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Abstract—In practical, the problem of radar signal detection 

is to automatically detect a target embedded in clutter. For high 

resolution radars, the modeling of sea clutter showed that 

compound Gaussian distributions are appropriate to describe 

the clutter returns. In this paper, we introduced a novel 

Constant False Alarm Rate (CFAR) detector in a non-coherent 

context, where the clutter follows a non-Gaussian distribution. 

The simulations via Monte Carlo showed that this new detector 

is robust for three Compound Gaussian (CG) clutter models; 

namely the K distribution, Compound Gaussian with inverse 

gamma texture (Generalized Pareto model, GP) and Compound 

Inverse Gaussian (CIG) distribution. The false alarm regulation 

was then examined within  the presence of interfering targets. 

Finally, the performance of the proposed algorithm was 

validated using real data sea clutter. 

 

Index Terms—CFAR; Compound Gaussian; Non Coherent 

Process; Robust Detector. 

 

I. INTRODUCTION 

 

Constant False Alarm Rate (CFAR) detection schemes with 

adaptive thresholding play an important role for radar target 

detection against clutter [1, 2]. For these schemes,  the design 

algorithm of an adaptive threshold is the key to adapt and 

maintain the probability of false alarm (PFA) at a constant 

rate and to enhance the detection performance. Therefore,  the 

CFAR schemes have an important role in radar target 

detection for coherent and non-coherent strategies. The main 

concept of CFAR process is that the PFA is maintained 

approximately constant by an optimal threshold, which is 

calculated using clutter data statistics. In some applications of 

CFAR detection, the hypothesis of a Gaussian clutter is no 

longer valid [3, 4], especially for high resolution receivers 

operating at low grazing angles. Lately, CFAR detection 

process in Compound Gaussian environments received a lot 

of attention [6], and it is still an open research orientation 

because the Compound Gaussian model fits well the data 

from X-band high resolution radars, operating at low grazing 

angles.  In the past decades, the K-distribution has been the 

most suitable model in Compound Gaussian process for the 

amplitude statistic of radar target detection as it describes the 

characteristics of sea clutter very well [5, 6], and the 

amplitude scintillations caused by atmosphere on starlight 

[7]. Recently, the GP model has been confirmed as the 

adopted model after the K-distribution in radar application for 

X-band high resolution sea clutter [8, 9] due to the simplicity 

of estimating its parameters and Probability Density Function 

(PDF). This model also proved to be the best choice to 

distinguish the spikier sea clutter compared with the K and 

CIG distributions [10]. In recent years, the CIG distribution 

has been validated for the measured radar lake clutter [4], 

which shows better fits 

 than its competitors [11]. The CIG model is obtained when 

the clutter power follows the Inverse Gaussian law [12]. In 

[13], Finn and Johnson proposed the use of reference channel, 

from which an estimate of the noise environment and upon 

which the decision threshold is adapted. In [14], Goldstein 

presented his optimal receiver called Log-t detector. This 

detector confirms the CFAR-ness process under the operation 

of Log-normal and Weibull environments. Himonas and 

Barkat [15] proposed the generalized two-level censored 

mean level detector, which uses an automatic censoring 

algorithm of the unwanted samples. Then in [16], Conte et al. 

proposed a canonical detector whose structure is independent 

of the clutter distribution. In [17], an intelligent CFAR 

processor based on data variability was proposed. In [18], 

Jakubiak introduced the Log-t detector for the K-distributed 

clutter, which possesses the CFAR property for a shape 

parameter higher than one. Recently, Weinberg and Glenny 

in [19] demonstrated the robustness of the Log-t detector 

against Pareto background and they modified and enhanced 

the performance of this detector in terms of managing the 

interferences.  

