

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 1 January – March 2021 17

NTP Security by Delay-based Detection in

Intelligent Defense Systems

A. E. Dinar1, 2, S. Ghouali1, 3, and B. Merabet1
1Faculty of Sciences and Technology, Mustapha Stambouli University, Mascara (29000), Algeria.

2Laboratoire de Sciences et Techniques de l'Eau (LSTE), University of Mascara
3STIC Laboratory, Univ Tlemcen, Algeria.

amina.dinar@univ-mascara.dz

Abstract— Nowadays, computer equipment has hardware or

software clocks to which they refer to time stamp files,

transactions and emails. The design of a quartz oscillator, such

as clocks drift functions like ordinary watches that do not

perfectly match. Therefore, it needs networked machines

sharing common resources. For instance, UNIX makes

command updates key files ensuring that files on which it

depends exist and are up-to-date. Also, correlating log messages

from several systems becomes very difficult if it does not occur

at the same time. This paper focuses mainly on how to detect

attacks, trying to predict attacks based on delays caused by this

equipment. A server is configured using NTP protocol whose

main target is to be implemented in UNIX system, to see how the

NTP server is managed with the powerful package Chrony for

Ubuntu. The examined results via Python reveal that clients

neither will be nor able to make final decisions just after

negotiating with servers in several attempts, before or after

accepting their clock.

Index Terms— Attacks on Networks; Network Security;

Network Time Protocol; Server Synchronization; Python.

I. INTRODUCTION

Deploying firewalls can lead to a false sense of comfort and

security if an organization do not perform formal risk analysis,

configure firewalls and envisage safety security processes to

express its global risk strategy [1]. Important arrangements
have to be viewed as applied in switch and firewall to

accomplish a viable security approach execution and to avert

a few sorts of dangers and assaults [2]. Delays and

accumulated-timing jitter impede clock synchronization

performance of distributed systems, either in the network, or

time stamping procedures of the devices being synchronized

[3-6]. In addition, a key goal of system security model is to

shield against the expressed classes of dangers and assaults in

Layers 2 and 3 of the TCP/IP model [7].

 A comprehensive security policy (SP) is needed to

provide comparable security to more tailored policies, so as
such SP may delay detection of failed attacks, and

deterministically and immediately stops successful attempts

for any considered attack [8]. Discovery dangers and assaults

can be actualized by various strategies, like interruption

discovery framework (IDS) for checking systems [9, 10].

Once dangers are recognized, a smart thought is given

about the basic system design procedure that needs to take out

continuous assaults [11].

The vital security matter with VLAN innovation is a
wasteful arrangement and few arrangements' issues is a

prerequisite for the setup technique in exchanging security

strategy [12]. The knowledge obtained here may not only be

used for synchronizing deployed WLANs but it can be also

used to improve the performance of existing wireless and

wired networks, which rely on software timestamping.

The present work shows how clients will never be able

make final decisions just after a negotiation with servers and

in several attempts before actually accepting clocks; the

server time is only applied if servers are deemed reliable after

negotiations.

The rest of this paper is organized as follows: Section II
highlights some previous works related to security and NTP.

How to ensure the synchronization of networked equipment

is presented in Section III. NTP with Chrony is described in

Section IV. The development of our contribution via Python

is given in Section V. NTP Chrony comparison task analysis

in Section VI. Finally, Section 7 concludes the paper.

II. STATE OF THE ART

The possibility of the security arrangements is developed

by using a plethora of security techniques, and they are
categorized into several methods, as follows [13-19]:

 Make and fabricate physical security arrangement as a

significant point about who is approved and has a consent

to set up, uninstall, include or change organize gadgets.

 Portrayal authorizers have the consent to sign in and

access to arrange gadgets by immediate access or support

port associations and characterize the secret key strategy.

 Change the default password on all network devices and

enable secret password for auxiliary port, virtual terminal

lines (VTs) ports, and console port.

 To improve the performance of security access to

network device, and it is important to specify a minimum

password length.

 Restrict the connections via the VTs ports to accept

connections with protocols needed, and configure VT

timeouts, and adjustment. Also, change the default secret

phrase on all system gadgets and empower mystery secret

key for assistant port, virtual terminal lines (VTs) ports,

and comfort port.

 Confine the associations by means of the VTs ports to

acknowledge associations with conventions required, and
design VT breaks, and modification of VTs to get just

Telnet sessions.

 The AAA server checks the whole association demand,

approves the official clients can admit to the system based

on their security strategies. Every one of the associations

access between VLANs necessary go through AAA

server.

Journal of Telecommunication, Electronic and Computer Engineering

18 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 1 January – March 2021

 Disabling Unnecessary and Unneeded Services:

Debilitating IP source directing on the switch, disabling

any superfluous and unneeded highlights benefits in

organize gadgets, utilizing IP Security encryption

(IPSec), SSL, or SSH for all remote access to organize

gadgets rather than Telnet.
Shutdown inert interfaces on organized gadgets is an

advantage that dispirit unapproved, utilize additional

interfaces to add new system associations with arrange

gadgets, and deactivate a few conventions (CDP, ICMP,

finger convention demands, intermediary ARP convention,

NTP) without influence or diminish organized execution to

hardship programmers, and unapproved usage or tempering

[20].

In case where NTP protocol is activated, it is necessary to

monitor each time difference, monitor each delay committed

during an unexpected attack, and synchronization between

network equipment; this article focuses on this idea, and
makes some traceability of this NTP protocol, as shown in

Figures 1 to 3.

Figure 1: Example of network Time System Server

There are three kinds of DDoS assaults viz., volumetric

assaults, convention assaults and application layer assaults. A

few variations of DDoS assaults are UDP flood, SYN flood,

ICMP flood, HTTP flood, NTP flood, ping of death and Slow

Loris [21]. Iyenger and Ahamed [22] made a survey on DDoS

assault and alleviation strategies in Cloud processing

condition [23].

Figure 2: Example of an experiment environment [26]

This paper was motivated by the works reported in [22, 24-

26], considering the NTP convention. On a server, many

processes use time, some record the time of a user's

connection in a log, others record the time of an order for an

online sales system [27].

Time accuracy has become critical when several machines
work together as they need a time measurement to

synchronize their actions. Companies in the transport sector

also have a major interest in supporting their computer

systems and networks with a Server using the NTP and PTP

protocols, particularly to ensure more efficient use of their

GPS [28]. For an aircraft, flying at an average speed of nearly

1,000 km/h, a one-second delay represents a position error of

more than 250m.

