

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 11 No. 4 October – December 2019 31

HW/SW Co-design and Prototyping Approach for

Embedded Smart Camera: ADAS Case Study

B. Senouci1, H. Rouis1, Q. Cabanes1, A.C. Ramdan2, D.S. Han3
1Graduate Engineering School, ECE-Paris, INSEEC-U Research Center, Paris, France

2University of Versailles Saint-Quentin en Yvelines, LISV Laboratory
3Kyungpook National University, South Korea

senouci@ece.fr

Abstract— In 1968, Volkswagen integrated an electronic circuit

as a new control fuel injection system, called the “Little Black

Box”, it is considered as the first embedded system in the

automotive industry. Currently, automobile constructors

integrate several embedded systems into any of their new model

vehicles. Behind these automobile’s electronics systems, a

sophisticated Hardware/Software (HW/SW) architecture,

which is based on heterogeneous components, and multiple

CPUs is built. At present, they are more oriented toward vision-

based systems using tiny embedded smart camera. This vision-

based system in real time aspects represents one of the most

challenging issues, especially in the domain of automobile’s

applications. On the design side, one of the optimal solutions

adopted by embedded systems designer for system performance,

is to associate CPUs and hardware accelerators in the same

design, in order to reduce the computational burden on the CPU

and to speed-up the data processing. In this paper, we present a

hardware platform-based design approach for fast embedded

smart Advanced Driver Assistant System (ADAS) design and

prototyping, as an alternative for the pure time-consuming

simulation technique. Based on a Multi-CPU/FPGA platform,

we introduced a new methodology/flow to design the different

HW and SW parts of the ADAS system. Then, we shared our

experience in designing and prototyping a HW/SW vision based

on smart embedded system as an ADAS that helps to increase

the safety of car’s drivers. We presented a real HW/SW

prototype of the vision ADAS based on a Zynq FPGA. The

system detects the fatigue/drowsiness state of the driver by

monitoring the eyes closure and generates a real time alert. A

new HW Skin Segmentation step to locate the eyes/face is

proposed. Our new approach migrates the skin segmentation

step from processing system (SW) to programmable logic (HW)

taking the advantage of High-Level Synthesis (HLS) tool flow to

accelerate the implementation, and the prototyping of the Vision

based ADAS on a hardware platform.

Index Terms—ADAS; Embedded Architecture; FPGA based

design; Hardware Accelerators; High Level Synthesis; HW/SW

Co-design; Machine learning; Real Time OS; Smart Cars.

I. INTRODUCTION

To replace the duel carburetors, Fastback and Square back

system that control the fuel injection, in 1968, Volkswagen

1600 integrated an electronic circuit (more than 200

transistors, resistors, diodes and capacitors) as a new control

fuel injection system. This system, called the “Little Black

Box” [1] is the first embedded system for automotive

industry. Presently, every year, automobile constructors

integrate new embedded systems into their vehicles. On one

hand, the massive usage and availability of these embedded

devices on the marketplace bring products to a price

consumer can pay for; on the other hand, scaling down of

semiconductor technology below 14 nm will surely reach

many of these devices, as it improves the diversity and

availability of their application in automobile industry. These

tiny devices integrated in automobiles collect and exchange

information to control, optimize, and monitor many of the

functions that just a few years ago were purely mechanical.

During the last decade, this technological advances in

electronics enabled the exponential growth of smart objects,

which embed more and more intelligence. Their processing

and communication abilities provide new solutions to the

problems of automobile applications. Smart camera is a

typical example of these systems. Basically, it is a video

camera coupled to a computer vision system in an embedded

package. The smart-camera refers to cameras that are able to

acquire and process images in real-time. It captures high-level

descriptions of the scene and analyses it. These devices could

support a wide variety of applications, including human

detection, tracking, motion analysis, and facial identification.

On the other hand, EyeQ2 [2] system is one example of a

single chip dedicated to automotive security applications

using vision system, that consists of two 64- bit floating-point

RISC 34KMIPS processors for scheduling and controlling the

concurrent tasks, five vision computing engines and three

vector microcode processors.

These Real-time video processing applications require huge

computational power. Even though multiplying the

processing units in the same design was adopted as the main

response for the increasing circuit power computation

demand, an alternative solution is being approved to improve

this demand and to allow for more sophisticated embedded

systems with larger computational capabilities.

Indeed, FPGAs, as parallel architectures, have the promised

specialized hardware performance with high computational

speed, lower clock frequencies and power consumption. They

can implement the logics required by different types of

applications by building customized hardware for each

function. The main goal of this paper is to build a prototype

of vision based ADAS (Advanced Driver Assistant System)

as a smart camera capable to detect a fatigue state of the driver

and generate alert. This system has to go through a

hardware/software partitioning to make it fast and power

efficient using multiprocessing and hardware accelerators. A

prototype of the system is developed on a Multi-CPU/FPGA

Zynq platform.

The rest of the paper is organized as follows: the second

section is dedicated to the state of the art for driver drowsiness

detection and for embedded systems design techniques.

Section 3 details our design flow and methodology. In section

4, an insight of software part of the ADAS system (software

Journal of Telecommunication, Electronic and Computer Engineering

32 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 11 No. 4 October – December 2019

application) is presented. In section 5, we detail the HW/SW

co-design of the system. Section 6 presents the

implementation and experimentation results, while the

section 7 concludes the paper.

II. RELATED WORKS AND APPROACHES

A. ADAS Systems

Improving safety in roads is one of the biggest concerns of

automobile constructors [3] [4] [5]. To address this issue,

Advanced Driver Assistant Systems (ADAS) have been

introduced to provide the car’s drivers with an automatic

warning to quickly evaluate a potentially dangerous situation.

Many ADAS systems are available on the marketplace and

have already been integrated in new cars. Parking-aid with its

ultrasonic sensors or embedded cameras in the new cars

generation illustrates the existing examples of these systems.

