
 

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 11 No. 4   October – December 2019 31 

 

HW/SW Co-design and Prototyping Approach for 

Embedded Smart Camera: ADAS Case Study 
 

 

B. Senouci1, H. Rouis1, Q. Cabanes1, A.C. Ramdan2, D.S. Han3 
1Graduate Engineering School, ECE-Paris, INSEEC-U Research Center, Paris, France 

2University of Versailles Saint-Quentin en Yvelines, LISV Laboratory 
3Kyungpook National University, South Korea 

senouci@ece.fr  

 

 
Abstract— In 1968, Volkswagen integrated an electronic circuit 

as a new control fuel injection system, called the “Little Black 

Box”, it is considered as the first embedded system in the 

automotive industry. Currently, automobile constructors 

integrate several embedded systems into any of their new model 

vehicles. Behind these automobile’s electronics systems, a 

sophisticated Hardware/Software (HW/SW) architecture, 

which is based on heterogeneous components, and multiple 

CPUs is built. At present, they are more oriented toward vision-

based systems using tiny embedded smart camera. This vision-

based system in real time aspects represents one of the most 

challenging issues, especially in the domain of automobile’s 

applications. On the design side, one of the optimal solutions 

adopted by embedded systems designer for system performance, 

is to associate CPUs and hardware accelerators in the same 

design, in order to reduce the computational burden on the CPU 

and to speed-up the data processing. In this paper, we present a 

hardware platform-based design approach for fast embedded 

smart Advanced Driver Assistant System (ADAS) design and 

prototyping, as an alternative for the pure time-consuming 

simulation technique. Based on a Multi-CPU/FPGA platform, 

we introduced a new methodology/flow to design the different 

HW and SW parts of the ADAS system. Then, we shared our 

experience in designing and prototyping a HW/SW vision based 

on smart embedded system as an ADAS that helps to increase 

the safety of car’s drivers. We presented a real HW/SW 

prototype of the vision ADAS based on a Zynq FPGA. The 

system detects the fatigue/drowsiness state of the driver by 

monitoring the eyes closure and generates a real time alert. A 

new HW Skin Segmentation step to locate the eyes/face is 

proposed. Our new approach migrates the skin segmentation 

step from processing system (SW) to programmable logic (HW) 

taking the advantage of High-Level Synthesis (HLS) tool flow to 

accelerate the implementation, and the prototyping of the Vision 

based ADAS on a hardware platform. 

 

Index Terms—ADAS; Embedded Architecture; FPGA based 

design; Hardware Accelerators; High Level Synthesis; HW/SW 

Co-design; Machine learning; Real Time OS; Smart Cars. 

 

I. INTRODUCTION 

 

To replace the duel carburetors, Fastback and Square back 

system that control the fuel injection, in 1968, Volkswagen 

1600 integrated an electronic circuit (more than 200 

transistors, resistors, diodes and capacitors) as a new control 

fuel injection system. This system, called the “Little Black 

Box” [1] is the first embedded system for automotive 

industry. Presently, every year, automobile constructors 

integrate new embedded systems into their vehicles. On one 

hand, the massive usage and availability of these embedded 

devices on the marketplace bring products to a price 

consumer can pay for; on the other hand, scaling down of 

semiconductor technology below 14 nm will surely reach 

many of these devices, as it improves the diversity and 

availability of their application in automobile industry. These 

tiny devices integrated in automobiles collect and exchange 

information to control, optimize, and monitor many of the 

functions that just a few years ago were purely mechanical. 

During the last decade, this technological advances in 

electronics enabled the exponential growth of smart objects, 

which embed more and more intelligence. Their processing 

and communication abilities provide new solutions to the 

problems of automobile applications. Smart camera is a 

typical example of these systems. Basically, it is a video 

camera coupled to a computer vision system in an embedded 

package. The smart-camera refers to cameras that are able to 

acquire and process images in real-time. It captures high-level 

descriptions of the scene and analyses it. These devices could 

support a wide variety of applications, including human 

detection, tracking, motion analysis, and facial identification. 

On the other hand, EyeQ2 [2] system is one example of a 

single chip dedicated to automotive security applications 

using vision system, that consists of two 64- bit floating-point 

RISC 34KMIPS processors for scheduling and controlling the 

concurrent tasks, five vision computing engines and three 

vector microcode processors. 

These Real-time video processing applications require huge 

computational power. Even though multiplying the 

processing units in the same design was adopted as the main 

response for the increasing circuit power computation 

demand, an alternative solution is being approved to improve 

this demand and to allow for more sophisticated embedded 

systems with larger computational capabilities.  

Indeed, FPGAs, as parallel architectures, have the promised 

specialized hardware performance with high computational 

speed, lower clock frequencies and power consumption. They 

can implement the logics required by different types of 

applications by building customized hardware for each 

function. The main goal of this paper is to build a prototype 

of vision based ADAS (Advanced Driver Assistant System) 

as a smart camera capable to detect a fatigue state of the driver 

and generate alert. This system has to go through a 

hardware/software partitioning to make it fast and power 

efficient using multiprocessing and hardware accelerators. A 

prototype of the system is developed on a Multi-CPU/FPGA 

Zynq platform.  