Figure 3: Example of installing an NTP server [32]

The chronology of events also allows errors to be traced on

the same millisecond scale: Traceability ensures a backup, or

automatic backup, at night requiring an accuracy of about ten

seconds [31]. This increases the reliability of daily backups;

the time server allows protecting against time deviations

caused by an electrical frequency that is not stable enough,

which varies permanently around 50Hz in Europe and the

synchronization provided by the server in NTP allows

reliable and robust clustering [32-34].

III. HOW TO ENSURE THE SYNCHRONIZATION OF

NETWORKED EQUIPMENT

Since the manual method has its limits, three protocols

have been designed for this purpose [35]:

A. Time Protocol

It is the oldest (1983), and it is the subject of RFC868.

Relying on UDP or TCP, it can be summarized as the servers

sending a packet containing the time in seconds elapsed since

January 1, 1900 at 0H. Time Protocol was used by the UNIX
timed daemon, but its low resolution and the lack of

specification of transit time compensation mechanisms led to

the study of a more sophisticated protocol.

B. Simple Network Time Protocol (SNTP)

Described in RFC 1361, it is a simplified version of NTP,

without selection mechanisms, and it is used where accuracy

in the order of the second is sufficient. A SNTP client can

synchronize to an NTP server (Figure 4), although it was

NTP Security by Delay-based Detection in Intelligent Defense Systems

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 1 January – March 2021 19

designed to implement simple clients. SNTP also allows

servers to be implemented, but these must be synchronized

directly by a time reference.

C. Network Time Protocol (NTP)

It is the subject of RFC1305 and is in its third version. It is
more elaborate than the Time Protocol. It allows the creation

of networks of NTP entities with multiple redundancies in

order to ensure the permanent and reliable synchronization of

the machines concerned. The main contribution to the work

on NTP is that of David L. Mills from the University of

Delaware [30, 36].

Figure 4: NTP work principle [37]

Filtering and selection algorithms and implementation

models are defined in NTP. They allow NTP clients to

determine the best source of synchronization, eliminate

suspicious sources and correct network transit times at any
time. Regarding its implementation, one of the main

characteristics of an NTP network is its pyramidal structure

[37]. Time references synchronize NTP servers that are

directly connected to them. These constitute "stratum" 1, they

will each synchronize several dozen other servers that will

constitute "stratum" 2 and so on up to the terminal clients.

This principle makes it possible to distribute the load of the

servers well, while maintaining a "distance" to the relatively

small reference sources [38, 29].

NTP is therefore a protocol that allows synchronizing the

time of different systems through an IP network. Clients
synchronize their clocks with servers. These servers

synchronize themselves with other servers and so on. This

network is organized in layers called stratums [40, 41].

An NTP (Figure 5) server can operate in the following

modes:

 Simple server mode: It only responds to requests from

its clients.

 Active symmetric mode: It asks to be synchronized by

other servers and announces to them that it can also

synchronize them.

 Passive symmetric mode: It is the same as active
symmetric mode, but on the initiative of other servers.

 Broadcast mode: It is intended for local network. It is

limited to the distribution of time information to

customers who may be either passive or discover the

servers with which they will synchronize.

 Client mode: It sends requests to one or more servers.

Figure 5: Hierarchical structure of NTP [42]

To synchronize our clocks with our computer network, the

most secure and reliable method is to have a dedicated NTP

or SNTP server. The architecture in NTPv4 allows a 10x
greater time accuracy than the old NTPv3 protocol [43].

The proximity (of the server to the network) provides a

minimum latency between the server and our clocks,

computers and other equipment.

The implementation of the NTP protocol as well as various

drivers used for the connection of time references permit

implementing both a simple terminal client and a primary

server. The purely NTP part runs on a large number of

operating systems: SunOS 4.x, Solaris 2, HP/UX 9.x, Ultrix

4.3, OSF/1, IRIX 4.x, AIX 3.2, A/UX, *BSD, Kali Linux.

Achieving good accuracy depends on how well the
messages are identified at:

 The application level: UNIX is not a real-time system, it

is the least efficient solution, but the easiest to

implement.

 The level of the kernel software queues: much more

precise solution but requires intervention in the kernel.

In our study, our operating system is Linux (Kali), in

which we configure the time of our machine and set the

system time with timedatectl. This command will display

the time information of our system:

root@amina-kali: - # timedatectl
 Local time: mar. 2019-08-20 23:33:36 CET
Universal time: mar. 2019-08-20 22:33:36 UTC
RTC time: mar. 2019-08-20 23:33:36
Time zone: Africa/Algiers (CET, +0100)
System clock synchronized: yes
NTP service: inactive
RTC in local TZ: yes

 Warning: The system is configured to read the RTC time

in the local time zone. This mode cannot be fully

supported. It will create various problems with time zone

changes and daylight saving time adjustments. The RTC

time is updated, it relies on external facilities to maintain

it. If at all possible, use RTC in UTC by calling:

'timsdatectl set-local-rtc 0'

Journal of Telecommunication, Electronic and Computer Engineering

20 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 1 January – March 2021

If the clock is not automatically synchronized online, the

server time can be configured using set-time:

#sudo timedatectl set-time

We list the different time zones by list-time zones:

#timedatectl list-timezones | grep Algeria

The time zone is configured using set-time zone:

sudo timedatectl set-timezone Africa/Algeria

One of the largest clusters of public NTP servers is called

pool.ntp.org. This one is configured by default in most Linux

distributions. Under the latest versions of Linux, the system

clock is automatically synchronized in a network. This

synchronization is managed by the systemD systemd-

timesyncd.service service. More information about this

service can be accessed by the command:

Systemctl status systemd-timesyncd

It is therefore possible to synchronize the clock of all the

servers on your network by synchronizing each of them with

the global NTP network, but as soon as the network grows, it

becomes advantageous to have your own NTP server.
There are several other NTP concepts: Stepping, slewing,

insane time, drift and jitter.

 Stepping is when the time difference between the

provider and the consumer is large. Then it will have to

make time adjustments very quickly.

 Slewing is when the time difference between the

provider and the consumer is small, such as less than
about 128 milliseconds. Then the NTP protocol is going

to adjust the time on the time consumer very gradually.

 Insane time is when implementing and maintaining an

NTP deployment. This is if the time difference between

the provider and the consumer is more than 17 minutes

out of sync. Then the ntpd [44] daemon is going to

consider time insane, and as a result it is not going to

adjust it and that can cause all kinds of problems.

 Drift is when NTP measures and corrects for incidental

clock frequency errors, which is a fancy way of talking

about drift where the system time on one system may not
run at exactly the same frequency as the system time on

another system.