This paper deals with the proposition of a novel non- 

parametric radar receiver capable of attaining the CFAR 

process when operating against the CG clutter, such as the K, 

GP and CIG distributions. We also analyzed the performance 

of the proposed detector in terms of false alarm regulation, in 

the case of the presence of interfering targets. Finally, we 

validated the performance of this detector on experimental 

data of IPIX radar.  The rest of the letter is structured in the 

following way. In Section II, we provide a brief description 

of the Compound Gaussian model with the PDF of the three 

clutter models under consideration. In Section III, the 

proposed non-coherent CFAR algorithm against CG 

background is then studied. We proved that the proposed 

detector attains the CFAR property independently of the 

clutter parameters. In Section IV, we present some simulation 

results with discussions concerning the CFAR property of the 

proposed optimal detector in homogeneous and non-

homogeneous (interfering targets) backgrounds. In Section 

V, the proposed detector is evaluated against the empirical 

IPIX data. Finally, conclusions are drawn in Section VI. 

 

II. REVIEW OF COMPOUND GAUSSIAN CLUTTER MODELS 

 

In the previous years, the CG models have received a lot of 

attention with their types of texture in CFAR radar detection 

process. These models have been adopted successfully to 

describe the modulation for sea clutter in high resolution 
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radar. Compared with the Gaussian model, they are 

characterized by a heavy tail. The complex domain random 

variable X can be represented as follows [10, 20]: 

 

𝑥 = √𝑟𝑢 (1) 

 

where: x = Complex Gaussian clutter vector 

r = Texture component 

u = Speckle component 

 

The PDF of x is as follows: 

 

𝑃𝑋(𝑥) =
1

𝜋𝑆|𝑉|
∫

1

𝑟𝑆 exp (−
𝑋𝐻𝑉−1𝑋

𝑟
)

∞

0

𝑃𝑅(𝑟)𝑑𝑟 (2) 

 

where: u = S-dimensional complex-Gaussian vector with 

zero-mean, a unit power 

V = Finite positive definite covariance matrix, in 

short notation u  ~ CN(0,V) in which CN means 

Complex Normal 

)(rPR
 = PDF of r  

 

It is apparent that the PDF of the variable r directly 

characterizes the particular case of the compound-Gaussian 

family.  

 

A. GP Distribution 

The Generalized Pareto is obtained when the texture 

component conforms to the inverse gamma distribution [10]. 

It is given by: 

 

𝑃𝑋(𝑥) =
𝛼𝛽𝛼

(𝑥 + 𝛽)𝛼+1 (3) 

 

where:  α = Shape parameter 

β = Scale parameter 

 

The values of α close to 1 correspond to a spiky clutter. 

 

B. K Distribution 

The K distribution is obtained when the texture is modeled 

as a Gamma distributed random variable with the mean β and 

order parameter ѵ: 

 

𝑃𝑋(𝑥) =
2

𝛽𝛤(𝜈 + 1)
(

𝑥

2𝛽
)

𝜈+1

𝐾𝜈 (
𝑥

𝛽
) 

𝑥 > 0       𝜈 > 0      𝛽 > 0 
(4) 

 

where:  x = Amplitude of the envelope 

Γ(.) = Gamma function 

Kυ(.) = Modified Bessel function 

 

C. CIG Distribution 

The CIG model is obtained when the random variable R 

fluctuates, according to the inverse Gaussian law [20]: 

 

𝑃𝑋(𝑥) =
𝜆

1

2

√2𝜋𝑋
3

2

𝑒𝑥𝑝 (−𝜆
(𝑥 − 𝜇)2

2𝜇2𝑥
)      0 ≤ 𝑥 ≤ ∞ 

𝜆 > 0, 𝜇 > 0 

(5) 

 

where: 𝜆 = Shape parameter 

𝜇 = Mean 

Note that 𝜆  relies upon the sea conditions and the radar 

parameters. In general, the concept of CFAR processing 

consists of the passing of the received data through an 

envelope/square law detector and the comparison of each 

resolution cell to an adaptive threshold, multiplied by a 

scaling factor. The adaptive threshold is calculated using 

reference cells outputs, which are assumed to be independent 

and identically distributed to maintain the (PFA) at a desired 

value.  We assume that the cell under test is the one in the 

middle. The presence of the target or the lack thereof is 

obtained by comparing the cell under testing with adaptive 

threshold 𝑇. 𝑋0 , as shown in Figure 1. 