The rest of the paper is organized as follows: the second 

section is dedicated to the state of the art for driver drowsiness 

detection and for embedded systems design techniques. 

Section 3 details our design flow and methodology. In section 

4, an insight of software part of the ADAS system (software 



Journal of Telecommunication, Electronic and Computer Engineering 

32 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 11 No. 4   October – December 2019  

application) is presented. In section 5, we detail the HW/SW 

co-design of the system. Section 6 presents the 

implementation and experimentation results, while the 

section 7 concludes the paper. 

 

II. RELATED WORKS AND APPROACHES 

 
A. ADAS Systems 

Improving safety in roads is one of the biggest concerns of 

automobile constructors [3] [4] [5]. To address this issue, 

Advanced Driver Assistant Systems (ADAS) have been 

introduced to provide the car’s drivers with an automatic 

warning to quickly evaluate a potentially dangerous situation. 

Many ADAS systems are available on the marketplace and 

have already been integrated in new cars. Parking-aid with its 

ultrasonic sensors or embedded cameras in the new cars 

generation illustrates the existing examples of these systems. 

Developing ADAS systems for smart and autonomous cars 

has been a goal for research departments since many years 

ago. In the 1980s, the Autonomous Land Vehicle project, 

funded by the Defense Advanced Research Projects Agency 

(DARPA), demonstrated an autonomous road-following 

vehicle with a speed up to 30 km/h, and it used laser radar, 

computer vision, and autonomous robotic control [6]. In 

2005, the winner team of the DARPA Grand Challenge made 

its car run autonomously for 212 Km in 6 hours and 53 

minutes [7]. In recent years, autonomous driving has been 

attracting more interest due to its great improvements in 

technologies. Similar to Google, Tesla also tested all its 

electric car with autopilot capabilities with some certain 

safety restrictions [8]. In Europe, the new ongoing project 

VEDECOM-AUTOPILOT also deals with the smart and 

autonomous vehicles [9] [10].    

Over the years, vehicle has been the focus of many safety 

improvements, including the seatbelts and airbags. Although 

these passive systems have clearly resulted in reduced 

damages and victims, the safety benefits of these passive 

systems have reached their maximum. As such, research 

community are focusing on active systems to reduce further 

crashes on the roads, taking advantage of the amazing 

progress in embedded electronic technologies. Active 

systems, such as adaptive cruise control, assisted braking, and 

lane keeping found on many of modern cars, should be 

complemented with smart embedded systems, such as vision-

based technologies and others, to achieve even greater safety 

improvements. 

  

B. Drowsiness/Fatigue detection using Smart cameras 

A study presented in 2014 by the AAA Foundation 

(American Automobile Association) [11] prove that drowsy 

drivers are involved in 21% of fatal crashes, and 16.5% from 

a previous study done in 2010. Therefore, drowsy driving is 

one of the rising problems that keeps causing deaths and 

indicting damages each year [12]. And even if people are 

aware of this problem, they keep driving when they are 

drowsy. Further, a study done by the same foundation in the 

USA in 2015 proved that one of three drivers admitted driving 

while he/she is tired. This condition needs to be addressed as 

when you are tired you have a hard time keeping your eyes 

open and focus on the road. Thus, this has made driver 

drowsiness detection as a field that has received attraction 

from researchers. In fact, many methods have been developed 

for this purpose [13] [14]. Based on the state of the art and as 

to our knowledge, the research works done in the field of 

driver drowsiness detection may be regrouped into three 

categories [15].  

The first is physiological field of study that based on brain 

related activities and biomedical signals. The most used 

methods in this category are the one based on 

Electroencephalogram (EEG) signals and 

Electrocardiography (ECG) [11] [16]. These methods have 

been reported to be highly authentic for detecting the state of 

driver drowsiness; however, they require a permanent 

electrode attached to the body of the driver, which often 

causes annoyance and discomfort to the driver. This is why 

they are not getting much attention in the market.  

The second category includes methods based on driving 

behavior, such as the use of steering wheel or the car's pedals. 

They basically evaluate variations in several signals recorded 

by CAN bus, which are easy acquired and does not bother the 

driver. These features made the integration of these methods 

to the market easier. However, they are subjected to 

constraints related to the kind of vehicle or driver and the road 

conditions. They usually require long training periods. 

The third category is based on visual assessment. It consists 

of using computer vision methods for monitoring driver's 

state from face images. These approaches are effective as 

sleepiness is reflected through the face and eyes appearance. 

These methods are considered as the most promising due to 

their accuracy and non-intrusiveness, and it is our concern in 

this paper. These techniques are based on studying facial 

features since fatigue and sleepiness can be detected through 

the face. There are several indicators used in this category to 

detect driver's drowsiness. Some based their decision on the 

frequency of yawning, others rely on the head pose, and eye 

gaze. In [17], Tayaba et al. developed a method for yawning 

detection. They used Viola and Jones method for detecting 

the face. The mouth region is then detected by an improved 

Fuzzy C-Means clustering technique that uses the spectral 

and the spatial information to segment the lips accurately. 

Trivedi et al. [18] used soft histograms of location-specific 

gradient orientation as the input to a support vector regressed 

for each degree-of-freedom in their method for head pose 

estimation. 