 Jitter refers to the time difference between the time

consumer and the time provider since the last polling.

Several commands are used to monitor a system working

and to closely keep the time synchronized to show the result

in Table 1. The first command is:

#ntpq –p

Table 1

Result of #ntq-p Command

remote refid st t when poll reach delay offset jitter

0.kali.pool.n POOL 16 p - 64 0 0.000 0.000 0.000

1.kali.pool.n POOL 16 p - 64 0 0.000 0.000 0.000

2.kali.pool.n POOL 16 p - 64 0 0.000 0.000 0.000

3.kali.pool.n POOL 16 p - 64 0 0.000 0.000 0.000

ntp.kali.com POOL 16 p - 64 0 0.000 0.000 0.000

-102.130.49.223 85.199.214.98 2 u 792 1024 337 242.941 -22.544 4.332

-ns.bitco.co.za 41.78.128.17 3 u 759 1024 377 242.113 -19.735 4.662

-160.119.238.133 196.21.187.2 2 u 786 1024 377 260.651 -21.193 8.842

+chilipepper.can 145.238.203.14 2 u 779 1024 377 91.593 -24.107 2.746

*pugot.canonical 17.253.108.253 2 u 928 1024 377 85.897 -30.369 7.252

dbn-ntp.mweb.com 194.58.204.148 2 u 791 1024 377 287.697 -20.849 4.199

+golem.canonical 145.238.203.14 2 u 311 1024 377 93.789 -32.492 6.703

where: Remote = Specifies the hostname address of time

provider that’s we’re getting time from

Refid = Indicates the type of time reference source

that we’re connecting to

st = Specifies the stratum of that time provider
when = Specifies the number of seconds since the last

time poll occurred

Poll = Indicates the number or seconds between tow

time polls

Reach = Displays whether or not the time server was

reached, the last time was pulled, a successful pole

increments this field by one, so as we can see these

server were hit 377 times

Delay = Indicates how much time in milliseconds

that it took for the time provider to respond to the

time request that was sent from the local system

Offset = Specifies the time difference between the

local system and the time on the time provider (in

milliseconds)

Jitter = Indicates the size of the time discrepancies

and again this is measured in millisecond [45]

#ntptrace
localhost: stratum 3, offset -0.046775, synch distance
0.152070

The ntptrace command has been used to monitor the time

synchronization that specifies the time provider’s stratum,
and to list the time offset between the local system and the

time provider. Indeed, having your own NTP server allows

you to improve synchronization between network servers,

reduce traffic due to time synchronizations on the Internet

NTP Security by Delay-based Detection in Intelligent Defense Systems

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 1 January – March 2021 21

connection, keep servers synchronized even in the event of an

Internet outage and avoid unnecessary strain on the global

NTP network [39].

IV. NTP SERVER WITH CHRONY

Kali Linux uses Chrony software as the default NTP server.

This program is installed by the command [46]:

#sudo apt-get install chrony

Then, we configure Chrony by editing the file

/etc/chrony/chrony.conf. In this configuration file, there is a

certain amount of information, such as:

#Welcome to the chrony configuration file. See chrony.conf(5) for
#more information about usuable directives.
pool 2.debian.pool.ntp.org iburst
#This directive specify the location of the file containing ID/key
#pairs for NTP authentication.
keyfile /etc/chrony/chrony.keys
#This directive specify the file into which chronyd will store the
#rate information.
driftfile /var/lib/chrony/chrony.drift
#Uncomment the following line to turn logging on log tracking
#measurements statistics
#Log files location.
logdir /var/log/chrony
#Stop bad estimates upsetting machine clock.
maxupdateskew 100.0
#This directive enables kernel synchronisation (every 11 minutes)
#of the real-time clock. Note that it can't be used along with the
#'rtcfile' directive.
Rtcsync
#Step the system clock instead of slewing it if the adjustment is
#larger than one second, but only in the first three clock updates.
Makestep 1 3

The line beginning with pool indicates the address of the

NTP servers (or groups of servers more precisely) to be used

and the maximum number of resources to be used. A priori,

we can continue to use the default selection.

Drift file indicates the file used to record the time drift of

the server from the pool. It allows you to resynchronize the

clock faster.

By default, Chrony does not allow customers to

synchronize with this time service. The clients' network must

be authorized by the directive to editing the following line at
the end of the file. The address of our network, for example

allow 192.168.0/24. We can launch Chrony and activate it

when the server starts:

#sudo systemctl enable chrony
sudo systemctl start chrony

By default, Chrony listens on UDP port 123 (default port

for the NTP service). This port on the firewall need to be

opened so that clients can synchronize.
As Chrony is now in charge of synchronizing our system

clock, we disable systemd-timesyncd by:

$ sudo timedatectl set-ntp false

Chrony provides a command line interface to query and

manage Chrony: chronyc. We can therefore display the

servers with which we are synchronized by the command:

$ chronyc sources
Root@amina-kali:chronyc sources
210 Number of sources =4

Table 2

Results of the Command Issued in Chrony

MS Name / IP Address Stratum Poll Reach
Last

Sample

^* apollo.slash.co.za 2 10 377 +3157us
[+3157 us]

+/- 139ms

^* ntp4.inx.net.za 2 10 377 +4423us
[+4423 us]

+/- 154ms

^* ntp2.inx.net.za 2 10 377 +348 us
[+167 us]

+/- 138ms

^* ns5.btc.bw 2 10 377 +8697us
[+167 us]

+/- 325ms

The server that starts with ^* is the current time source.

Those starting with ^+ are used to calculate an average time

and those starting with ^- are not currently used.

V. NTP TIME RESYNCHRONIZATION VIA PYTHON

A. Features of Our System

In order to be able to summarize our system, we are going
to summarize it in points [47-52]:

 The NTP system consists of a network of primary and

secondary time servers, clients and interconnecting

transmission paths.

 System should create a hierarchy of servers, which are

self-organizing in nature. For example, there are servers

which come under a class Stratum 1, Stratum 2....

Stratum 0 is the reference clocks i.e. our primary source

for synchronization. Here, Stratum n+1 server

synchronizes its time with stratum n. If any server

synchronizes with another server with stratum x, then it
becomes stratum x+1.

 NTP client sends request to NTP server to query the time

after some designated interval. The NTP server should

reply to this request with its own timestamp.

 Synchronization between two servers should give some

timing guarantees, meaning the system should bound to

some duration of time. If you take any two pair of nodes

in the system than they must be in some max allowed

time drift with respect to each other.

 System should be scalable. System should handle

dynamic addition of new nodes.