Goldstein proposed the Log-t detector [14], which attains 

the CFAR property for a class of clutter models, including the 

Log Normal and Weibull distributions. Then, Weinberg 

demonstrated that this detector attains the CFAR property 

when operating in Pareto Type 1 distributed clutter. The 

following proposed algorithm is an extension of the Log-t 

detector and it is designed to be CFAR for two parameters 

distributions. As such, it will be shown that the proposed 

algorithm is CFAR for the K, GP and CIG distributions. 

As shown in Figure 1, the content of the cell under test X0 

is compared to the adaptive threshold T to decide the presence 

(Hypothesis 𝐻1) or the absence (Hypothesis 𝐻0) of a target, 

according to the test: 

 

𝑋0

𝐻1

>
<
𝐻0

𝑇 =
𝑉𝑎𝑟(𝑋)𝜏 + 𝑀𝑒𝑎𝑛(𝑋)

𝑁
 (6) 

 

where: 𝜏 = Constant chosen to achieve a desired PFA 

 

 

 
 

Figure 1: Architecture of the proposed CFAR algorithms 

 

The expression of T was found intuitively using a trial and 

error method. It is clear that it is difficult to obtain an 

analytical expression of the PDF of the adaptive detection 

threshold in (6). For this, the CFAR property will be proved 

using the Monte-Carlo simulations.  

 

III. RESULTS AND DISCUSSIONS 

 

A. Performance Analysis of the Proposed Detector in 

Homogeneous Case 

 

1) GP Distribution Case 

The curves of Figure 2 and 3 show the variation of PFA as 

a function of τ for β=1, and β=3, which are the different 
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values of the shape parameter, a number of runs n = 107 and 

a number of reference cells N=8 and N=4 respectively. We 

observed that the curves almost overlap regardless the value 

of β and α. After several other tests, the value N=4 provided 

the best performance for false alarm regulation. The same 

tests were also conducted for the K and CIG distributions and 

the best results were also obtained for N=4. This is due to the 

fact that the proposed threshold in (6) is almost independent 

of the clutter parameters. 

 

2)  K Distribution Case 

Figure 4(a) plots PFA versus τ with varying ν for a K 

distributed clutter (𝛽=1), and it was compared with that of the 

Log-t detector (Figure 4(b)). We noted that the proposed 

processor is almost CFAR, especially for a shape parameter 

which is higher than 1 contrarily to the Log-t detector in [18]. 

 

3)  CIG Distribution Case 

Figure 5(a) and 5(b) repeated the plots of Figure 3 with 

different values of the shape parameter and two different 

values of the mean (μ=1 and μ=3). Here again, the same 

scenario was observed; that is the curves almost overlap, 

which proves that the proposed detector is CFAR to an 

acceptable extend for this type of clutter. 

 

B. Non Homogeneous Environment Case 

 

1)  GP Distribution Case 

 

 
 

(a) PFA against the scale factor 𝜏 with β=1, N=8 and n=107 

 

 
 

(b) PFA against the scale factor 𝜏 with β=3, N=8 and n=107 

 

Figure 2: Performance of the proposed detector in Generalized Pareto 
Clutter 

 

 
 

(a) PFA against the scale factor 𝜏 with β=1, N=4 and n=107 

 

 
 

(b) PFA against the scale factor 𝜏 with β=3, N=4 and n=107 

 

Figure 3: Performance of the proposed detector in Generalized Pareto 
Clutter 

 

2) K Distribution Case 

 

 
 

(a) PFA against the scale factor τ with β=1, N=4 and n=107 

 

 
 
(b) PFA against the factor τ of the log-t detector in K clutter with β=1, 

N=16 and n=107 

 
Figure 4: Performance of the proposed detector in K Clutter 
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3)  CIG Distribution Case 

 

 
 

(a) PFA against the scale factor τ with 𝜇 = 1, N=4 and n=107 

 