Developing ADAS systems for smart and autonomous cars

has been a goal for research departments since many years

ago. In the 1980s, the Autonomous Land Vehicle project,

funded by the Defense Advanced Research Projects Agency

(DARPA), demonstrated an autonomous road-following

vehicle with a speed up to 30 km/h, and it used laser radar,

computer vision, and autonomous robotic control [6]. In

2005, the winner team of the DARPA Grand Challenge made

its car run autonomously for 212 Km in 6 hours and 53

minutes [7]. In recent years, autonomous driving has been

attracting more interest due to its great improvements in

technologies. Similar to Google, Tesla also tested all its

electric car with autopilot capabilities with some certain

safety restrictions [8]. In Europe, the new ongoing project

VEDECOM-AUTOPILOT also deals with the smart and

autonomous vehicles [9] [10].

Over the years, vehicle has been the focus of many safety

improvements, including the seatbelts and airbags. Although

these passive systems have clearly resulted in reduced

damages and victims, the safety benefits of these passive

systems have reached their maximum. As such, research

community are focusing on active systems to reduce further

crashes on the roads, taking advantage of the amazing

progress in embedded electronic technologies. Active

systems, such as adaptive cruise control, assisted braking, and

lane keeping found on many of modern cars, should be

complemented with smart embedded systems, such as vision-

based technologies and others, to achieve even greater safety

improvements.

B. Drowsiness/Fatigue detection using Smart cameras

A study presented in 2014 by the AAA Foundation

(American Automobile Association) [11] prove that drowsy

drivers are involved in 21% of fatal crashes, and 16.5% from

a previous study done in 2010. Therefore, drowsy driving is

one of the rising problems that keeps causing deaths and

indicting damages each year [12]. And even if people are

aware of this problem, they keep driving when they are

drowsy. Further, a study done by the same foundation in the

USA in 2015 proved that one of three drivers admitted driving

while he/she is tired. This condition needs to be addressed as

when you are tired you have a hard time keeping your eyes

open and focus on the road. Thus, this has made driver

drowsiness detection as a field that has received attraction

from researchers. In fact, many methods have been developed

for this purpose [13] [14]. Based on the state of the art and as

to our knowledge, the research works done in the field of

driver drowsiness detection may be regrouped into three

categories [15].

The first is physiological field of study that based on brain

related activities and biomedical signals. The most used

methods in this category are the one based on

Electroencephalogram (EEG) signals and

Electrocardiography (ECG) [11] [16]. These methods have

been reported to be highly authentic for detecting the state of

driver drowsiness; however, they require a permanent

electrode attached to the body of the driver, which often

causes annoyance and discomfort to the driver. This is why

they are not getting much attention in the market.

The second category includes methods based on driving

behavior, such as the use of steering wheel or the car's pedals.

They basically evaluate variations in several signals recorded

by CAN bus, which are easy acquired and does not bother the

driver. These features made the integration of these methods

to the market easier. However, they are subjected to

constraints related to the kind of vehicle or driver and the road

conditions. They usually require long training periods.

The third category is based on visual assessment. It consists

of using computer vision methods for monitoring driver's

state from face images. These approaches are effective as

sleepiness is reflected through the face and eyes appearance.

These methods are considered as the most promising due to

their accuracy and non-intrusiveness, and it is our concern in

this paper. These techniques are based on studying facial

features since fatigue and sleepiness can be detected through

the face. There are several indicators used in this category to

detect driver's drowsiness. Some based their decision on the

frequency of yawning, others rely on the head pose, and eye

gaze. In [17], Tayaba et al. developed a method for yawning

detection. They used Viola and Jones method for detecting

the face. The mouth region is then detected by an improved

Fuzzy C-Means clustering technique that uses the spectral

and the spatial information to segment the lips accurately.

Trivedi et al. [18] used soft histograms of location-specific

gradient orientation as the input to a support vector regressed

for each degree-of-freedom in their method for head pose

estimation.

The method we used in this work relies on an FPGA based

HW/SW co-design using the percentage of eyes closure or the

PERCLOS indicator to detect drowsiness state. It consists of

detecting, for a short period of time, the frames with the

driver's eyes being closed and those with the driver's eyes

opened and then computing the proportion of time the eyes

were closed. There are several steps involved before

estimating the accurate PERCLOS value. The first step is the

Skin Segmentation followed by the face and eye detection

then the eye state classification. A Region of Interest (ROI) is

selected on the detected face boundary to locate the eyes and

then classify the eye state as open or closed. The method is

further explained in the following points [19].

HW/SW Co-design and Prototyping Approach for Embedded Smart Camera: ADAS Case Study

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 11 No. 4 October – December 2019 33

Figure 1: Generic Design and prototyping Flow for Smart ADAS Systems

C. Smart ADAS design/validation Techniques

In the related works, the main alternatives design and

validation techniques open to ADAS designers are

simulation, and hardware platform-based design. Simulation-

based design, with virtual prototyping of embedded

architecture using Software-based simulation has been

widely used at different level of abstraction. It is also widely

used even when running on a high-end using simulation

environment framework, with a complete system level

simulator (correspondingly expensive). It runs six to ten

orders of magnitude, slower than the hardware FPGA

platforms, which makes the technique is an extremely time

consuming and inefficient [20].

Table 1

Smart Embedded Design Techniques

In practice, general software validation can be performed

on only small portions of the design. What designers need is

an alternative that will allow them to get to the market quickly

with low risk and at low cost. In this context, the use of Multi-

CPU/FPGA platform becomes extremely attractive. They are

designed to achieve higher integration levels in low-power

low-cost.

Opportunities provided by these hardware platforms,

combined with the evolution toward heterogeneous HW/SW,

many processors architectures suggest new methods for

designing and prototyping embedded systems. Another

advantage is that hardware platforms implemented using

FPGAs are “reconfigurable”. Designers now have the

freedom to select a set of hardware and software IPs to create

a specialized smart embedded system. Table I presents a

comparison between a platform based and simulation

techniques for embedded design.