 System should be fault tolerant. It should tolerate

removal or crash of nodes. It should handle spurious

clocks, drop of packets, duplication of packets etc.

 When receiving reply from the server, NTP client shall

do some corrections on time to be applied based on

statistical metrics e.g. Round trip time RTT, server

processing time.

 To ensure reliability, client should negotiate with the

server multiple times before actually accepting its clock.

The server time is applied only if the server is found to

be reliable after the negotiations.

 Client shall reject highly deviated values or outliers if
received from server. Client assumes that deviations

beyond some bound could not happen if the NTP is

working correctly in the first place.

 After calculating the correct time, client should decide

Journal of Telecommunication, Electronic and Computer Engineering

22 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 1 January – March 2021

how to apply the time, client does not directly apply the

time to itself. Rather it sees the difference and according

to that it fastens or slows its clock till some time.

 System shall accept some parameters from the user’s, for

example maximum drift allowed or resynchronization

time.

 Server can negotiate time with its neighbors (server at the

same stratum level) to ensure servers reliability or in case

of temporary failure of server.

B. Tools

i. Python

Python is an interpreter, multi-paradigm, cross-platform

programming language. It supports structured, functional and

object-oriented imperative programming. It has strong

dynamic typing, automatic garbage collection memory
management, and an exception handling system, making it

similar to Perl, Ruby, Smalltalk, and Tcl. The Python

language is licensed under a free license similar to the BSD

license and runs on most computer platforms, from

smartphones to mainframes, from Windows to UNIX,

including GNU/Linux, MacOS, Android, iOS, and can also

be translated into Java or .NET.

ii. Python-ntplib

This module provides a simple interface for querying NTP

servers with Python. It also provides utility functions for

translating NTP data into text. It is written in Python only,
and depends only on standard modules.

iii. Numpy

It is an extension of the Python programming language,

designed to manipulate multidimensional matrices or arrays

as well as mathematical functions operating on these arrays.

More precisely, this free and open source software library

provides multiple functions allowing to directly create an

array from a file or on the contrary to save an array in a file,

and to manipulate vectors, matrices and polynomials. NumPy

is the basis of SciPy, a grouping of Python libraries around
scientific computation.

C. Implementation

Algorithm 1

Clock Selection

o correcteness_interval=[] #for each server

construct[O(i)-r(i),O(i)+r(i)]

o jitterlist=[] #select jitter relative to each cadidate in

truechimers each element is a list.

o lowpoint=[] #lowest point of correctness interval.

o midpoint=[] #mid-point of correctness interval.

o highpoint=[] #highest point of correctness interval.

o selectjitter=[] #root mean squared of each element in

jitterlist.

o temp=[] #lowest, mid and highest point in sorted order.

o currentlowpoint=[] #lower end of intersection interval.

o currenthighpoint=[] #higher end of inter section interval.

o minclock=2 #we keep at least 2 clocks as threshold.

Input:
bufferSize = 256

host = '10.14.1.153'

hostlist = [('10.14.92.170',

7845),('10.14.92.144', 7878),

('10.14.92.141', 7845)]

port = 7845

adjustThreshold = 120000000

resyncInterval = 64

numPolls = 5

Output:

offset = []

delay = []

serverlist = []

jitterlist = []

Input Given by Filtering Algorithm:

Server vector with each element containing O(i)=offset and

r(i)=root distance.

peerjitter vector with each element containing

peerjitter for each server.
Server=[[1.2432343,0.56565],[1.8923232,1.232

3],[0.433232,0.43545],[1.202323,0.1112],[0.2

22323,1.34343],[1.2223232,1.2323],[0.1334343

43,0.245544]].

peerjitter=[0.454545,0.65756556,0.545432323,

0.787878787,0.45454,0.67676, 0.1004343].

For each server construct[O(i)-r(i),O(i)+r(i)]

For each correctness interval find lowest, mid and highest point and

sorting them

Find intersection interval

Finding server which lies between intersection interval, prune false

server

End

The clock cluster algorithm processes the pruned servers

produced by the clock select algorithm to produce a list of

survivors.

Algorithm 2

Clustering

Jitter relative to the ith candidate is calculated as follows.

Computed as the root mean square (RMS) of the di(j)

as j ranges from 1 to n.

Relative jitter for each server
Computed as the root mean square (RMS)
Clustering algorithm to generate final servers
End

Algorithm 3

Clock Combining

Calculate normalization constant
Finding final offset value
End

Notes:

def getSinceEpoch()

current = datetime.datetime.now()

epoch = datetime.datetime.utcfromtimestamp(0)

diff = current - epoch

microseconds = (diff.days * 24 * 60 * 60 +

diff.seconds) * 1000000 + diff.microseconds

microseconds = (diff.days * 24 * 60 * 60 +

diff.seconds) + diff.microseconds/1000000

tempoffset = ((T2 - T1) + (T3 - T4)) / 2

tempdelay = (T4 - T1) - (T3 - T2)

getSinceEpoch Example:

Epoch timestamp: 1596894695

Timestamp in milliseconds: 1596894695000

Date and time (GMT): Saturday 8 August 2020

13:51:35

NTP Security by Delay-based Detection in Intelligent Defense Systems

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 1 January – March 2021 23

[('10.14.92.170', 7845), ('10.14.92.144', 7878),

('10.14.92.141', 7845)]

('10.14.1.153', 7845)

