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Abstract—The Optimal Control method such as Linear 

Quadratic Regulator (LQR) deals with both the qualities of the 

response and its consumed power.  In such a system, LQR faces 

a problem with the feedback sensor, which contains a lot of 

noise. Therefore, this issue can be solved by combining it with 

the Kalman filter, called the Linear Quadratic Gaussian (LQG). 

This research investigated the LQG applied in the Two-Wheeled 

Balancing Robot. According to the obtained data from 

MPU6050 (Accelero-Gyro sensor), Kalman Filter was firstly 

designed by adjusting the matrix R and Q. In the same way, 

LQR was also designed by manually tuning the matrix Q(1,1), 

Q(2,2) and R. The results of Kalman Filter showed that while 

Qacc, Qgyro, and R are 0.001, 0.003, and 1, respectively, the noise 

of the sensor can be successfully decreased. At the same time,  

while Q(1,1), Q(2,2), R of LQR are set to 1650, 25, and 3, 

respectively, the Two-Wheeled Robot can be stabilized in the 

set-point with the lowest J-function (1365.86). The verification 

experiment indicates that the controller can maintain the system 

stability even when the external disturbance is present. 

 

Index Terms— Balancing Robot; Kalman Filter; LQG; LQR. 

 

I. INTRODUCTION 

 

The application of a Two-Wheeled Balancing Robot can be 

found in several applications such as Segway, rocket 

propeller, walking robot, and boat stability [1-4]. This plant 

is analyzed based on the structure of inverted pendulum, 

which is naturally unstable. There have been many control 

methods proposed to solve the problems appearing in the 

Two- Wheeled Balancing Robot control. The work of [5] and 

[6] proposed PID and Fuzzy control method to stabilize the 

balancing robot, which is firstly modeled as an inverted 

pendulum. In another work, Junfeng et al. proposed a sliding 

mode control method to stabilize the position [7]. They used 

computer simulations to verify their method.  In the work in 

[5-6], although the proposed control methods could stabilize 

the plant, it still focuses on the response qualities without 

considering the consumed power by the plant. Therefore, 

several other researches proposed the optimal control, LQR, 

to balance both the quality of response and the consumed 

power [8,9]. Realizing it in a real plant, the LQR has become 

complex due to the quality of feedback sensor that usually 

uses the accelero-gyro sensor, which contains a lot of noise; 

thus, the Kalman Filter is then employed and combined to 

LQR, called Linear Quadratic Gaussian (LQG). 

This research proposed an optimal control method (LQG) 

applied in the Two-Wheeled Balancing Robot. The plant was 

firstly modeled by measuring all physical parts. The model, 

in state-space form, was then evaluated in terms of its 

controllability and observability. In this research, the LQG 

method consists of the Kalman Filter and LQR, which can be 

designed separately. The Kalman Filter was firstly designed 

by tuning matrix Q and R of the Accelero-Gyro sensor; thus, 

the enhanced feedback sensor can be obtained. The LQR was 

subsequently designed by tuning matrix Q(1,1), Q(2,2), and 

R. The performance index (J-function) was finally employed 

to evaluate the effectiveness of the chosen parameter. 

 

II. PLANT MODELING 

 

The modeling process of Two-Wheeled Balancing Robot 

was obtained by firstly representing it as an inverted 

pendulum (depicted in Figure 1 [10,11]). All forces 

influencing the plant were then investigated as shown in 

Figure 2. 

 

 
 

Figure 1: Balancing robot and inverted pendulum 

 

 
 

Figure 2: Forces in inverted pendulum [10] 

 

where: 𝑥 = Cart position (m) 

 𝑥̇ = Cart velocity (m/s) 

 𝑥̈ = Cart acceleration (m/s2) 

 𝐹 = Force (N) 

 𝑁 = Horizontal Force (N) 

 𝑃 = Vertical Force  (N) 

 𝑚 = Pendulum Mass (kg) 

 𝑀 = Cart mass (kg) 

 𝑏 = Friction (N/m/s) 

 𝑙 = Length of Pendulum’s equilibrium point (m) 

 𝐼 = Moment of Inertia (kgm2) 

 𝜃 = Degree (°) 

 𝜃̇ = angular velocity (°/s) 

 𝜃̈ = angular acceleration (°/s2) 
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Equations (1) and (2) are the result of the horizontal and 

the normal forces (N). By substituting (2) to (1) and summing 

the perpendicular force, the dynamic equation, (4), can be 

obtained. 