III. SMART EMBEDDED SYSTEMS DESIGN FLOW

Our approach for smart embedded systems design and

validation is based on a platform-based design approach

using reconfigurable Multi-CPU/FPGA platform; we propose

a design flow which enables seamless validation of

multithreaded applications on the top of a hardware platform.

This flow can be functional for all HW/SW architectures.

Figure 1 presents the design flow. The investigation of the

different techniques for smart embedded design and

validation shows that we can find basically two

configurations: simulation-based and platform-based.

Speed Complexity Characteristics

Multi-CPU/FPGA

Platform Based

Equal to Embedded

Systems speed
+++

Very Close to the final

Implementation

Simulation Based
Very slow (RTL

level)
+++++

Bottleneck to Simulate

Heterogeneous

Components

Journal of Telecommunication, Electronic and Computer Engineering

34 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 11 No. 4 October – December 2019

However, in our new approach, we tried to propose a

complementary methodology between the two techniques.

Then, the first step in the design flow is to develop a pure

software application based on the algorithm specification and

to validate it on Visual Studio. A profiling step was done

afterwards to decide which parts of the application should be

turned into hardware accelerators. Once the HW/SW

partitioning was done, we used the Vivado HLS tool to

generate VHDL code from C++ as an HW-IP (Intellectual

Property). The HW-IP’s software driver is also generated at

the same time. Then, the new HW-IP was integrated into the

design using Vivado design suite, and SDK (Software Design

Kit) was used to generate the booting files for the ZC702

FPGA board. We give more details about the different steps

in the following sections.

IV. APPLICATION DEVELOPMENT

A. Drowsiness Detection Method

In Figure 2, we show the software application task graph

that we developed for fatigue detection [19]. For eyes

detection, we used the Viola and Jones method for object

detection. This method uses Haar Features, which are weak

classifier and Adaboost algorithm to build a strong classifier.

Figure 2: Fatigue Driver Detection Application task graph

However, the execution time of this method increases

tremendously with the size of the searching zone. Therefore,

we added a skin segmentation step with a contour detection

for face extraction. This would allow us to use the eyes

detection method only in the ROI (Region of Interest), which

is the face.

B. Skin Segmentation

In the skin segmentation step, each pixel of the captured

frame is determined whether it belongs to the skin or not. In

order to accomplish that, we resorted to the YCrCb color

model for image representation. The YCrCb color

representation is based on three components: The luminance

Y and two chrominance components Crand Cb. The

transformation to convert from RGB to YCrCb color space

is shown in equation 1:
This model has proven very efficient for skin segmentation

according to many references such as the work done by

Gururaj et al. [21]. This is mostly due to the fact that his color

representation separates the luminance component from the

others making the skin detection less dependent on lightning

variations than the other color spaces. In YCbCr color space,

the two chrominance components Cr, and Cb can be

efficiently used to define explicitly the skin region. As shown

in the Figure 3, we tested the Cr and Cb values for each pixel

of the frame. It was verified the condition of the pixel is

considered to be skin; Otherwise, it is outputted as

background.

(1)

Figure 3: Skin Segmentation

Figure 4: Skin Segmentation for different skin color

C. Face Detection

Once the non-skin area is eliminated from the image, the

next step is to find the face contour. This is done by grouping

all skin areas of the image into contours and then finding the

biggest contour. In fact, we assume that the camera is going

to be fixed in front of the driver and the biggest skin area is

going to contain the face. However, we encountered a

problem during this step. When the driver is wearing glasses,

the face is going to be divided into two contours, and the

biggest contour will not necessarily contain the eyes.

Therefore, we resorted to add a morphological transformation

for closing the contours. After finding the face contour, we

extract the zone from the original image and start using the

classifier to locate the driver's eyes in the region as developed

in the following section.

D. Eyes detection

In this paper, Viola and Jones method is used to train two

classifiers: one for opened eyes and the other for closed eyes.

This method involves using the Adaboost algorithm to form

a strong classifier out of the weak ones. The weak classifiers

chosen in the method are the Haar Features.

Image
Acquisition

Skin
Segmentation

Face
Detection

Eyes
Detection

Classification
Decision
Making

Videos Camera

Drowsiness
Detection

OpenCV based

HW/SW Co-design and Prototyping Approach for Embedded Smart Camera: ADAS Case Study

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 11 No. 4 October – December 2019 35

E. Haar features

The features used in this work for building the eyes

classifier are the Haar Features. These features involved in

the disposition of rectangles used to describe a certain object.

There are 160,000 features and based on the number of

rectangles, they are divided into three categories. For more

details about Haar features implementation, refer to [22].

F. Decision making

In this work, we based our decision-making process on the

PERCLOS indicator on PERcentage of eyes CLOSure. In fact,

PERCLOS is the percentage of duration with closed eyes in a

time interval. Ocular measure that has proven very effective is

widely used to indicate drowsiness. Then, we used the

classifier for opened eyes. In case opened eyes are detected,

we incremented the number of frames with opened eyes;

Otherwise, we used the classifier for closed eyes (Figure 5).

This procedure was repeated for each frame for an interval of

three minutes. Then, we used Equation 2 to measure the

PERCLOS. If the value of the PERCLOS surpasses a

threshold of 25%, it means that the driver is tired, and an alert

should be generated.

𝑃𝐸𝑅𝐶𝐿𝑂𝑆

=
𝐹𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑒𝑦𝑒𝑠

𝐹𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑜𝑝𝑒𝑛𝑒𝑑 𝑒𝑦𝑒𝑠 + 𝐹𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑒𝑦𝑒𝑠

(2)

We chose this procedure to measure the PERCLOS because

the driver's eyes are opened most of the time. Thus, the

probability that the frame contains opened eyes is higher than

that it contains closed eyes. Therefore, it would require less

computations and time to start searching for opened eyes,

then the closed ones. This is followed by doing both for each

frame or to start with closed eyes search.