getSinceEpoch returning time as

1595879104519783

Monday 27 July 2020 19:45:04.519

getSinceEpoch returning time as

1595879104520046

getSinceEpoch returning time as

1595879104520131

Monday 27 July 2020 19:45:04.520

getSinceEpoch returning time as

1595879104520187

getSinceEpoch returning time as

1595879104520237

Monday 27 July 2020 19:45:04.520

getSinceEpoch returning time as

1595879104522207

Monday 27 July 2020 19:45:04.522

Received T1: 1595879104519783

Monday 27 July 2020 19:45:04.519

Received T2: 1595879117162088

Monday 27 July 2020 19:45:17.162

Received T3: 1595879117162152

Monday 27 July 2020 19:45:17.162

Received T4: 1595879104522207

Monday 27 July 2020 19:45:04.522

Minimum delay offset 12641125.0

Waiting to receive data at peerThread

getSinceEpoch returning time as

1595879104531409

Monday 27 July 2020 19:45:04.531

Received T1: 1595879104520046

Monday 27 July 2020 19:45:04.520

Received T2: 1595879117168567

Monday 27 July 2020 19:45:17.168

Received T3: 1595879117168591

Monday 27 July 2020 19:45:17.168

Received T4: 1595879104531409

Monday 27 July 2020 19:45:04.531

Minimum delay offset 12642851.5

Waiting to receive data at peerThread

getSinceEpoch returning time as

1595879104531879

Monday 27 July 2020 19:45:04.531

Received T1: 1595879104520131

Monday 27 July 2020 19:45:04.520

Received T2: 1595879117169538

Monday 27 July 2020 19:45:17.169

Received T3: 1595879117169560

Monday 27 July 2020 19:45:17.169

Received T4: 1595879104531879

Monday 27 July 2020 19:45:04.531

Minimum delay offset 12643544.0

Waiting to receive data at peerThread

getSinceEpoch returning time as

1595879104532081

Monday 27 July 2020 19:45:04.532

Received T1: 1595879104520187

Monday 27 July 2020 19:45:04.520

Received T2: 1595879117170524

Monday 27 July 2020 19:45:17.170

Received T3: 1595879117170547

Monday 27 July 2020 19:45:17.170

Received T4: 1595879104532081

Monday 27 July 2020 19:45:04.532

Minimum delay offset 12644401.5

Waiting to receive data at peerThread

getSinceEpoch returning time as

1595879104532187

Monday 27 July 2020 19:45:04.532

Received T1: 1595879104520237

Monday 27 July 2020 19:45:04.520

Received T2: 1595879117170583

Monday 27 July 2020 19:45:17.170

Received T3: 1595879117170601

Monday 27 July 2020 19:45:17.170

Received T4: 1595879104532187

Monday 27 July 2020 19:45:04.532

Minimum delay offset 12644380.0

Waiting to receive data at peerThread

Printing lists in pollProc

[12641125.0, 12642851.5, 12643544.0, 12644401.5,

12644380.0]

[2360, 11339, 11726, 11871, 11932]

getSinceEpoch returning time as

1595879105521644

Monday 27 July 2020 19:45:05.521

getSinceEpoch returning time as

1595879105521911

Monday 27 July 2020 19:45:05.521

getSinceEpoch returning time as

1595879105522007

Monday 27 July 2020 19:45:05.522

getSinceEpoch returning time as

1595879105522086

Monday 27 July 2020 19:45:05.522

getSinceEpoch returning time as

1595879105522159

Monday 27 July 2020 19:45:05.522

Printing lists in pollProc

[]

[]

Exception caught min() arg is an empty sequence

getSinceEpoch returning time as

1595879106523470

Monday 27 July 2020 19:45:06.523

getSinceEpoch returning time as

1595879106523725

Monday 27 July 2020 19:45:06.523

getSinceEpoch returning time as

1595879106523819

Monday 27 July 2020 19:45:06.523

getSinceEpoch returning time as

1595879106523897

Monday 27 July 2020 19:45:06.523

getSinceEpoch returning time as

1595879106523970

Monday 27 July 2020 19:45:06.523

getSinceEpoch returning time as

1595879106526409

Monday 27 July 2020 19:45:06.526

Received T1: 1595879106523470

Monday 27 July 2020 19:45:06.523

Received T2: 1595879070203363

Monday 27 July 2020 19:44:30.203

Received T3: 1595879070203426

Monday 27 July 2020 19:44:30.203

Received T4: 1595879106526409

Monday 27 July 2020 19:45:06.526

Minimum delay offset -36321545.0

Waiting to receive data at peerThread

getSinceEpoch returning time as

1595879106527984

Monday 27 July 2020 19:45:06.527

Received T1: 1595879106523725

Monday 27 July 2020 19:45:06.523

Received T2: 1595879070204237

Monday 27 July 2020 19:44:30.204

Received T3: 1595879070204259

Monday 27 July 2020 19:44:30.204

Received T4: 1595879106527984

Monday 27 July 2020 19:45:06.527

Minimum delay offset -36321606.5

Waiting to receive data at peerThread

getSinceEpoch returning time as

1595879106528274

Monday 27 July 2020 19:45:06.528

Received T1: 1595879106523819

Monday 27 July 2020 19:45:06.523

Received T2: 1595879070205575

Monday 27 July 2020 19:44:30.205

Received T3: 1595879070205597

Monday 27 July 2020 19:44:30.205

Received T4: 1595879106528274

Monday 27 July 2020 19:45:06.528

Minimum delay offset -36320460.5

Waiting to receive data at peerThread

getSinceEpoch returning time as

1595879106528454

Monday 27 July 2020 19:45:06.528

Journal of Telecommunication, Electronic and Computer Engineering

24 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 1 January – March 2021

Received T1: 1595879106523897

Monday 27 July 2020 19:45:06.523

Received T2: 1595879070205631

Monday 27 July 2020 19:44:30.205

Received T3: 1595879070205649

Monday 27 July 2020 19:44:30.205

Received T4: 1595879106528454

Monday 27 July 2020 19:45:06.528

Minimum delay offset -36320535.5

Waiting to receive data at peerThread

getSinceEpoch returning time as

1595879106528562

Monday 27 July 2020 19:45:06.528

Received T1: 1595879106523970

Monday 27 July 2020 19:45:06.523

Received T2: 1595879070205681

Monday 27 July 2020 19:44:30.205

Received T3: 1595879070205699

Monday 27 July 2020 19:44:30.205

Received T4: 1595879106528562

Monday 27 July 2020 19:45:06.528

Minimum delay offset -36320576.0

Waiting to receive data at peerThread

Printing lists in pollProc

[-36321545.0, -36321606.5, -36320460.5,

-36320535.5, -36320576.0]

[2876, 4237, 4433, 4539, 4574]

Sending input to getTimeToAdjust:

[[12641125.0, 2360], [-36321545.0, 2876]]

[1373.01767332034, 442.8581707217334]]

 start =================

[[12641125.0, 2360], [-36321545.0, 2876]]

[[12638765.0, 12643485.0], [-36324421.0,

-36318669.0]]

-36324421.0

12643485.0

[[12641125.0, 2360], [-36321545.0, 2876]]

[[12641125.0, 2360], [-36321545.0, 2876]]

x: 2360

1/x[1] 0.000423728813559

y: 0.000423728813559

x: 2876

1/x[1] 0.000347705159536

y: 0.000771433959595

y: 0.000771433959595

1296.28724217

-9427610.90527

getTimeToAdjust

end

===

adjustment factor after delay

-9427610.90527

===

Figure 6: An example for part of the report

From these results, we can clearly see that our NTP client

sends a request to the NTP server to ask for the time after a
certain designated interval; when a response is received, i.e.

an acknowledgement of receipt, the NTP client has to make

certain corrections within the time limits to be applied based

on measures such as the RTT ‘Round Trip Time’ and the

server processing time.