The method we used in this work relies on an FPGA based 

HW/SW co-design using the percentage of eyes closure or the 

PERCLOS indicator to detect drowsiness state. It consists of 

detecting, for a short period of time, the frames with the 

driver's eyes being closed and those with the driver's eyes 

opened and then computing the proportion of time the eyes 

were closed. There are several steps involved before 

estimating the accurate PERCLOS value. The first step is the 

Skin Segmentation followed by the face and eye detection 

then the eye state classification. A Region of Interest (ROI) is 

selected on the detected face boundary to locate the eyes and 

then classify the eye state as open or closed. The method is 

further explained in the following points [19]. 
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Figure 1: Generic Design and prototyping Flow for Smart ADAS Systems 

 

 

C. Smart ADAS design/validation Techniques 

In the related works, the main alternatives design and 

validation techniques open to ADAS designers are 

simulation, and hardware platform-based design. Simulation-

based design, with virtual prototyping of embedded 

architecture using Software-based simulation has been 

widely used at different level of abstraction. It is also widely 

used even when running on a high-end using simulation 

environment framework, with a complete system level 

simulator (correspondingly expensive). It runs six to ten 

orders of magnitude, slower than the hardware FPGA 

platforms, which makes the technique is an extremely time 

consuming and inefficient [20]. 

  
Table 1 

Smart Embedded Design Techniques 

 

 
 

In practice, general software validation can be performed 

on only small portions of the design. What designers need is 

an alternative that will allow them to get to the market quickly 

with low risk and at low cost. In this context, the use of Multi-

CPU/FPGA platform becomes extremely attractive. They are 

designed to achieve higher integration levels in low-power 

low-cost. 

Opportunities provided by these hardware platforms, 

combined with the evolution toward heterogeneous HW/SW, 

many processors architectures suggest new methods for 

designing and prototyping embedded systems. Another 

advantage is that hardware platforms implemented using 

FPGAs are “reconfigurable”. Designers now have the 

freedom to select a set of hardware and software IPs to create 

a specialized smart embedded system. Table I presents a 

comparison between a platform based and simulation 

techniques for embedded design. 
 

III. SMART EMBEDDED SYSTEMS DESIGN FLOW 

 

Our approach for smart embedded systems design and 

validation is based on a platform-based design approach 

using reconfigurable Multi-CPU/FPGA platform; we propose 

a design flow which enables seamless validation of 

multithreaded applications on the top of a hardware platform. 

This flow can be functional for all HW/SW architectures. 

Figure 1 presents the design flow. The investigation of the 

different techniques for smart embedded design and 

validation shows that we can find basically two 

configurations: simulation-based and platform-based. 

Speed Complexity Characteristics

Multi-CPU/FPGA 

Platform Based

Equal to Embedded 

Systems speed
+++

Very Close to the final 

Implementation

Simulation Based
Very slow (RTL 

level)
+++++

Bottleneck to Simulate 

Heterogeneous 

Components



Journal of Telecommunication, Electronic and Computer Engineering 

34 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 11 No. 4   October – December 2019  

However, in our new approach, we tried to propose a 

complementary methodology between the two techniques. 

Then, the first step in the design flow is to develop a pure 

software application based on the algorithm specification and 

to validate it on Visual Studio. A profiling step was done 

afterwards to decide which parts of the application should be 

turned into hardware accelerators. Once the HW/SW 

partitioning was done, we used the Vivado HLS tool to 

generate VHDL code from C++ as an HW-IP (Intellectual 

Property). The HW-IP’s software driver is also generated at 

the same time. Then, the new HW-IP was integrated into the 

design using Vivado design suite, and SDK (Software Design 

Kit) was used to generate the booting files for the ZC702 

FPGA board. We give more details about the different steps 

in the following sections. 

 

IV. APPLICATION DEVELOPMENT 

 
A. Drowsiness Detection Method 

In Figure 2, we show the software application task graph 

that we developed for fatigue detection [19]. For eyes 

detection, we used the Viola and Jones method for object 

detection. This method uses Haar Features, which are weak 

classifier and Adaboost algorithm to build a strong classifier.  

 

 
Figure 2: Fatigue Driver Detection Application task graph 

 

However, the execution time of this method increases 

tremendously with the size of the searching zone. Therefore, 

we added a skin segmentation step with a contour detection 

for face extraction. This would allow us to use the eyes 

detection method only in the ROI (Region of Interest), which 

is the face. 

 

B. Skin Segmentation 

In the skin segmentation step, each pixel of the captured 

frame is determined whether it belongs to the skin or not. In 

order to accomplish that, we resorted to the YCrCb color 

model for image representation. The YCrCb color 

representation is based on three components: The luminance 

Y and two chrominance components Crand Cb. The 

transformation to convert from RGB to YCrCb color space 

is shown in equation 1: 
This model has proven very efficient for skin segmentation 

according to many references such as the work done by 

Gururaj et al. [21]. This is mostly due to the fact that his color 

representation separates the luminance component from the 

others making the skin detection less dependent on lightning 

variations than the other color spaces. In YCbCr color space, 

the two chrominance components Cr, and Cb can be 

efficiently used to define explicitly the skin region. As shown 

in the Figure 3,  we tested the Cr and Cb values for each pixel 

of the frame. It was verified the condition of the pixel is 

considered to be skin; Otherwise, it is outputted as 

background.  