Figure 5: Decision Making

G. Multi-CPU/FPGA Based Profiling:

Once the application for drowsiness detection was validated

on Visual Studio, we did a profiling step. The profiling of an

application is to measure the execution time for each task in

the application. This allows us to detect which parts should

be passed to the Programmable Logic (PL) as hardware

accelerators. The results of the profiling step are shown in

Figure 6. The task that takes the most of the execution time is

the eyes detection part that uses Adaboost, which is

predictable since machine learning algorithms are known to

take significant execution time. However, Adaboost

algorithm has been already migrated for a HW

implementation and presented in earlier work [20] [23].

Therefore, the next candidate for hardware acceleration was

the Skin segmentation part, which represents 22% of the

whole execution time of the application.

Figure 6: Application Profiling (Execution Time)-Full Software

V. HW/SW BASED CO-DESIGN

The main struggle in Hardware design is to balance between

speed and resource consumption. It is important to use the

available resources efficiently in order to meet the targeted

speed requirements, while maintaining a good match between

the architecture and the algorithms for implementation [24]

[25].

An IP (Intellectual Property) core is a block of

preconfigured logic or data used in making a field

programmable gate array (FPGA). The performance of the

design is strongly influenced by the choice and the

configuration of its building blocks (IP cores) and the

connections between them. It is also important to design

customized IP cores efficiently for image processing. In the

current design, the frame capture from the camera is first

stored in the external DDR memory, then transferred to the

programmable logic through the HP (High Performance)

interface. Once the data is available for the AXI VDMA

(Video Direct Memory Access) IP core, it is converted into a

stream. Then, the data stream is processed using the image

processing IP for the skin segmentation and stored again in

external memory using the VDMA before being used by the

application running on the processor.

A. PL IP Cores

The Processing System 7 IP core is the software interface

around the Processing System. It forms the logic connection

between the PS and the PL and helps integrate the different

IPs with the processing system and link the PS-PL interface

signals to their corresponding IPs in the programmable logic.

Besides, the GUI-based PS instance allows enabling or

disabling the I/O ports and peripherals, configuring PL

Clocks, interrupts and PS internal clocks and generating PS

configuration registers. The Vivado design tool generates a

wrapper that instantiates the processing system section of

Zynq Programmable SoC for the programmable logic and

external board logic. It includes unaltered connectivity and,

for some signals, some logic functions. These configurations

are also used to initialize associated PS registers in the

“ps7_init.tcl” or First Stage Boot Loader (FSBL). Therefore,

the FSBL configures the design including the PS and PL. It is

configured to use:

 Two HP (HP0 and HP1) and GP0 ports used to

transfer data between PS and PL. We tried the same

HP port for both the HDMI and the skin segmentation,

but there was an interference and the screen monitor

started to glitch, so we separated the two channels.

 UART to connect serially to the board.

 Memory controller to directly connect AXI_HP to

DDR interface.

 Two Fabric clocks that serve as frequency sources to

the PL IPs.

Face
Detection

Eyes Opened Eyes Closed

Frames with
Opened eyes ++

Frames with
Closed eyes ++

YES YES

Journal of Telecommunication, Electronic and Computer Engineering

36 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 11 No. 4 October – December 2019

 Two PS reset signals.

 Three asynchronous Fabric interrupts issued by the PL

are routed to the PS.

B. Skin Segmentation: HW/SW Co-design

As mentioned before, we used Vivado HLS to create the

skin segmentation IP. The image processing IP contains the

hardware function to do the skin segmentation function. It

takes an RGB image as input and outputs a binary image as a

result of the segmentation. The design was done using Vivado

HLS (High Level Synthesis), which allowed transforming

C++ OpenCV functions into Hardware Description Language

(HDL).

Since the data throughput is limited by the data access

pattern, multiple memory accesses represent the main

bottleneck of image processing. Therefore, stream processing

can overcome this bottleneck. In fact, when streaming data,

the input is read once from memory then passed directly to be

processed by a sequence of operations rather than writing the

results back to memory after each operation. Consequently,

the benefits of using video streaming in the three IPs could be

significant. With the stream-based approach, accessing pixel

in an image is not simple and flexible. In fact, the function

AXIvideo2Mat consumes the AXI4 stream data and fills it in

the image of mat format. An operator FI loads sequentially a

pixel from an image and saves it to Scalar<N, T> having the

same channels and depth as the image. The operator FI stores

sequentially, in an image, a pixel, having the same channels

and depth as the image. The function Mat2AXIvideo converts

the Mat format of data to AXI4 stream. Another

inconvenience for using stream-based approach is that once

the data has been read from a stream, it is not in the stream

anymore. Therefore, if the data from the stream is required

again, it must be cached.

C. Design Optimization:

Depending on the programming technique with Vivado

HLS, the implementation resulted in the derivation of a set of

characteristics, principally in terms of latency and used

resources. For instance, assuming that we want to calculate

the average of an input array containing 10 numbers. We

would have nine addition operations followed by a

multiplication by 0.1 to calculate the average. There are three

different ways to implement these operations in hardware and

each implementation has its characteristics:

 The first implementation focuses on the hardware

resources and uses only one adder and one multiplier,

and has a latency of 11 clock cycles. This is because a

new operation cannot start until the last one has

finished

 Based on the target technology, the HLS process

determines that three addition operations can be

scheduled per clock cycle, while meeting the timing

constraints.

 This means that we will be using more hardware

resources but we reduce latency and increase the

throughput.

 The final implementation possibility focuses on the

latency rather than the resources. In fact, if DSP48x

slices are used in place of fabric resources, all

operations can take place within one clock cycle. This

corresponds to the costliest implementation in terms

of resources, requiring nine DSP48x slices in total

(one each for the first eight additions, with the last

addition and multiplication combined into a single

DSP48x slice); however, it results in a latency of only

one clock cycle. We used this possibility in order to

meet the timing constraints; otherwise, Vivado HLS

may insert pipelining registers to meet the timing.