 
FNxbxM =++   (1) 

 

)(sin)(cos 2   mlmlxmN −+=  (2) 

 

FmlmlxmM =−++ )(sin)(cos)( 2    (3) 

 

 (cos)(sin)cos()(sin  mlmlmgNP +=−+  (4) 

 

For eliminating P and N, all moments around the center of 

mass were summed, therefore (5) can be derived. By 

substituting (4) to (5), the dynamic equation is to be (6). 
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Equation (3) and (6) represent the dynamic part of the 

inverted pendulum. Because the equations are nonlinear, the 

linearization of them is thus needed. The pendulum has 

distance π radian from the stable condition and θ = π. 

Assuming that θ = π + ϕ (where ϕ represents small changing 

of the pendulum), the cos(θ) = -1, sin(θ) = -ϕ and 0
)(
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After linearization (3) and (6), the new equations are to be 

(7) and (8) with u as an input signal (in this research it is 

voltage signal sent from the microcontroller). Equation (7) 

and (8) are subsequently converted by Laplace 

Transformation to be (9) and (10). 
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ussmlssbxssxmM =−++ 22 )()()()(   (9) 
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Based on (10), x(s) is stated as (11), which is then 

substituted to (9).  The overall transfer function can be 

derived as (13). 
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where: 22 )())(( mlmllmMq −++=  

 

With the same method, the transfer function of cart position 

x(s) as output is derived as (14). 
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Equation (13) and (14) are then represent the state-space 

equation as (15) and (16). 
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In this paper x and 𝑥̇ are not used, therefore the equation 

can be simplified to be (17) and (18). Figure 3 and Table 1 

are the plant and its parameter’s information, respectively. 

The system Equations are finally derived to be (19) and (20). 
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Figure 3: The balancing robot 

 
Table 1  

Parameter of the Plant Model 
 

Parameter Value 

M 0.285 (kg) 

m 0.285 (kg) 

l 0.0565 (m) 

g 9.8 kgm/s2 

L 0.113 (m) 

I=mL2 0.003639165 
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III. CONTROLLER DESIGN 

 

In the controller design, the system model was firstly 

evaluated to analyze its controllability and observability. In 

this research, the parameters of Kalman Filter and LQR are 

designed separately. The detail of the controller design is 

explained in the following sub-section. 

 

A. Control Ability (CA) and Observability (OA) 

According to (19) and (20), the CA and OA were calculated 

by (21) and (22). Both matrices have a rank equal to 2 (full 

rank), they are hence controllable and observable. 
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B. Kalman Filter 

This research uses the Accelero-Gyro sensor (MPU6050) 

as feedback of the robot position. Equation (23) is the general 

equation for the predicted state. According to the work of 

[12], the equation is going to be (24). Equation (25) is then 

employed to calculate the predicted covariance matrix. 

 

kkkkp WUBXAX ++= − .. 1  (23) 

 

where: Xkp = Predicted State 

 Xk-1 = Previous 

 Uk = Control Variable Matrix 

 Wk = Predicted State Noise Matrix  
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where: Xakp = Predicted state of Accelero 

 Xgkp = Predicted state of Gyro 

 dt = Time sampling 

 

dtQAAPP k
T

kkp += −1  (25) 

 

where: P = Process Covariance Matrix 

 Q = Process Noise Covariance Matrix 

 

In this work, matrix Q is defined as (26). The values of Qacc 

and QGyro are  manually tuned so that the Kalman Filter has a 

good response. 
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The next process is to calculate Kalman gain based on (27). 

In this research, the value of H is set to be 1. On the other 

hand, the value of R is adjusted so that the Kalman Filter has 

a good response. The output of the Kalman Filter is finally 

derived based on (28). Process Covariance is subsequently 

updated by using (29) for the next calculation. 
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where: K = Kalman Gain 

 R = Sensor Noise Covariance Matrix  

 

 KPkkpk XHYKXX .−+=  (28) 

 

  kpk PHKIP .−=  (29) 

 

C. Linear Quadratic Gaussian (LQG) 

The LQG method consists of Kalman Filter and Linear 

Quadratic Regulator (LQR), which can be designed 

separately. According to (19) and system that has zero set-

point, the vector of matrix U is defined as (30). 