 

 

(1) 

 
Figure 3: Skin Segmentation 

 

 
Figure 4: Skin Segmentation for different skin color 

 

C. Face Detection 

Once the non-skin area is eliminated from the image, the 

next step is to find the face contour. This is done by grouping 

all skin areas of the image into contours and then finding the 

biggest contour. In fact, we assume that the camera is going 

to be fixed in front of the driver and the biggest skin area is 

going to contain the face. However, we encountered a 

problem during this step. When the driver is wearing glasses, 

the face is going to be divided into two contours, and the 

biggest contour will not necessarily contain the eyes. 

Therefore, we resorted to add a morphological transformation 

for closing the contours. After finding the face contour, we 

extract the zone from the original image and start using the 

classifier to locate the driver's eyes in the region as developed 

in the following section. 

 

D. Eyes detection 

In this paper, Viola and Jones method is used to train two 

classifiers: one for opened eyes and the other for closed eyes. 

This method involves using the Adaboost algorithm to form 

a strong classifier out of the weak ones. The weak classifiers 

chosen in the method are the Haar Features. 

Image 
Acquisition

Skin 
Segmentation

Face 
Detection

Eyes 
Detection

Classification
Decision 
Making

Videos Camera

Drowsiness 
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OpenCV based
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E. Haar features 

The features used in this work for building the eyes 

classifier are the Haar Features. These features involved in 

the disposition of rectangles used to describe a certain object. 

There are 160,000 features and based on the number of 

rectangles, they are divided into three categories. For more 

details about Haar features implementation, refer to [22]. 

 

F. Decision making 

In this work, we based our decision-making process on the 

PERCLOS indicator on PERcentage of eyes CLOSure. In fact, 

PERCLOS is the percentage of duration with closed eyes in a 

time interval. Ocular measure that has proven very effective is 

widely used to indicate drowsiness. Then, we used the 

classifier for opened eyes. In case opened eyes are detected, 

we incremented the number of frames with opened eyes; 

Otherwise, we used the classifier for closed eyes (Figure 5). 

This procedure was repeated for each frame for an interval of 

three minutes. Then, we used Equation 2 to measure the 

PERCLOS. If the value of the PERCLOS surpasses a 

threshold of 25%, it means that the driver is tired, and an alert 

should be generated. 

 
𝑃𝐸𝑅𝐶𝐿𝑂𝑆

=
𝐹𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑒𝑦𝑒𝑠

𝐹𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑜𝑝𝑒𝑛𝑒𝑑 𝑒𝑦𝑒𝑠 + 𝐹𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑒𝑦𝑒𝑠
 

(2) 

 

We chose this procedure to measure the PERCLOS because 

the driver's eyes are opened most of the time. Thus, the 

probability that the frame contains opened eyes is higher than 

that it contains closed eyes. Therefore, it would require less 

computations and time to start searching for opened eyes, 

then the closed ones. This is followed by doing both for each 

frame or to start with closed eyes search. 

 

 
Figure 5: Decision Making 

G. Multi-CPU/FPGA Based Profiling:  

Once the application for drowsiness detection was validated 

on Visual Studio, we did a profiling step. The profiling of an 

application is to measure the execution time for each task in 

the application. This allows us to detect which parts should 

be passed to the Programmable Logic (PL) as hardware 

accelerators. The results of the profiling step are shown in 

Figure 6. The task that takes the most of the execution time is 

the eyes detection part that uses Adaboost, which is 

predictable since machine learning algorithms are known to 

take significant execution time. However, Adaboost 

algorithm has been already migrated for a HW 

implementation and presented in earlier work [20] [23]. 

Therefore, the next candidate for hardware acceleration was 

the Skin segmentation part, which represents 22% of the 

whole execution time of the application. 

 
Figure 6: Application Profiling (Execution Time)-Full Software 

 

V. HW/SW BASED CO-DESIGN 

 

The main struggle in Hardware design is to balance between 

speed and resource consumption. It is important to use the 

available resources efficiently in order to meet the targeted 

speed requirements, while maintaining a good match between 

the architecture and the algorithms for implementation [24] 

[25]. 

An IP (Intellectual Property) core is a block of 

preconfigured logic or data used in making a field 

programmable gate array (FPGA). The performance of the 

design is strongly influenced by the choice and the 

configuration of its building blocks (IP cores) and the 

connections between them. It is also important to design 

customized IP cores efficiently for image processing. In the 

current design, the frame capture from the camera is first 

stored in the external DDR memory, then transferred to the 

programmable logic through the HP (High Performance) 

interface. Once the data is available for the AXI VDMA 

(Video Direct Memory Access) IP core, it is converted into a 

stream. Then, the data stream is processed using the image 

processing IP for the skin segmentation and stored again in 

external memory using the VDMA before being used by the 

application running on the processor. 

 

A. PL IP Cores 

The Processing System 7 IP core is the software interface 

around the Processing System. It forms the logic connection 

between the PS and the PL and helps integrate the different 

IPs with the processing system and link the PS-PL interface 

signals to their corresponding IPs in the programmable logic. 