By default, the HLS process focuses on the hardware

resources, and therefore it uses the first possibility. This

would result in long latency and low throughput, which may

not meet the requirements of the application. However, when

designing with vivado HLS, there are ways to constrain and

direct the HLS processes of scheduling and binding, and thus

optimizing in a different way. In fact, there are two ways to

control the High-Level Synthesis process and influence the

results:

Constraints: The designer may impose certain constrains

on the synthesis process, such as specifying the minimum

clock period. This makes it easy to ensure that the

implementation meets the requirements of the system into

which it will be integrated. On the other hand, he can also

place constraints on the hardware utilization.

Directives: There are various types of available directive,

which map to certain features of the code, enabling the

designer to dictate, for example, how the HLS engine treats

loops or arrays identified in the C code, or the latency of

particular operations. Therefore, with the knowledge of the

available directives, the designer can optimize according to

application requirements.

Data flow directive: In a Data flow region, memory

channels are inserted between tasks, and each task is executed

as soon as its input data is available. They could be

implemented using Ping-Pong or FIFO buffers.

Function inline: This directive removes all function

hierarchy. It is used to enable logic optimization across

function boundaries and improve latency/interval by reducing

function call overhead.

Figure 7: Three possible outcomes from HLS for an example function

Pipelining: Pipelining is a method of increasing the

concurrency of the hardware produced, and thus improving

the throughput. It refers to the segmentation of logical

processing stages. These stages can each process different

data simultaneously. This means that data dependencies that

group operations are broken up, which would allow parallel

execution of the stages. In hardware terms, the method used

to achieve this separation of stages is to insert registers

between the new, smaller stages, which allows data samples

to be held in memory. The insertion of pipeline registers may

also cause an increase in the maximum supported clock

frequency. Figure 7 shows an example of three possible

outcomes from HLS for an example function.

HW/SW Co-design and Prototyping Approach for Embedded Smart Camera: ADAS Case Study

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 11 No. 4 October – December 2019 37

VI. IMPLEMENTATION AND EXPERIMENTATIONS

RESULTS

A. Hardware Architecture:

The hardware architecture is illustrated in Figure 8, it is a

Vivado based and shows the different hardware blocks

around the Processing System (two processors ARM) [26].

The Processing System IP core is the software interface

around the Processing System (PS). It forms the logic

connection between the PS and the PL and helps integrate the

different IPs with the processing system and link the PS-PL

interface signals to their corresponding IPs in the

programmable logic. Besides, the GUI-based PS instance

allows enabling or disabling the I/O ports and peripherals,

configuring PL Clocks, interrupts and PS internal clocks and

generating PS configuration registers.

The Vivado design tool generates a wrapper that instantiates

the processing system section of Zynq Programmable SoC for

the programmable logic and external board logic. It includes

unaltered connectivity and, for some signals, some logic

functions. These configurations are also used to initialize

associated PS registers in the ps7_init.tcl or First Stage Boot

Loader. Therefore, the FSBL configures the design, including

the PS and PL. It is configured to use:

 Two HP (HP0 and HP1) and GP0 ports

used to transfer data between PS and PL. We tried

the same HP port for both the HDMI, the skin

segmentation but there was an interference, and

the screen monitor started to glitch, so we

separated the two channels.

 UART to connect serially to the board.

 Memory controller to directly connect

AXI_HP to DDR interface.

 Two Fabric clocks that serve as frequency

sources to the PL IPs.

 Two PS reset signals.

Three asynchronous Fabric interrupts issued by the PL are

routed to the PS.

Figure 8: Vivado based Hardware Design Blocks

B. System Integration

The goal of this work is to have an application for the driver

drowsiness detection running on top of an OS and

communicating with the added hardware accelerator (Figure

9).

Figure 9: HW/SW Architecture

However, before building the application on the OS, a

validation step was conducted for the added IP bloc of skin

segmentation. This validation is done in the Bare-Metal mode

[11].

Figure 9 represents the platform architecture consisting of

two main parts: The Software/OS and the Hardware. The

Software/OS part represents the application driver running on

a specific OS in order to control the hardware accelerator. The

Hardware part represents the FPGA in which the hardware

accelerator is designed. Those two parts are communicating

through the platform system bus to exchange data.

C. Bare Metal Application:

A Bare-Metal is a software system without an operating

system. This kind of applications is developed using SDK and

is written in C using drivers for each IP. The drivers are

provided when exporting the design from Vivado design suite

to SDK. In fact, Vivado design suite creates:

 A hardware description XML file presenting the

processors, peripherals, memory map information

 A bitstream file containing the data used to program

the PL with custom logic.

 These files are then exported to created SDK

 PS configuration data used by the First Stage

Bootloader (FSBL).

 A collection of libraries and drivers forming the bare-

metal Board Support Package (BSP). It represents the

lowest layer of the application as shown in Figure 1.

AMBA / AXI Peripheral Bus

USB/JTAG USB 2.0

SD-RAM Ethernet

UART HDMI

Hardware

Memory

Controller

CPU

ARM

1

ARM

2

Software

OS

Journal of Telecommunication, Electronic and Computer Engineering

38 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 11 No. 4 October – December 2019

The bare metal application is developed, debugged, and

deployed using the hardware platform data and the BSP in a

single-threaded runtime environment. It consists of a series of

instruction to read from and write to the PL registers:

 To write in a register: XilfiOut32 (Register_Adress,

Value);

 To read from a register: Xil_In32 (Register_Adress);

D. Linux Boot process:

The processor first solution is Zynq. The first step is to boot

the CPU in the PS so that it will be in charge of configuring

both the PS and PL. Zynq supports four master boot methods

[27], which are:

 QSPI (16MB, 50MB/Sec)

 NOR (64MB, 20MB/Sec)

 NAND (tested up to 1 GB, 10MB/Sec)

 SD (Up to 32GB)

and one slave boot method, namely the JTAG for debug and

development used for standalone applications. Since we are

using an OS, the boot method used was SD boot. Linux is an

open-source operating system. Linux consumes a small

amount of memory throughput. However, its overhead could

be negligible since the processing speed of the Cortex A9 is

important. Linux runs on both Arm cores (Symmetric Multi-

Processing). We used a Linux operating system because it

includes many features such as symmetric multiprocessing,

which allows communication between the two CPUs.