 

Kxu −=   (30) 

 
To obtain the K matrix, (31) is employed whereas 

Algebraic Riccati Equation (ARE) in (32) is applied to find 

matrix P. 

 

PBRK T1−=   (31) 

 

01 =+−+ − QPBPBRPAPA TT
 (32) 

 
In this research, the value of Q and R are adjusted so that 

the lowest of the Performance Index, (33), can be derived. 
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+=
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IV. EXPERIMENT SETUP 

 

Figure 4 and 5 show both the block diagram and the 

structure of the hardware. The 8 bit microcontroller is 

employed to implement the Kalman filter, LQR algorithm 

and calculation of the J-function. The output of the controller 

is subsequently sent to the L298 driver, which is directly 

attached to the DC motor 25GA370. The feedback of the 

plant is measured by using MPU6050, a gyro-accelerometer 

sensor. 
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Figure 4: The hardware setup 

 

 
 

Figure 5: The block diagram 

 

V. RESULTS AND DISCUSSION 

 

A. Kalman Filter 

The combination of Q and R matrix are randomly chosen 

as follow:  Qacc = {0.4; 0.01; 0.001}, Qgyro = {0.2; 0.03; 

0.003} and R = {1;50; 100}. The best result is depicted in 

Figure 6. 

 

 
 

Figure 6: Resulted signal with R =1, Qacc = 0.001 and  Qgyro = 0.003 

 

B. Linear Quadratic Gaussian 

After obtaining the Kalman Filter parameter, the next 

process is to tune matrix Q and R manually and calculate the 

value of Performance Index (J-function). Table 2 is the tuning 

result for matrix Q. The lowest value of J-function with 

Q(1,1) and Q(2,2) are 1650 and 25, respectively. Figure 7 is 

the plant response of the chosen parameters. 

 
Table 2  

The Result of Tuning for Matrix Q 

 

Q(1,1) Q(2,2) K1 K2 J-Function 

1650 25 46.5885 6.2051 1656.6 

1700 30 47.1937 6.6090 1665.05 

1750 35 47.7903 6.9894 1740.2 

 

 
 

Figure 7: The response with Q(1,1) = 1650 and Q(2,2) = 25 
 

Table 3 is the result of J function, while the value of R is 

varied. With Q(1,1) = 1650, Q(2,2) = 25 and R = 3, the lowest 

of J function can be derived and the steady-state is 8.297 

second. Figure 8 shows the response. 

 
Table 3  

The Result of Tuning for Matrix R 

 

R K1 K2 J-Function 

1 46.5885 6.2051 1656.60 

2 34.8470 4.7540 1818.19 

3 29.6942 4.1158 1365.86 

 

 
Figure 8: The response with Q(1,1) = 1650,  Q(2,2) = 25 and R = 3 

 

The response of the controller is finally verified by giving 

external disturbances, as depicted in Figure 9. The 

disturbance started from 25.074-th second, while the steady 

state is in 26.34-th second (1.266 seconds). 

 

 
Figure 11: Robot response against external disturbance 

 

VI. CONCLUSION 

 

This research deals with the optimal control method (LQG) 

applied in the two-wheel balancing robot. The method 

consists of the Kalman Filter and LQR, which can be 
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designed separately. The Kalman Filter was firstly designed 

by tuning matrix Q and R of the Accelero-Gyro sensor so that 

the feedback sensor without noise could be obtained. The 

LQR was then designed by tuning matrix Q(1,1), Q(2,2) and 

R. For verification the effectiveness of the chosen parameter, 

the performance index (J-function) was subsequently 

employed. The results of Kalman Filter showed that with 

Qacc, Qgyro and R are 0.001, 0.003, and 1, respectively, the 

noise of the response could be minimized. Similarly, while 

Q(1,1), Q(2,2), and R are set to 1650, 25 and 3, respectively, 

the two-wheeled robot could be stabilized in the set-point. 

The proposed control could also maintain the robot position 

with the presence of the external disturbance. 
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