After calculating and deciding the accurate time, clients

apply time differences and depending on this, they accelerate

or slow down their clocks to certain times. Such delays and

resynchronizations predict clearly unexpected attacks from

strangers. Worth noting that it is mandatory for intelligent

defense systems to counter unknown attackers via assessing
the delays using NTP.

VI. NTP CHRONY COMPARISON TASKS

NTP underpins the Auto key convention (RFC 5906) to

validate servers with open key cryptography. Note that the

convention has been demonstrated to be unreliable and it will

be presumably supplanted with a usage of the NTS.

Specifically, NTP has been ported to even more working

frameworks, as it incorporates an enormous number of

drivers for different equipment reference timekeepers.

Chrony requires different projects to give reference time by
means of the SHM or SOCK interface, and it can perform

helpfully in a situation where access to time reference is

irregular.

NTP needs normal surveying of the reference to function

better; it can, as a rule synchronize the clock quicker and with

more time precision. It rapidly adjusts to unexpected changes

clock (for example because of changes in the temperature of

the precious stone oscillator); he can perform well not

withstanding when the system is clogged for longer

timeframes.

Chrony bolsters equipment times tamping on Linux, which

permits very exact synchronization on neighborhood systems,
it offers help to work out the addition or misfortune pace of

the continuous clock, for example the clock that keeps up

when the PC is killed. It can utilize this information when the

framework boots to set the framework time from a redressed

adaptation of the ongoing clock. These continuous clock

offices are just accessible on Linux, up until now [46, 53].

VII. CONCLUSION, PERSPECTIVES AND ADVICES

In this paper, we have analyzed various delays and jitter

sources involved in software time stamping-based clock
synchronization over WLAN. We have tried to quantify the

delay and the jitter not only from time stamping and WLAN

chipset. For any hubs on the Internet, neighborhood clock (for

example framework clock) is imperative to record time

stamps and agreeably work with different hubs. The nearby

clock deferrals and continues from the right time because of

different variables. Accordingly, the nearby clock is

commonly balanced and synchronized with the standard time

by arranged time synchronization administration.

At the present time, all PC gear has equipment or

programming clock to which reference is set aside a few

minutes stamp records, exchanges, messages, etc. This clock,
albeit structured around a quartz oscillator, floats like any

normal watch. This is significantly additionally lowering

when machines are arranged and share basic assets, for

example, document frameworks. For instance, some

advanced apparatuses such as the UNIX make direction,

based their work on contrasting record change dates.

Therefore, the relationship of log messages from a few

frameworks turns out to be exceptionally troublesome in the

event that they are not simultaneously. In this article, we

concentrate on this subject by designing a Server utilizing the

NTP convention since the primary focus of the NTP
execution is UNIX frameworks, to be progressively

unequivocal; we see the administration of the NTP Server

with the Chrony tool. On a local network, the use of broadcast

mode makes it possible to simplify the configuration of

clients. Distribute the load well by setting up as many layers

as necessary, in particular so as not to overload the public

reference servers. Soon, we will use versions of xntpd: only

the redacted versions of the DES are exportable from the US,

they carry the word export in their name and are sometimes

several numbers late compared to the current version, as

xntpd continues to evolve rapidly. Our research has led us to
study in the near future, how to manage system delays for

NTP Security by Delay-based Detection in Intelligent Defense Systems

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 1 January – March 2021 25

synchronizing cloud computing with heterogeneous/

homogeneous servers, where each server can have a different

average service rate. In future, we plan to develop an NTP

client that implements both the TTL/HL reflecting method

and high-precision time stamping. As a perspective, we want

to propose an event detection module for attacks, utilizing the
information from network time synchronization service.

NOMENCLATURE

AAA Authentication, Authorization and Accounting

ARP Address Resolution Protocol

CDP Cisco Discovery Protocol

DDoS Distributed Denial of Service

DES Data Encryption Standard

GPS Global Positioning System

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDS Interruption recognition framework

IP Internet Protocol

NTP Network Time Protocol

NTS Network Time Security

PC Personal computer

PTP Precision Time Protocol

RFC Request for comments

SNTP Simple Network Time Protocol

SSH Secure Shell

SSL Secure Sockets Layer

SYN Synchronous

TCP/IP Transmission Control Protocol/Internet Protocol

TTL Time To Live

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VT’s’ Virtual terminal lines

REFERENCES

[1] A. Calder, “A Business Guide to Information Security”, Library of

Congress Cataloging-in-Publication Data, Creative Print and Design

(Wales), Ebbw Vale Great Britain, 2005, pp. 8–13.

[2] Arif, M.; Wang, G.; Geman, O.; Balas, V.E.; Tao, P.; Brezulianu, A.;

Chen, J. SDN-based VANETs, Security Attacks, Applications, and

Challenges. Appl. Sci. 2020, 10, 3217.

[3] A. Mahmood, R. Exel, and T. Sauter, Delay and Jitter Characterization

for Software-Based Clock Synchronization Over WLAN Using PTP,

ieee transactions on industrial informatics, vol. 10, no. 2, MAY 2014.

[4] S. S. Awad, "Analysis of accumulated timing-jitter in the time domain,"

in IEEE Transactions on Instrumentation and Measurement, vol. 47,

no. 1, pp. 69-73, Feb. 1998, doi: 10.1109/19.728792.

[5] K. Pappu, G. P. Reitsma and S. Bapat, "5.4 Frequency-locked-loop ring

oscillator with 3ns peak-to-peak accumulated jitter in 1ms time window

for high-resolution frequency counting," 2017 IEEE International

Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp.

92-93, doi: 10.1109/ISSCC.2017.7870276.

[6] D.-W. Jee, Robust high-multiplication factor MDLL using IIR filter-

based accumulated jitter reduction, IET digital library, Volume 54,

Issue 12, 14 June 2018, p. 743–744 DOI: 10.1049/el.2018.1091.

[7] Arif, M.; Wang, G.; Geman, O.; Balas, V.E.; Tao, P.; Brezulianu, A.;

Chen, J. SDN-based VANETs, Security Attacks, Applications, and

Challenges. Appl. Sci. 2020, 10, 3217.

[8] K. Koning, H. Bos, C. Giuffrida, "Secure and Efficient Multi-Variant

Execution Using Hardware-Assisted Process Virtualization," 2016

46th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), Toulouse, 2016, pp. 431-442, doi:

10.1109/DSN.2016.46.

[9] C.P. Lee, A.S. Uluagac, K.D. Fairbanks, J.A. Copeland, “The design

of NetSecLab: a small competition-based network security lab,” IEEE

Trans. Educ. 54(1), 2011, pp. 149–155.