Besides, Multitasking allows us to run many concurrent

processes and threads on the system. The Zynq boot process

comprises three required stages before executing Linux

kernel. The Zynq boot process can be divided into three high

level stages:

Stage 0: BootROM

On power up, the CPU0 begins the stage boot process and

starts executing code from its boot ROM. Boot ROM

initializes Cortex A9 CPU 0. CPU0 checks the CRC on ROM

code and reads the boot mode pins to determine the stage 1

boot mode. If it is in SD mode, the SD interface must be

connected to pre-defined MIO pins. The FSBL (First Stage

Boot Loader) is typically stored in this external non-volatile

memory. The CPU0 copies this file to OCM (192KB max).

Stage 1: First Stage Boot Loader

In the second stage, the FSBL uses the PS7 Init data to

initialize the processing system blocks (PLL, external

memory controller and MIO). It optionally configures the PL

with Bitstream. Besides, the FSBL loads the second stage

boot loader to the DDR memory and transfers execution to it.

FSBL can be generated automatically using the template

provided by SDK.

Stage 2: Second Stage Boot Loader (U-Boot)

The third stage is characterized by loading the Linux kernel.

When the processor is powered on, the operating system is on

the SD card and not in the memory. The U-Boot is an open

source GPL cross-platform bootloader that locates the OS and

brings it into memory. Then, it starts the Kernel image from

memory and passes the device tree to Linux. Besides, U-Boot

provides network access, reads and writes arbitrary memory

locations and configures and accesses hardware peripheral

devices. Toolchain is an essential part in any build system. It

is the main programs that creates the arm binaries from the

source codes. These programs are built to do cross compiling,

which means to generate a code for a processor architecture

other than the one in which the tool is running. The cross

Toolchain used for Linux is from the GNU compiler

collection.

The U-Boot source code and build scripts are fed to the

cross Toolchain that outputs the arm binaries. The U-Boot is

downloaded using Git and built as described in the wiki [12].

E. Boot Image

The Zynq boot image is created using SDK. It contains the

FSBL, the hardware bitstream and the U-Boot. The Bootgen

is used for constructing boot image. It merges the .BIT and

.ELF files into a boot image using a .BIF file.

F. The device tree

The device tree is a file that describes the hardware to the

Linux kernel so that the drivers get the information required

to operate properly. The information is used by Linux during

the kernel boot process to map device parameters, such as

device type, memory location and interrupt signals. The

kernel initializes the driver for each device during the boot

process. In the device tree, the physical address of IP cores is

mentioned as well as the priority of the interrupts used by a

device driver. Besides, the device tree contains the boot

arguments that configure the kernel at boot time. It includes

the information about the location of the file system to load.

A sample of the device tree that contains information about

IP block is as shown in the following Figure 10:

Figure 10: Device Tree for the Skin Segmentation IP

The Device tree DTS file is compiled with the DTC device

tree compiler to create a Device Tree Binary, which is a

machine-readable binary.

G. Linux Application

A Linux application is developed to configure and control

the different drivers, to run the skin segmentation functions

and to use the resulting image in our main application. First,

the Linux application initializes the VDMA and the

Skin_Segmentation IPs. Then, it receives the image either

from a webcam stream or from a stored image. After that, it

uses the VDMA unit to load the image from memory and turn

it into a stream of data that will then be passed to the skin

segmentation unit. In fact, the application writes the input for

the AXI VDMA frame buffer. Therefore, the hardware will

automatically begin processing. The result is then written in

VDMA frame buffer. As soon as the VDMA finishes writing

the resulting frame in memory, the software starts processing

it.

In order to accomplish these tasks, drivers for both the

VDMA and our image processing IP are used. Two kinds of

drivers are used: Kernel drivers and User-space drivers.

Kernel driver are compiled when creating the kernel image

and the User space drivers are included in the Linux

application. User-space drivers are used more because they

are simpler and easily modified. In fact, since Kernel drivers

are added to the kernel image, any modification of the driver

requires the recompilation of the kernel image which takes a

long time. Hence, we opted for the user-space drivers.

1 skin_segmentation_0 : skin_segmentation@43c00000 {
2 compatible = "xlnx, skin—segmentation—1.0" ;
3 reg = <0x43c00000 0x10000>;
4 xlnx , s—axi—control—bus--add--width = <0x5>;
5 xlnx , s—axi—control—bus—data—width = <0x20 >;};

HW/SW Co-design and Prototyping Approach for Embedded Smart Camera: ADAS Case Study

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 11 No. 4 October – December 2019 39

H. Drivers

The drivers provide access to physical hardware resources

Figure 11. Many drivers are used to configure, run and control

the different node in the design and to manage memory

accesses.

Figure 11: Device Tree for the Skin Segmentation IP

VII. RESULTS

In this section, we share our results regarding this research

work. We used two classifiers. One for detecting opened eyes

and the other for closed eyes. We used the classifier provided

by the library OpenCV for open eyes since it showed

satisfying results, and we built our own classifier for the

closed eyes. We used the "Closed eyes in the wild" database

as samples for closed eyes, which contains 2423 subjects

from different origins, and we gathered our own database for

background containing 3063 images that do not contain

closed eyes. The method was on a series of videos and in real

time with a camera, and it managed to detect drowsiness

states.

A. Booting files

We used a pre-built Ubuntu-based OS by Linaro. The

Ubuntu image is re-compiled using ARM-cross-compiler.

The Linux kernel runs on the dual core Arm-9 Cortex

processor chip. In addition, a fully featured desktop from

Ubuntu/Linaro contained in the root file system, allows the

ZC702 to work as a personal computer using a USB

Keyboard and mouse, along with an HDMI monitor. In Table

2, we presented the code size of the different software files,

Ubuntu image, the boot file created using SDK design tool,

and the device-tree with the different drivers for the Zynq-

based architecture.