 
 

(b) PFA against the scale factor τ with 𝜇 = 3, N=4 and n=107 

 
Figure 5: Performance of the proposed detector in CIG Clutter 

 

C. Performance Analysis of the Proposed Detector in 

Presence of Interfering Targets Case  

The case of the presence of interfering targets was 

investigated by injecting one target in the reference cells with 

Interference to Clutter Ratio (ICR) equals to 10 dB for a GP 

K and CIG clutters. For this, the proposed detector was 

modified by taking N=5, and then censoring the largest 

sample. To test the robustness of the proposed detector, we 

plotted in Figure 6, 7 and 8 the PFA for different values of 

the parameters and compared them to the case of the absence 

of interfering targets. We noticed that the same pattern was 

observed which proves that the proposed detector conserves 

its performance. 

 

 
 

(a) PFA versus the scale factor τ with β=1, N=5 and n=107 
 

 
 

(b) PFA versus the scale factor τ with β=3, N=5 and n=107 

 
Figure 6: Performance of the proposed detector in GP clutter with one 

interfering target 

 

 
 

Figure 7: Performance of the proposed detector in K clutter with one 

interfering target. β=1, N=5 and n=107 

 

 
 
Figure 8: Performance of the proposed detector for the CIG distribution 

with one interfering targets. µ=3, N=5 and n=107 

 

IV. IPIX DATA 

 

In this section, we evaluated the false alarm regulation 

performance when applying the experimental data recorded 

by IPIX radar. The data were collected at Dartmouth and it is 

coherent and polarimetric with a range resolution of 3, 15 and 

30 m and azimuth beamwidth of 0.9° [20, 21]. Figure 9 shows 

that the CFAR property is maintained for relatively high 

values of PFA regardless the cell resolution. For low values 

of PFA the gap between the curves increases, but remains 

acceptable. This could be explained by the fact that low 

values of PFA require more samples and since this number is 

limited, the obtained results are less accurate.   
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Figure 9: PFA versus the scale factor τ with , N=4 and n=107 

 

V. CONCLUSION 

 

A non-parametric CFAR detector in the context of non-

coherent detection has been proposed for a class of CG 

clutters. The results obtained confirmed that the CFAR rule 

is almost conserved when the clutter conforms to the K, GP 

and CIG distributions. It was also shown that in the presence 

of one interfering target, the modified version of the proposed 

detector conserves the CFAR rule. Finally, our results were 

validated by using real data from the IPIX database for 

different range resolutions. In addition, the proposed detector 

used a reduced number of reference samples to compute the 

threshold, which is advantageous in real time applications. 

 

REFERENCES 

 
[1] M.A. Weiner, “Binary integration of fluctuating targets,” IEEE  

Transactions on Aerospace and Electronic Systems. Vol. 27, N° 1,   pp. 

11-17, 1991. 
[2] M. Schwartz, “A coincidence procedure for signal detection,” IRE 

Trans. Inf. Vol. 2, N°  4, pp. 135-139,   1956. 

[3] ]    M. Barkat. 'Signal Detection and Estimation' 2nd ed., Norwood, MA: 
Artech House, 2005. 

[4]  E. Ollila, David E. Tyler, V. Koivunen, and H. Vincent Poor, 

“Compound-Gaussian clutter modeling with an inverse Gaussian 
texture distribution,”, IEEE Signal Processing Letters.  Vol. 19, N° 12,   

pp. 876-879,  2012. 

[5]   Y. Dong, “Distribution of X-Band high resolution and high grazing 
angle sea clutter,” Electronic Warfare and Radar Division Defence 

Science and Technology Organization, 2006. 

[6]   E. Conte, A. De Maio, and C. Galdi, “Statistical analysis of real clutter 
at different range resolutions, “ IEEE Trans. Aerosp. Electron. Syst., 

Vol. 40, No. 3,  pp. 903-918, july. 2004. 