Besides, the GUI-based PS instance allows enabling or 

disabling the I/O ports and peripherals, configuring PL 

Clocks, interrupts and PS internal clocks and generating PS 

configuration registers. The Vivado design tool generates a 

wrapper that instantiates the processing system section of 

Zynq Programmable SoC for the programmable logic and 

external board logic. It includes unaltered connectivity and, 

for some signals, some logic functions. These configurations 

are also used to initialize associated PS registers in the 

“ps7_init.tcl” or First Stage Boot Loader (FSBL). Therefore, 

the FSBL configures the design including the PS and PL. It is 

configured to use: 

 Two HP (HP0 and HP1) and GP0 ports used to 

transfer data between PS and PL. We tried the same 

HP port for both the HDMI and the skin segmentation, 

but there was an interference and the screen monitor 

started to glitch, so we separated the two channels. 

 UART to connect serially to the board. 

 Memory controller to directly connect AXI_HP to 

DDR interface. 

 Two Fabric clocks that serve as frequency sources to 

the PL IPs. 

Face 
Detection

Eyes Opened Eyes Closed

Frames with
Opened eyes ++

Frames with
Closed eyes ++

YES YES
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 Two PS reset signals. 

 Three asynchronous Fabric interrupts issued by the PL 

are routed to the PS. 

 

B. Skin Segmentation: HW/SW Co-design 

As mentioned before, we used Vivado HLS to create the 

skin segmentation IP. The image processing IP contains the 

hardware function to do the skin segmentation function. It 

takes an RGB image as input and outputs a binary image as a 

result of the segmentation. The design was done using Vivado 

HLS (High Level Synthesis), which allowed transforming 

C++ OpenCV functions into Hardware Description Language 

(HDL). 

Since the data throughput is limited by the data access 

pattern, multiple memory accesses represent the main 

bottleneck of image processing. Therefore, stream processing 

can overcome this bottleneck. In fact, when streaming data, 

the input is read once from memory then passed directly to be 

processed by a sequence of operations rather than writing the 

results back to memory after each operation. Consequently, 

the benefits of using video streaming in the three IPs could be 

significant. With the stream-based approach, accessing pixel 

in an image is not simple and flexible. In fact, the function 

AXIvideo2Mat consumes the AXI4 stream data and fills it in 

the image of mat format. An operator FI loads sequentially a 

pixel from an image and saves it to Scalar<N, T> having the 

same channels and depth as the image. The operator FI stores 

sequentially, in an image, a pixel, having the same channels 

and depth as the image. The function Mat2AXIvideo converts 

the Mat format of data to AXI4 stream. Another 

inconvenience for using stream-based approach is that once 

the data has been read from a stream, it is not in the stream 

anymore. Therefore, if the data from the stream is required 

again, it must be cached. 

 

C. Design Optimization:  

Depending on the programming technique with Vivado 

HLS, the implementation resulted in the derivation of a set of 

characteristics, principally in terms of latency and used 

resources. For instance, assuming that we want to calculate 

the average of an input array containing 10 numbers. We 

would have nine addition operations followed by a 

multiplication by 0.1 to calculate the average. There are three 

different ways to implement these operations in hardware and 

each implementation has its characteristics: 

 The first implementation focuses on the hardware 

resources and uses only one adder and one multiplier, 

and has a latency of 11 clock cycles. This is because a 

new operation cannot start until the last one has 

finished 

 Based on the target technology, the HLS process 

determines that three addition operations can be 

scheduled per clock cycle, while meeting the timing 

constraints. 

 This means that we will be using more hardware 

resources but we reduce latency and increase the 

throughput. 

 The final implementation possibility focuses on the 

latency rather than the resources. In fact, if DSP48x 

slices are used in place of fabric resources, all 

operations can take place within one clock cycle. This 

corresponds to the costliest implementation in terms 

of resources, requiring nine DSP48x slices in total 

(one each for the first eight additions, with the last 

addition and multiplication combined into a single 

DSP48x slice); however, it results in a latency of only 

one clock cycle. We used this possibility in order to 

meet the timing constraints; otherwise, Vivado HLS 

may insert pipelining registers to meet the timing. 

By default, the HLS process focuses on the hardware 

resources, and therefore it uses the first possibility. This 

would result in long latency and low throughput, which may 

not meet the requirements of the application. However, when 

designing with vivado HLS, there are ways to constrain and 

direct the HLS processes of scheduling and binding, and thus 

optimizing in a different way. In fact, there are two ways to 

control the High-Level Synthesis process and influence the 

results: 

Constraints: The designer may impose certain constrains 

on the synthesis process, such as specifying the minimum 

clock period. This makes it easy to ensure that the 

implementation meets the requirements of the system into 

which it will be integrated. On the other hand, he can also 

place constraints on the hardware utilization. 

Directives: There are various types of available directive, 

which map to certain features of the code, enabling the 

designer to dictate, for example, how the HLS engine treats 

loops or arrays identified in the C code, or the latency of 

particular operations. Therefore, with the knowledge of the 

available directives, the designer can optimize according to 

application requirements. 

Data flow directive: In a Data flow region, memory 

channels are inserted between tasks, and each task is executed 

as soon as its input data is available. They could be 

implemented using Ping-Pong or FIFO buffers. 

Function inline: This directive removes all function 

hierarchy. It is used to enable logic optimization across 

function boundaries and improve latency/interval by reducing 

function call overhead. 

