model by 

implementing the following steps: 

1. Collect sample skin pixels. 

2. Transform the skin color pixels to the desired color 

space. 

3. Use the proposed transformation to Un-correlate data. 

4. Calculate model parameters for each color component 

independently and use (8) to find their joint probability. 

5. Transform the trained model to its original place in the 

chromaticity space. 

6. Save the skin probability for each chromaticity value in 

a 256×256 Look Up Table (LUT). 

In the test phase, each pixel c undergoes the following steps 

in order to be classified as skin or not: 

1. Transform test pixel c into the desired color space. 

2. Calculate P(c|skin) using the stored skin probability 

LUT. 

3. If P(c|skin) > T classify pixel c as a skin, where T is an 

appropriate threshold value. 

 

A. Gamma Distribution 

Gamma distribution is a two-parameter family of probability 

distributions. This distribution has a scaling parameter θ and a 

shape parameter k. The gamma Probability Distribution 

Function (PDF) can be defined by θ >0 and k > 0 as: 
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The model parameters k and θ can be calculated using the 

mean and variance of the training skin pixels, where μ=Kθ and 

σ=kθ2. Γ is the gamma function and is defined as Γ(n) =(n-1)!. 

Since (8) is used for modelling the joint probability of the skin 

color distribution, the final skin model using chromaticity 

information in a desired color space can be calculated as: 
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where d is the dimension of the color components used for 

modelling skin PDF which equals to two in our study. 

Figure 5 shows the skin color model obtained in four different 

color spaces. Figure 5(a) shows the skin color model in nRGB 

color space, Figure 5(b) shows the skin color model in YCbCr 

color space. In these two figures, the histogram of skin color 

pixels and –1 × gamma(c,k,θ) are shown for better 

visualization. Figure 5(c) shows the skin color model in 

YCbCr chromaticity plane in a different view, and Figure 5(d) 

shows the skin color model in the XYZ chromaticity plane. 

Comparing Figure 5 with Figure 2, it is evident that Gamma 

distribution models skin color are more flexible compared 

with the Gaussian distribution function. It is expected that 

better skin detection result is obtained using the Gamma 

distribution. 

 

 
(b) 

 
(a) 

 
(d) 

 
(c) 

 
Figure 5: Skin model obtained using the gamma distribution in a) the nRGB 

color space, b) YCbCr, c) XYZ, and d) YUV color space. 

 

B. Beta Distribution 

In probability theory, the beta distribution is a continuous 

probability distribution which is parameterized with two shape 

parameters, a and b. Beta distribution is defined in the interval 

[0 1], and in order to be used for modelling skin pixels, data 

are required to be scaled in the interval [0 1]. This distribution 

has been useful for modelling the behaviour of random 

variables that have finite length. The beta PDF can be obtained 

via: 
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The model parameters can be calculated from the first and 

second order statistics of the data where μ= a/(a+b) and σ = 

ab/((a+b)2+(a+b+1)). The Beta distribution that is used for 

modelling the skin color PDF in the chromaticity plane can be 

calculated as: 
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Figure 6 shows the skin color PDF obtained from the 

training skin pixels in nRGB and YCbCr chromaticity plane 

using the Beta distribution. 

 

 
 

 
Figure 6: Skin color model in nRGB and YCbCr color space using the Beta 

distribution 

 

C. Laplace Function 

The Laplace function or the double exponential is a 

continuous statistical function that is made up of two back to 

back exponentials. Since the double exponential function can 

be described with two variance values on each side, this 

function can model the skin color model with more flexibility 

compared to the Gaussian distribution. The Laplacian function 

can be formulated as: 
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where μ is the mean value and b>0 is the scale parameter 

calculated as .5b . The skin color model via the Laplace 

function and chromaticity information is obtained as: 
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The skin color model using the Laplacian function in 

YCbCr and YUV space is shown in Figure 7. 

 

 

(b) 

 
 

(a) 

 
Figure 7: Skin color model using the Laplacian function in a) YUV and b) 

YCbCr chromaticity planes. 
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IV. EXPERIMENTAL RESULTS 

 

This section reports the result of skin detection using the 

proposed distribution functions. The Compaq dataset 

introduced in [10],  has been used for the training and test 

stages. The dataset contains over 6000 manually labelled skin 

images and over 8000 non-skin images. Divers lighting 

conditions and complex scenes make this data set suitable for 

evaluating our method for skin detection. From the set of skin 

images available in this dataset, 2000 image were used to 

build the skin color histograms. 4000 skin and 4000 non-skin 

images were used for testing the proposed method. Some 

samples from this dataset is shown in the Appendix.  Five 

different color spaces were chosen for skin detection: nRGB, 

YCbCr, HSV, YUV, and XYZ. Examples of the skin models 

obtained for each color space were shown in various figures of 

the previous section. In order to compare our method with the 

other pixel based skin detection methods, we chose the 

Gaussian distribution [10] which is the baseline distribution 

for pixel based skin detection, and the Sinc function [22]. The 

Elliptic model [13] has been previously tested against the Sinc 

function and the Gaussian distribution in [22] by utilizing the 

Compaq dataset. For quantitative analysis of the results, 

Receiver Operating Curves (ROC) were used and shown by 

True Positive Rate (TPR) and False Positive Rate (FPR). TPR 

is defined as: 
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Figure 8 shows the ROC curves of skin detection in nRGB 

chromaticity space were the color channels r and g were used 

for skin color representation. As the curves show, the skin 

detection results are not significant as the ROC curves deviate 

from the vertical axis as TPR approaches 100 percent. 