Table 2

Software Code Size

B. IP acceleration

We have tested the acceleration accomplished by this

hardware implementation on a series of 750x450 images from

the internet and we recorded an average of 11.57 times

improvement of execution time of the skin segmentation step.

The values of the hardware and software average execution

times are shown in Figure 12 and both have been measured

on the board's 666 MHz ARM processors.

Figure 12: Hardware Acceleration

This acceleration in execution time is due to the inherent

parallelism in the algorithm. Inherent parallelism implies the

property of a system that allows one to decompose a software

task into elements that can run concurrently. This is a

characteristic of FPGA. However, not all algorithms can be

accelerated with FPGA. In fact, it is easier to parallelize a

streaming input application (e.g. image processing) than a

finite state machine. For some algorithms, radical

acceleration can be achieved by using wholly different

algorithms, which are better aligned to the massive

parallelism of an FPGA compared to an inherently sequential

processor methodology.

C. HW/SW results comparison

The results on a 750x450 image are shown in the Figure 13,

where we have the original image before segmentation as

shown in Figure 13-(c). The results of the skin segmentation

is produced by our hardware block as shown in Figure 13-(a)

and with OpenCV functions Software as shown in Figure 13-

(b) both on the zc702 board and the comparison between the

two results (Figure 13-(d)).

Figure 13: HW vs SW Skin Segmentation Results

Figure 13-(d) shows that our hardware acceleration for the

skin segmentation task did not affect the result.

D. Resources consumption

One of the most important things that we need to pay

attention in HW/SW partitioning is the hardware

consumption because hardware is expensive. In fact, you pay

a large price in transistors or other real-world costs for every

1 int devmem = open ("/dev/mem" , O_RDWR | O_SYNC) ;
2
3 uint32_t * vdma0 = (uint32_t *)mmap(NULL, MAP_LENGTH, PROT_READ | PROT_WRITE,
4 MAP_SHARED, devmem, (of f_t)VDMA_0_BASEADDR) ;
5
6 // Read out VDMA 0
7 p r i n t f ("============= VDMA 0 =============\n") ;
8 for (o f f s e t=0x00 , i =0; o f f s e t <=0xF4 ; o f f s e t+=4, ++i)
9 {
10 value = in32 (vdma0 , o f f s e t) ;
11 p r i n t f ("0x%02x %s = 0x%08x\n" , o f f s e t ,
12 vdmaRegisterNames [i] , value) ;
13 }
15 munmap(vdma0 , MAP_LENGTH) ;
16 c l o s e (devmem) ;
17 return 0 ;

Embedded OS Kernel Boot Device Tree

Linux-Linaro 3.09 M-Bytes 4.16 M-Bytes 10 K-Bytes

Journal of Telecommunication, Electronic and Computer Engineering

40 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 11 No. 4 October – December 2019

twist and turn in the design. Our IP block (yellow parts

highlighted in Figure 6) consumed a tiny portion of the

hardware resources provided by the ZC702. It used 3% of the

Look-Up Tables (LUT) around 1% of the Flip Flops (FF) and

nearly 3% of the Digital Signal Processing (DSP), as shown

in the Table 2. The parts highlighted in blue are the parts

consumed by other blocks, such as HDMI block for the screen

monitor or the SPDIF block. These blocks are just used to

validate the design and will not be needed for the main

application.

VIII. CONCLUSION

In this paper, we shared our experience presenting a Multi-

CPU/FPGA platform-based design approach for fast HW/SW

embedded smart Advanced Driver Assistant System (ADAS)

design and prototyping, as an alternative for the pure time-

consuming simulation technique. Based on a Multi-

CPU/FPGA platform, we introduced a new methodology and

a flow to design the different HW and SW parts of the ADAS

system for smart vehicle applications. Then, we have

implemented a vision based ADAS for driver fatigue

detection. During the design process, we built a HW/SW

architectural decision to achieve the optimal balance between

performance, area, and power consumption. The

implemented solution is used to show the efficiency of the

proposed Multi-CPU/FPGA based HW/SW co-design

approach, and to evaluate the cost and benefits of each one.

We first started by implementing the image processing

pipeline using Vivado IDE. Then, the bare metal application

is developed to configure and control the different

implemented IPs. After that, the custom contrast

enhancement IPs are developed added to the image

processing pipeline and the design is deployed on the ZC702

board. Finally, the hardware and software design are

implemented and tested on the board and the results are

analyzed. Future work should focus on the automation of the

design steps of ADAS systems.

REFERENCES

[1] “How VW Fuel Injector Works: A Mini-Computer Aids Economy, Cuts

Pollution” Chicago Tribune, Sunday, February 25, 1968

[2] A. Eskandarian and A. Mortazavi, “Evaluation of smart algorithm for

commercial vehicle driver drowsiness detection,” Proceedings of the
2007 IEEE Intelligent Vehicles Symposium, pp. 553–559, 2007.

[3] http://asirt.org/initiatives/informing-road-users/road-safety-facts/road-

crash-statistics
[4] Pedro U. Lima, Aamir Ahmad, André Dias, André G.S. Conceição,

António Paulo Moreira, Eduardo Silva, Luis Almeida, Luis Oliveira, and

Tiago P. Nascimento. 2015. “Formation control driven by cooperative
object tracking. Robot” AutonSyst. 63, P1 (January 2015), 68-79. DOI:

http://dx.doi.org/10.1016/j.robot.2014.08.018

[5] https://international.fhwa.dot.gov/ipsafety/ipsafety.pdf
[6] http://en.wikipedia.org/wiki/Autonomous car, “Autonomous car.”

[7] S. Russel, “DARPA Grand Challenge Winner: Stanley the Robot!”