[10] Shirali-Shahreza, S., Ganjali, Y.: FleXam, “flexible sampling extension

for monitoring and security applications in openow,” ACM

SIGCOMM HotSDN’13 Workshop, 2013.

[11] M. Abomhara and G. M. Køien, Cyber Security and the Internet of

Things: Vulnerabilities, Threats, Intruders and Attacks, Journal of

Cyber Security and Mobility Vol: 4 Issue: 1 Published In: January

2015, doi.org/10.13052/jcsm2245-1439.414.

[12] A. Singh and K. Chatterjee, Cloud security issues and challenges: a

survey, Journal of Network and Computer Applications,

http://dx.doi.org/10.1016/j.jnca.2016.11.027.

[13] X. Liu, M. Shahidehpour, Z. Li, X. Liu, Y. Cao and Z. Li, "Power

System Risk Assessment in Cyber Attacks Considering the Role of

Protection Systems," in IEEE Transactions on Smart Grid, vol. 8, no.

2, pp. 572-580, March 2017, doi: 10.1109/TSG.2016.2545683.

[14] D. Puthal, X. Wu, N. Surya, R. Ranjan and J. Chen, "SEEN: A Selective

Encryption Method to Ensure Confidentiality for Big Sensing Data

Streams," in IEEE Transactions on Big Data, vol. 5, no. 3, pp. 379-392,

1 Sept. 2019, doi: 10.1109/TBDATA.2017.2702172.

[15] A. M. Shabalin and E. A. Kaliberda, "The organization of arrangements

set to ensure enterprise IPV6 network secure work by modern

switching equipment tools (using the example of a network attack on a

default gateway)," 2017 Dynamics of Systems, Mechanisms and

Machines (Dynamics), Omsk, 2017, pp. 1-8, doi:

10.1109/Dynamics.2017.8239505.

[16] J. Li, Z. Feng, Z. Feng and P. Zhang, "A survey of security issues in

Cognitive Radio Networks," in China Communications, vol. 12, no. 3,

pp. 132-150, Mar. 2015, doi: 10.1109/CC.2015.7084371.

[17] M. Jain and H. Kandwal, "Notice of Violation of IEEE Publication

Principles: A Survey on Complex Wormhole Attack in Wireless Ad

Hoc Networks," 2009 International Conference on Advances in

Computing, Control, and Telecommunication Technologies,

Trivandrum, Kerala, 2009, pp. 555-558, doi: 10.1109/ACT.2009.141.

[18] N. Skorin-Kapov, M. Furdek, S. Zsigmond and L. Wosinska,

"Physical-layer security in evolving optical networks," in IEEE

Communications Magazine, vol. 54, no. 8, pp. 110-117, August 2016,

doi: 10.1109/MCOM.2016.7537185.

[19] Zhang, G., Wang, T., Wang, G., Liu, A., & Jia, W. (2018). Detection

of hidden data attacks combined fog computing and trust evaluation

method in sensor-cloud system. Concurrency and Computation:

Practice and Experience, e5109. doi:10.1002/cpe.5109

[20] Alabady, S. A., Al-Turjman, F., & Din, S, “A Novel Security Model

for Cooperative Virtual Networks in the IoT Era,” International Journal

of Parallel Programming, 2018, doi:10.1007/s10766-018-0580-z

[21] A. Pasumpon pandian, S. Smys, ddos attack detection in

telecommunication network using machine learning, Journal of

Ubiquitous Computing and Communication Technologies (UCCT)

(2019) Vol.01/ No. 01 Pages: 33-44.

doi.org/10.36548/jucct.2019.1.003.

[22] N Ch Sriman Narayana Iyenger and Junath Naseer Ahamed, “A

Review on Distributed Denial of Service (DDoS) Mitigation

Techniques in Cloud Computing Environment,” International Journal

of Security and its Applications, 2016.

[23] Anandhakrishnan, T; Jaisakthi, S. M; Lohotsaurabh, Internet of Things

in Agriculture-Survey, Journal of Computational and Theoretical

Nanoscience, Volume 15, Numbers 6-7, June 2018, pp. 2405-2409(5),.

doi.org/10.1166/jctn.2018.7478.

[24] Gaurav Jain and Arti Jaiswal,“Security Issues and their Solution in

Cloud Computing,” Concepts Journal of Applied Research, 2(3), 2018,

pp. 1 - 6.

[25] Shaireen Khan, Shadab Hasan, Shashank Singh, Sumera Zafar and

Shobhit Joshi, “Cloud computing: security issues and security

standards,” International Journal of Engineering and Management

Research, Special Issue (ACEIT - 2018), pp.31-36.

[26] Kawamura, T., Fukushi, M., Hirano, Y., Fujita, Y., & Hamamoto, Y,

“A Network-Based Event Detection Module Using NTP for Cyber

Attacks on IoT,” Sixth International Symposium on Computing and

Networking Workshops (CANDARW), 2018,

doi:10.1109/candarw.2018.00025.

[27] Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic

personalization based on Web usage mining. Communications of the

ACM, 43(8), 142–151. doi:10.1145/345124.345169.

[28] IEEE Std 1588, “IEEE Standard for a precision Clock Synchronization

Protocol for Networked Measurement and Control Systems,”

IEEE1588-2008standard,2008.

[29] LI X ZH. “Research on the Network Time Synchronization System

Based on IEEE1588,” National Time Service Center, Chinese

Academy of Sciences,2011.

https://digital-library.theiet.org/search;jsessionid=1mmahqlkpg1it.x-iet-live-01?value1=&option1=all&value2=D.-W.+Jee&option2=author
https://digital-library.theiet.org/content/journals/el/54/12;jsessionid=1mmahqlkpg1it.x-iet-live-01
https://digital-library.theiet.org/content/journals/el/54/12;jsessionid=1mmahqlkpg1it.x-iet-live-01
https://doi.org/10.1049/el.2018.1091
https://www.riverpublishers.com/journal.php?j=JCSM/4/1/4
https://www.riverpublishers.com/journal.php?j=JCSM/4/1/4
https://doi.org/10.13052/jcsm2245-1439.414
https://www.ingentaconnect.com/search?option2=author&value2=Anandhakrishnan,+T
https://www.ingentaconnect.com/search?option2=author&value2=Jaisakthi,+S.+M
https://www.ingentaconnect.com/search?option2=author&value2=Lohotsaurabh
https://www.ingentaconnect.com/content/asp/jctn
https://www.ingentaconnect.com/content/asp/jctn
https://doi.org/10.1166/jctn.2018.7478

Journal of Telecommunication, Electronic and Computer Engineering

26 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 13 No. 1 January – March 2021

[30] J. Zhao K J, Zhang AI Mning D Y,”Implementation of network time

server system based on NTP,” Electronic Test, 2008 (7), pp.13-16.