[7]  K. D. Ward, C. J. Baker, and S. Watts, “Maritime surveillance radar. 
Part 1: Radar  scattering from the ocean surface,” Inst. Elect. Eng. Proc. 

F, Vol. 137, No. 2,pp. 51-62, Apr. 1990. 

[8]  G.V. Weinberg, “Assessing Pareto fit ti high resolution high grazing 
angle sea clutter,”   Electronics Letters, Vol. 47, N°. 8,   pp. 516-517,   

2011. 

[9]  L. Rosenberg and S. Bocquet, “Application of the Pareto plus noise 
distribution to medium grazing angle sea clutter,”   IEEE journal of 

selected topics in applied earth observations and remote sensing,    Vol.  

8, N° 1,   pp. 255-261,   2015. 
[10] A. Balleri, A. Nehorai, J. Wang, “Maximum Likelihood Estimation for  

Compound-Gaussian Clutter with Inverse-Gamma Texture,”  IEEE 

Transactions on Aerospace and Electronic Systems, Vol. 43, N° 2,  pp. 
775-779,  2007. 

[11] J. L. Folks and R.S. Chikara, “Inverse Gaussian distribution and its 

application,” Electronics and communications in Japan (Part 3: 
Fundamental Electronic science ,  Vol.  77, N°. 1,   pp. 32-42,   1994. 

[12]  A. Mezache, M.Sahed , F. Soltani and I. Chalabi, “A model for non 

Rayleigh Clutter Amplitudes using Compound Inverse Gaussian 
Distribution : an experimentale analysis,” IEEE Transactions on 

Aerospace and Electronic Systems, Vol. 51, N° 1,  pp. 142-153,  2015. 

[13]  M. M. Finn, R. S. Johnson, “Adaptive detection mode with threshold 
control as a function of spatially sampled clutter level estimates,”  RCA  

Rev., 30, pp. 414-465,  1968.   
[14]  G. B. Goldstein, “False-Alarm Regulation in Log-Normal and Weibull  

Clutter,” IEEE Transactions on Aerospace and Electronic Systems, 

Vol. 9, N°. 1,  pp. 84-92,  1973. 
[15]  S.D.  Himonas, and  M. Barkat, “Automatic Censored CFAR Detection 

for non homogeneous Environments,” IEEE Transactions on 

Aerospace and Electronic Systems, Vol. 28, N° 1, pp. 286-304,   1992. 
[16]  E. Conte, M. Lops, G. Ricci, ‘Incoherent Radar Detection in 

Compound-Gaussian Clutter, » IEEE Trans. Aerosp. Electron. Syst., 

Vol. 35, No. 3, pp. 790-800, july. 1999. 
[17]  M.E. Smith, and P.K. Varshney, “Intelligent CFAR Processor Based 

on Data Variability,” IEEE Transactions on Aerospace and Electronic 

Systems,   Vol. 36, N° 3, pp.  837-847,   2000. 
[18]  A. Jakubiak, “False Alarm Probabilities for a Log-t Detector in K 

distributed Clutter”, Electronic Letters, Vol. 19, N°18, September 

2003. 

[19]  G. V. Weinberg and V. G. Glenny, “Enhancing Goldstein’s Log-t 

Detector in Pareto Distributed Clutter,” IEEE Transactions on 

Aerospace and Electronic Systems, Vol. 53, N° 2, pp. 1035-1044,   
2017. 

[20] A. Mezache., A. Bentoumi., M., Sahed., “Parameter estimation for 

compound-Gaussian clutter with inverse-Gaussian texture,” IET Radar  
Sonar and Navigation, vol. 11, no. 4,  pp. 586-596,  2017. 

[21] P. Chung, W. Roberts, and J. Bohme, “Recursive K-distribution 

parameters estimation,” IEEE Transactions on  Signal Processing, Vol.  
53, N°2,  pp. 397-402  ,2005. 

 

0 100 200 300 400 500 600 700 800 900
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0



L
o
g
1
0
(P

fa
)

 

 

Xh-15

Xh-3

Xh-30

Xh-15

Xv-3

Xv-30