Popular Mechanics, Jan. 2006. [Online]. Available:
http://www.popularmechanics.com/technology/robots/a393/2169012/

[8] T. C. Frankel, “What it feels like to drive a Tesla on autopilot,” The

Washington Post, Feb. 2016. [Online]. Available:
https://www.washingtonpost.com/news/theswitch/wp/2016/02/01/wha

t-it-feels-like-to-drive-a-tesla-on-autopilot/

[9] http://www.vedecom.fr/domaines-de-recherche/?lang=en/#PROJETS
[10] Nurvitadhi, E., Subhaschandra, S., Boudoukh, G., Venkatesh, G., Sim,

J., Marr, D., Huang, R., Ong Gee Hock, J., Liew, Y.T., Srivatsan, K.,

Moss.D. “Can FPGAs Beat GPUs in Accelerating Next-Generation
Deep Neural Networks?”, Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays - FPGA

’17. Presented at the t2017 ACM/SIGDA International Symposium,
ACM Press, Monterey, California, USA, pp. 5–14.

https://doi.org/10.1145/3020078.3021740-

[11] Chin-Teng, L. Ruei-Cheng, W. Sheng-Fu, L.Wen-Hung, C. Yu-Jie, C.
Tzyy-Ping, J. “EEG-Based Drowsiness Estimation for Safety Driving

Using Independent Component Analysis” IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO.
12, DECEMBER 2005

[12] https://www.cdc.gov/features/dsdrowsydriving/

[13] R. Sayed and A. Eskandarian, “Unobtrusive drowsiness detection by
neural network learning of driver steering,” Proceedings of the

Institution of Mechanical Engineers. Part D, Journal of Automobile

Engineering, vol. 215, pp. 969–975, 2001.

[14] Y.Lin, H.Leng, and e. a. G.Yang, “An intelligent noninvasive sensor for

driver pulse wave measurement,” IEEE Sensor Journal, vol. 7, pp. 790–

799, 2007.
[15] Duy Tran et al “A Driver Assistance Framework based on Driver

Drowsiness Detection” The 6th Annual IEEE International Conference
on Cyber Technology in Automation, Control and Intelligent Systems

June 19-22, 2016, Chengdu, China

[16] R. Wang, Y. Wang, and C. Luo, “Eeg-based real-time drowsiness
detection using hilbert-huang transform,” in Intelligent Human-Machine

Systems and Cybernetics (IHMSC), 2015 7th International Conference

on, vol. 1. IEEE, 2015, pp. 195–198.
[17] A. Tayyaba, M. Arfan Ja_ar, M. Ramzan, and M. Anwar Mirza,

Automatic Fatigue Detection of Drivers through Yawning Analysis_

2009.
[18] E. Murphy-Chutorian, A. Doshi, and M. Trivedi,_Head Pose Estimation

for

Driver Assistance Systems: A Robust Algorithm and Experimental
Evaluation 2007.

[19] B.Senouci, H.Rouis, D.S.Han and E.Bourennane “A Hardware Skin-

Segmentation IP for Vision Based Smart ADAS Through an FPGA

Prototyping” 9th IEEE International Conference on Ubiquitous and

Future Networks ICUFN, The 5th International Workshop on Intelligent

Vehicles, Milan, Italy, July 2017
[20] B. Senouci, I. Charfi, B. Heyrman, J.Dubois, J.Miteran, “Fast prototyping

of a SoC-based smartcamera: a real-time fall detection case study”

Journal of Real-Time Image Processing, pp. 1861_8200, 2015
[21] G. P. Stein, E.Rushinek, G. Hayun, and A. Shashua, “A computer vision

system on a chip: a case study from the automotive domain,” IEEE

Conference on Computer Vision and Pattern Recognition (CVPRW’05),
p. 130, June 2005.

[22] Gururaj P et al “An Analysis of Skin Pixel Detection using Different

Skin Color Extraction Techniques” International Journal of Computer
Applications (0975 - 8887) Volume 54 - No. 17, September 2012

[23] C.Claus, W. Stechele, and A.Herkersdorf, “Autovision– a run-time

reconfigurable mpsoc architecture for future driver assistance systems,”
Information Technology, vol. 49, no. 3, pp. 181–187, 2007

[24] Shi, W., Alawieh, M.B., Li, X., Yu, H., 2017. Algorithm and hardware

implementation for visual perception system in autonomous vehicle: A
survey. Integration 59, 148–156. https://doi.org/10.1016/j.vlsi.

2017.07.007

[25] Falsafi, B., Dally, B., Singh, D., Chiou, D., Yi, J.J., Sendag, R., 2017.
FPGAs versus GPUs in Data centers. IEEE Micro 37, 60–72.

https://doi.org/10.1109/MM.2017.19

[26] www.xilinx.com\zynq
[27] http://fpga.org/2013/05/24/yet-another-guide-to-running-linaro-ubuntu-

desktop-on-xilinx-zynq-on-the-zedboard/.

http://asirt.org/initiatives/informing-road-users/road-safety-facts/road-crash-statistics
http://asirt.org/initiatives/informing-road-users/road-safety-facts/road-crash-statistics
http://dx.doi.org/10.1016/j.robot.2014.08.018
https://international.fhwa.dot.gov/ipsafety/ipsafety.pdf
http://www.popularmechanics.com/technology/robots/a393/2169012/
https://www.washingtonpost.com/news/theswitch/wp/2016/02/01/what-it-feels-like-to-drive-a-tesla-on-autopilot/
https://www.washingtonpost.com/news/theswitch/wp/2016/02/01/what-it-feels-like-to-drive-a-tesla-on-autopilot/
http://www.vedecom.fr/domaines-de-recherche/?lang=en/#PROJETS
https://doi.org/10.1145/3020078.3021740
https://www.cdc.gov/features/dsdrowsydriving/
https://doi.org/10.1016/j.vlsi.%202017.07.007
https://doi.org/10.1016/j.vlsi.%202017.07.007
https://doi.org/10.1109/MM.2017.19
http://www.xilinx.com/zynq
http://fpga.org/2013/05/24/yet-another-guide-to-running-linaro-ubuntu-desktop-on-xilinx-zynq-on-the-zedboard/
http://fpga.org/2013/05/24/yet-another-guide-to-running-linaro-ubuntu-desktop-on-xilinx-zynq-on-the-zedboard/