 
Figure 7: Three possible outcomes from HLS for an example function 

 

Pipelining: Pipelining is a method of increasing the 

concurrency of the hardware produced, and thus improving 

the throughput. It refers to the segmentation of logical 

processing stages. These stages can each process different 

data simultaneously. This means that data dependencies that 

group operations are broken up, which would allow parallel 

execution of the stages. In hardware terms, the method used 

to achieve this separation of stages is to insert registers 

between the new, smaller stages, which allows data samples 

to be held in memory. The insertion of pipeline registers may 

also cause an increase in the maximum supported clock 

frequency. Figure 7 shows an example of three possible 

outcomes from HLS for an example function. 
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VI. IMPLEMENTATION AND EXPERIMENTATIONS 

RESULTS 

 
A. Hardware Architecture: 

The hardware architecture is illustrated in Figure 8, it is a 

Vivado based and shows the different hardware blocks 

around the Processing System (two processors ARM) [26].  

The Processing System IP core is the software interface 

around the Processing System (PS). It forms the logic 

connection between the PS and the PL and helps integrate the 

different IPs with the processing system and link the PS-PL 

interface signals to their corresponding IPs in the 

programmable logic. Besides, the GUI-based PS instance 

allows enabling or disabling the I/O ports and peripherals, 

configuring PL Clocks, interrupts and PS internal clocks and 

generating PS configuration registers.  

The Vivado design tool generates a wrapper that instantiates 

the processing system section of Zynq Programmable SoC for 

the programmable logic and external board logic. It includes 

unaltered connectivity and, for some signals, some logic 

functions. These configurations are also used to initialize 

associated PS registers in the ps7_init.tcl or First Stage Boot 

Loader. Therefore, the FSBL configures the design, including 

the PS and PL. It is configured to use: 

 Two HP (HP0 and HP1) and GP0 ports 

used to transfer data between PS and PL. We tried 

the same HP port for both the HDMI, the skin 

segmentation but there was an interference, and 

the screen monitor started to glitch, so we 

separated the two channels. 

 UART to connect serially to the board. 

 Memory controller to directly connect 

AXI_HP to DDR interface. 

 Two Fabric clocks that serve as frequency 

sources to the PL IPs. 

 Two PS reset signals. 

Three asynchronous Fabric interrupts issued by the PL are 

routed to the PS. 

 

 

 
Figure 8: Vivado based Hardware Design Blocks 

 

B. System Integration  

The goal of this work is to have an application for the driver 

drowsiness detection running on top of an OS and 

communicating with the added hardware accelerator (Figure 

9). 

 

 
Figure 9: HW/SW Architecture 

 

However, before building the application on the OS, a 

validation step was conducted for the added IP bloc of skin 

segmentation. This validation is done in the Bare-Metal mode 

[11]. 

Figure 9 represents the platform architecture consisting of 

two main parts: The Software/OS and the Hardware. The 

Software/OS part represents the application driver running on 

a specific OS in order to control the hardware accelerator. The 

Hardware part represents the FPGA in which the hardware 

accelerator is designed. Those two parts are communicating 

through the platform system bus to exchange data. 

 

C. Bare Metal Application:  

A Bare-Metal is a software system without an operating 

system. This kind of applications is developed using SDK and 

is written in C using drivers for each IP. The drivers are 

provided when exporting the design from Vivado design suite 

to SDK. In fact, Vivado design suite creates: 

 A hardware description XML file presenting the 

processors, peripherals, memory map information 

 A bitstream file containing the data used to program 

the PL with custom logic. 

 These files are then exported to created SDK 

 PS configuration data used by the First Stage 

Bootloader (FSBL). 

 A collection of libraries and drivers forming the bare-

metal Board Support Package (BSP). It represents the 

lowest layer of the application as shown in Figure 1. 
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The bare metal application is developed, debugged, and 

deployed using the hardware platform data and the BSP in a 

single-threaded runtime environment. It consists of a series of 

instruction to read from and write to the PL registers: 

 To write in a register: XilfiOut32 (Register_Adress, 

Value); 

 To read from a register: Xil_In32 (Register_Adress); 

 

D. Linux Boot process:  

The processor first solution is Zynq. The first step is to boot 

the CPU in the PS so that it will be in charge of configuring 

both the PS and PL. Zynq supports four master boot methods 

[27], which are:  

 QSPI (16MB, 50MB/Sec) 

 NOR (64MB, 20MB/Sec) 

 NAND (tested up to 1 GB, 10MB/Sec) 

 SD (Up to 32GB) 

and one slave boot method, namely the JTAG for debug and 

development used for standalone applications. Since we are 

using an OS, the boot method used was SD boot. Linux is an 

open-source operating system. Linux consumes a small 

amount of memory throughput. However, its overhead could 

be negligible since the processing speed of the Cortex A9 is 

important. Linux runs on both Arm cores (Symmetric Multi-

Processing). We used a Linux operating system because it 

includes many features such as symmetric multiprocessing, 

which allows communication between the two CPUs. 