[31] M. Felser, "Real-Time Ethernet-Industry Prospective," in Proceedings

of the IEEE, vol. 93, no. 6, pp. 1118-1129, June 2005, doi:

10.1109/JPROC.2005.849720.

[32] A.E. Dinar, B. Merabet, S. Ghouali (2021) NTP Server Clock

Adjustment with Chrony. In: Mandal J., Mukhopadhyay S., Roy A.

(eds) Applications of Internet of Things. Lecture Notes in Networks

and Systems, vol 137. Springer. doi.org/10.1007/978-981-15-6198-

6_16.

[33] Fang, Y., Hu, J., Liu, W., Shao, Q., Qi, J., & Peng, Y. (2019). Smooth

and time-optimal S-curve trajectory planning for automated robots and

machines. Mechanism and Machine Theory, 137, 127–

153. doi:10.1016/j.mechmachtheory.2019.03.019.

[34] Niazkhani, Z., Pirnejad, H., van der Sijs, H., & Aarts, J.

(2011). Evaluating the medication process in the context of CPOE use:

The significance of working around the system. International Journal

of Medical Informatics, 80(7), 490–506.

[35] José Miguel Jiménez López, Distributed control systems based on high

accurate timing synchronization, Thesis/dissertation At Universidad de

Granada (Spain) in 2019.

[36] David L. Mills, “Internet Time Synchronization: The Network Time

Protocol,” IEEE Transactions on Communications, Vol. 39, No. 10,

Oct 1991.

[37] M. Lombardi, J. Levine, J. Lopez, F. Jimenez, J. Bernard, M. Gertsvolf,

et al., "International Comparisons of Network Time Protocol Servers,"

Proceedings of the Precise Time and Time Interval Systems and

Applications Meeting, 1-4 December, 2014, Boston, Massachusetts,

pp. 57-66.

[38] S. Sommars,“Challenges in Time Transfer Using the Network Time

Protocol (NTP),” Proceedings of the Precise Time and Time Interval

Systems and Applications Meeting, 30 January–2 February, 2017,

Monterey, California, pp.271-290.

[39] K. Vijayalayan and D. Veitch,"Rot at the roots? Examining public

timing infrastructure," Proceedings of the 35th Annual IEEE

International Conference on Computer Communications, 10-14 April,

2016, San Francisco, California, pp.1-9.

[40] Matsakis D.,“ Time and Frequency Activities at the U.S. Naval

Observatory,” Frequency Control Symposium and Exposition, 2005.

Proceedings of the IEEE International, pp. 271-224.

[41] R. B. Warrington, P. T. H. Fisk, M. J. Wouters, M. A. Lawn, J. S.

Thorn, S. Quigg, A. Gajaweera and S. J. Park,“Time and Frequency

Activities at the National Measurement Institute, Australia,” Frequency

Control Symposium and Exposition. Proceedings of the 2005 IEEE

International, 2005, pp. 231-234.

[42] Rytilahti, T., Tatang, D., Kopper, J., & Holz, T,”Masters of Time: An

Overview of the NTP Ecosystem. 2018 IEEE European Symposium on

Security and Privacy (EuroS&P). doi:10.1109/eurosp.2018.00017.

[43] D.L.Mills,U. Delaware,J. Martin,J. Burbank,W. Kasch, “RFC4330 -

SNTPv4, Network Time Protocol Version 4: Protocol and Algorithms

Specification,” 2010, pp.1-110.

[44] Clinton D. (2016) Topic 108: Essential System Services. In: Practical

LPIC-1 Linux Certification Study Guide. Apress, Berkeley, CA.

https://doi.org/10.1007/978-1-4842-2358-1_8.

[45] https://www.thegeekdiary.com/what-is-the-refid-in-ntpq-p-output/

[46] https://chrony.tuxfamily.org (Last updated 2019-05-14 13:21:31).

[47] H. Cui and F. Li, "ANDES: A Python-Based Cyber-Physical Power

System Simulation Tool," 2018 North American Power Symposium

(NAPS), Fargo, ND, 2018, pp. 1-6, doi: 10.1109/NAPS.2018.8600596.

[48] T. Bruscato, L.; Heimfarth, T.; P. de Freitas, E. Enhancing Time

Synchronization Support in Wireless Sensor

Networks. Sensors 2017, 17, 2956.

[49] G. O. Troiano, H. S. Ferreira, F. C. L. Trindade and L. F. Ochoa, "Co-

simulator of power and communication networks using OpenDSS and

OMNeT++," 2016 IEEE Innovative Smart Grid Technologies - Asia

(ISGT-Asia), Melbourne, VIC, 2016, pp. 1094-1099, doi:

10.1109/ISGT-Asia.2016.7796538.

[50] S. Thulasidasan, L. Kroc and S. Eidenbenz, "Developing parallel,

discrete event simulations in Python - first results and user experiences

with the SimX library," 2014 4th International Conference On

Simulation And Modeling Methodologies, Technologies And

Applications (SIMULTECH), Vienna, Austria, 2014, pp. 188-194, doi:

10.5220/0005042701880194.

[51] Van Vliet, M., Liljeström, M., Aro, S., Salmelin, R., & Kujala, J.

(2018). Analysis of Functional Connectivity and Oscillatory Power

Using DICS: From Raw MEG Data to Group-Level Statistics in

Python. Frontiers in Neuroscience, 12. doi:10.3389/fnins.2018.00586

[52] J. Schmitz, C. von Lengerke, N. Airee, A. Behboodi and R. Mathar, "A

Deep Learning Wireless Transceiver with Fully Learned Modulation

and Synchronization," 2019 IEEE International Conference on

Communications Workshops (ICC Workshops), Shanghai, China,

2019, pp. 1-6, doi: 10.1109/ICCW.2019.8757051.

[53] Viejo, J., Juan-Chico, J., Bellido, M. J., Ruiz-de-Clavijo, P., Guerrero,

D., Ostua, E., & Cano, G. (2019). High-Performance Time Server Core

for FPGA System-on-Chip. Electronics, 8(5), 528. doi: 10. 3390 /

electronics8050528.

https://dialnet.unirioja.es/servlet/autor?codigo=3067194
https://dialnet.unirioja.es/institucion/407/buscar/tesis
https://dialnet.unirioja.es/institucion/407/buscar/tesis