However, the Gamma distribution shows to be the better 

distribution for modelling skin color in nRGB color space. 

The Beta and Laplacian distributions did not show good 

results for modelling skin color pixels in the nRGB color 

space. 

 

 
Figure 8: ROC curves for skin detection in nRGB color space 

 

Figure 9 shows the skin color detection results in the YCbCr 

space. Comparing the ROC curves obtained in this color 

space, with nRGB space, it shows that YCbCr space is a good 

color space compared to the nRGB space. Skin color models 

nearly show the same results for skin detection in this color 

space. However, the ROC curves obtained for the Gamma 

function show that this model results in more accurate skin 

detection. 

Figure 10 shows the result of skin detection in YUV color 

space. The ROC curves in this space show when Beta 

distribution and Laplacian functions were used for skin 

detection, better results were obtained. The Sinc and Gamma 

function showed very poor results in this color space. For skin 

detection using the Gaussian distribution in YUV color space, 

the obtained ROC curve was closely the same as the ROC 

curves for Beta and Laplace distributions. 

 

 
 

Figure 9: ROC curves for skin detection in YCbCr color space. 

 
 

 
 

Figure 10:  ROC curves for skin detection in YUV color space. 

 

Figure 11 shows the result of skin detection in HSV color 

space. The ROC curves obtained for skin detection in the HSV 

color space show that H and S color components are not 

desirable spaces for skin detection. This is an expected result 

as Figure 1(d) shows that skin pixels scatter widely along the 

saturation axis. Hence, this color component does not yield 

good results for skin detection. However, the Hue component 

has shown to be effective for skin detection when used 

individually for fast estimation of skin pixels [3]. The ROC 

curves for skin detection in XYZ color space show that all the 

distributions used for modelling the skin color pixels are 

closely the same expect for the Sinc function (Figure 12). In 

order to observe the result of skin detection quantitatively, 

Table 1 shows some results of skin detection obtained from 
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the ROC curves of Figure 8 to 12. For each color model, in 

each color space, the FPR values for TPR = 90% and TPR = 

100% are shown in the table. As the FPR values show, the 

YCbCr space is the better color space for skin detection on the 

tested dataset. For TPR = 95% only 14.48% FPR was 

achieved, which was at least 3% better than FPR values when 

compared to other skin models. In other color space, the FPR 

values were over 30% which shows that YCbCr is more 

suitable color space for skin detection. 

Among the three models presented in this paper, the Gamma 

distribution showed to be the most efficient distribution for 

modelling the skin color pixels. 

 

 
Table 1 

The Results of Skin Detection using the Proposed Statistical Models. 

 

  
Gamma Beta Laplacian Gaussian [10] Elliptic [13] Sinc [22] 

YCbCr 
90 14.38 17.38 17.88 17.40 44.3 17.56 

95 15.80 25.92 31.88 30.66 58.3 28.10 

nRGB 
90 30.00 38.70 41.24 39.16 43.2 56.28 

95 63.25 69.66 66.22 67.24 58.3 69.00 

YUV 
90 49.60 43.86 41.16 45.22 - 47.62 

95 64.62 63.26 54.22 60.96 - 73.00 

HSV 
90 37.12 27.07 28.52 28.36 - 27.02 

95 46.12 38.40 39.10 39.06 - 41.98 

XYZ 
90 31.26 23.00 37.26 27.90 - 51.86 

95 42.90 43.00 58.34 51.32 - 62.26 

 

 

 
 

 

Figure 11: ROC curves for skin detection in HSV color space 
 

 
 

Figure 12: ROC curves for skin detection in XYZ color space. 

 

V. CONCLUSIONS 

 

This paper proposed applying Gamma, Beta, and Laplace 

distributions for human skin detection. A new method for 

eliminating the correlation between the chromaticity values of 

image pixels was also presented, which was required to obtain 

the skin color models efficiently. To implement the method, 

first the skin color, histograms were transferred to the origin of 

the chromaticity plane and were rotated so that eigenvectors of 

the skin data were parallel to the chromaticity axis. The 

application of this step resulted into zero cross-correlation 

between the sample skin pixels. After this transformation, a 

one dimensional skin model using the desired statistical 

distribution was trained for each chromaticity component. The 

resulting one dimensional color models were multiplied to 

obtain the final 2 dimensional skin color model. The results of 

skin detection in 5 different color spaces showed that the 

proposed statistical models for skin detection outperformed 

the Gaussian distribution. Further, the results revealed that 

when Gamma function was used for skin detection in the 

YCbCr space, the result of skin detection improved by 3% 

compared to other methods tested in this paper. Higher 

accuracy of the proposed method for skin detection makes it 

attractive and applicable for applications that require human 

skin detection. 
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APPENDIX: 

 
Samples from the Compaq skin dataset. The dataset can be made available at the request from the Authors of [10]. 
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