Besides, Multitasking allows us to run many concurrent 

processes and threads on the system. The Zynq boot process 

comprises three required stages before executing Linux 

kernel. The Zynq boot process can be divided into three high 

level stages: 

Stage 0: BootROM 

On power up, the CPU0 begins the stage boot process and 

starts executing code from its boot ROM. Boot ROM 

initializes Cortex A9 CPU 0. CPU0 checks the CRC on ROM 

code and reads the boot mode pins to determine the stage 1 

boot mode. If it is in SD mode, the SD interface must be 

connected to pre-defined MIO pins. The FSBL (First Stage 

Boot Loader) is typically stored in this external non-volatile 

memory. The CPU0 copies this file to OCM (192KB max). 

Stage 1: First Stage Boot Loader 

In the second stage, the FSBL uses the PS7 Init data to 

initialize the processing system blocks (PLL, external 

memory controller and MIO). It optionally configures the PL 

with Bitstream. Besides, the FSBL loads the second stage 

boot loader to the DDR memory and transfers execution to it. 

FSBL can be generated automatically using the template 

provided by SDK. 

Stage 2: Second Stage Boot Loader (U-Boot) 

The third stage is characterized by loading the Linux kernel. 

When the processor is powered on, the operating system is on 

the SD card and not in the memory. The U-Boot is an open 

source GPL cross-platform bootloader that locates the OS and 

brings it into memory. Then, it starts the Kernel image from 

memory and passes the device tree to Linux. Besides, U-Boot 

provides network access, reads and writes arbitrary memory 

locations and configures and accesses hardware peripheral 

devices. Toolchain is an essential part in any build system. It 

is the main programs that creates the arm binaries from the 

source codes. These programs are built to do cross compiling, 

which means to generate a code for a processor architecture 

other than the one in which the tool is running. The cross 

Toolchain used for Linux is from the GNU compiler 

collection. 

The U-Boot source code and build scripts are fed to the 

cross Toolchain that outputs the arm binaries. The U-Boot is 

downloaded using Git and built as described in the wiki [12]. 

 

E. Boot Image 

The Zynq boot image is created using SDK. It contains the 

FSBL, the hardware bitstream and the U-Boot. The Bootgen 

is used for constructing boot image. It merges the .BIT and 

.ELF files into a boot image using a .BIF file. 

 

F. The device tree  

The device tree is a file that describes the hardware to the 

Linux kernel so that the drivers get the information required 

to operate properly. The information is used by Linux during 

the kernel boot process to map device parameters, such as 

device type, memory location and interrupt signals. The 

kernel initializes the driver for each device during the boot 

process. In the device tree, the physical address of IP cores is 

mentioned as well as the priority of the interrupts used by a 

device driver. Besides, the device tree contains the boot 

arguments that configure the kernel at boot time. It includes 

the information about the location of the file system to load. 

A sample of the device tree that contains information about 

IP block is as shown in the following Figure 10: 

 

 
Figure 10: Device Tree for the Skin Segmentation IP   

 
The Device tree DTS file is compiled with the DTC device 

tree compiler to create a Device Tree Binary, which is a 

machine-readable binary. 

 

G. Linux Application 

A Linux application is developed to configure and control 

the different drivers, to run the skin segmentation functions 

and to use the resulting image in our main application. First, 

the Linux application initializes the VDMA and the 

Skin_Segmentation IPs. Then, it receives the image either 

from a webcam stream or from a stored image. After that, it 

uses the VDMA unit to load the image from memory and turn 

it into a stream of data that will then be passed to the skin 

segmentation unit. In fact, the application writes the input for 

the AXI VDMA frame buffer. Therefore, the hardware will 

automatically begin processing. The result is then written in 

VDMA frame buffer. As soon as the VDMA finishes writing 

the resulting frame in memory, the software starts processing 

it. 

In order to accomplish these tasks, drivers for both the 

VDMA and our image processing IP are used. Two kinds of 

drivers are used: Kernel drivers and User-space drivers. 

Kernel driver are compiled when creating the kernel image 

and the User space drivers are included in the Linux 

application. User-space drivers are used more because they 

are simpler and easily modified. In fact, since Kernel drivers 

are added to the kernel image, any modification of the driver 

requires the recompilation of the kernel image which takes a 

long time. Hence, we opted for the user-space drivers. 

1 skin_segmentation_0 : skin_segmentation@43c00000 {
2 compatible = "xlnx, skin—segmentation—1.0" ;
3 reg = <0x43c00000 0x10000>;
4 xlnx , s—axi—control—bus--add--width = <0x5>;
5 xlnx , s—axi—control—bus—data—width = <0x20 >;};
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H. Drivers 

The drivers provide access to physical hardware resources 

Figure 11. Many drivers are used to configure, run and control 

the different node in the design and to manage memory 

accesses. 

 

 
Figure 11: Device Tree for the Skin Segmentation IP 

 

VII. RESULTS 

 

In this section, we share our results regarding this research 

work. We used two classifiers. One for detecting opened eyes 

and the other for closed eyes. We used the classifier provided 

by the library OpenCV for open eyes since it showed 

satisfying results, and we built our own classifier for the 

closed eyes. We used the "Closed eyes in the wild" database 

as samples for closed eyes, which contains 2423 subjects 

from different origins, and we gathered our own database for 

background containing 3063 images that do not contain 

closed eyes. The method was on a series of videos and in real 

time with a camera, and it managed to detect drowsiness 

states.  

 

A. Booting files 

We used a pre-built Ubuntu-based OS by Linaro. The 

Ubuntu image is re-compiled using ARM-cross-compiler. 

The Linux kernel runs on the dual core Arm-9 Cortex 

processor chip. In addition, a fully featured desktop from 

Ubuntu/Linaro contained in the root file system, allows the 

ZC702 to work as a personal computer using a USB 

Keyboard and mouse, along with an HDMI monitor. In Table 

2, we presented the code size of the different software files, 

Ubuntu image, the boot file created using SDK design tool, 

and the device-tree with the different drivers for the Zynq- 

based architecture. 

 
Table 2 

Software Code Size 

 

 
 

B. IP acceleration 

We have tested the acceleration accomplished by this 

hardware implementation on a series of 750x450 images from 

the internet and we recorded an average of 11.57 times 

improvement of execution time of the skin segmentation step. 

The values of the hardware and software average execution 

times are shown in Figure 12 and both have been measured 

on the board's 666 MHz ARM processors. 

 
Figure 12: Hardware Acceleration 

 

This acceleration in execution time is due to the inherent 

parallelism in the algorithm. Inherent parallelism implies the 

property of a system that allows one to decompose a software 

task into elements that can run concurrently. This is a 

characteristic of FPGA. However, not all algorithms can be 

accelerated with FPGA. In fact, it is easier to parallelize a 

streaming input application (e.g. image processing) than a 

finite state machine. For some algorithms, radical 

acceleration can be achieved by using wholly different 

algorithms, which are better aligned to the massive 

parallelism of an FPGA compared to an inherently sequential 

processor methodology. 

 

C. HW/SW results comparison 

The results on a 750x450 image are shown in the Figure 13, 

where we have the original image before segmentation as 

shown in Figure 13-(c). The results of the skin segmentation 

is produced by our hardware block as shown in Figure 13-(a) 

and with OpenCV functions Software as shown in Figure 13-

(b) both on the zc702 board and the comparison between the 

two results (Figure 13-(d)). 

 
Figure 13: HW vs SW Skin Segmentation Results 

 
Figure 13-(d) shows that our hardware acceleration for the 

skin segmentation task did not affect the result. 

 

D. Resources consumption 

One of the most important things that we need to pay 

attention in HW/SW partitioning is the hardware 

consumption because hardware is expensive. In fact, you pay 

a large price in transistors or other real-world costs for every 

1 int devmem = open ( "/dev/mem" , O_RDWR | O_SYNC) ;
2
3     uint32_t * vdma0 = ( uint32_t *)mmap(NULL, MAP_LENGTH, PROT_READ | PROT_WRITE, 
4     MAP_SHARED, devmem, ( of f_t )VDMA_0_BASEADDR) ;
5
6  // Read out VDMA 0
7 p r i n t f ( "============= VDMA 0 =============\n" ) ;
8 for ( o f f s e t=0x00 , i =0; o f f s e t <=0xF4 ; o f f s e t+=4, ++i )
9 {
10 value = in32 (vdma0 , o f f s e t ) ;
11 p r i n t f ( "0x%02x  %s = 0x%08x\n" , o f f s e t ,
12 vdmaRegisterNames [ i ] , value ) ;
13 }
15 munmap(vdma0 , MAP_LENGTH) ;
16 c l o s e (devmem) ;
17 return 0 ;

Embedded OS Kernel Boot Device Tree

Linux-Linaro 3.09 M-Bytes 4.16 M-Bytes 10 K-Bytes
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twist and turn in the design. Our IP block (yellow parts 

highlighted in Figure 6) consumed a tiny portion of the 

hardware resources provided by the ZC702. It used 3% of the 

Look-Up Tables (LUT) around 1% of the Flip Flops (FF) and 

nearly 3% of the Digital Signal Processing (DSP), as shown 

in the Table 2. The parts highlighted in blue are the parts 

consumed by other blocks, such as HDMI block for the screen 

monitor or the SPDIF block. These blocks are just used to 

validate the design and will not be needed for the main 

application. 

 

VIII. CONCLUSION 

 
In this paper, we shared our experience presenting a Multi-

CPU/FPGA platform-based design approach for fast HW/SW 

embedded smart Advanced Driver Assistant System (ADAS) 

design and prototyping, as an alternative for the pure time-

consuming simulation technique. Based on a Multi-

CPU/FPGA platform, we introduced a new methodology and 

a flow to design the different HW and SW parts of the ADAS 

system for smart vehicle applications. Then, we have 

implemented a vision based ADAS for driver fatigue 

detection. During the design process, we built a HW/SW 

architectural decision to achieve the optimal balance between 

performance, area, and power consumption. The 

implemented solution is used to show the efficiency of the 

proposed Multi-CPU/FPGA based HW/SW co-design 

approach, and to evaluate the cost and benefits of each one. 

We first started by implementing the image processing 

pipeline using Vivado IDE. Then, the bare metal application 

is developed to configure and control the different 

implemented IPs. After that, the custom contrast 

enhancement IPs are developed added to the image 

processing pipeline and the design is deployed on the ZC702 

board. Finally, the hardware and software design are 

implemented and tested on the board and the results are 

analyzed. Future work should focus on the automation of the 

design steps of ADAS systems. 
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