

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 2 April – June 2020 53

Pervasive Service Discovery Implementation Using

UDP Protocol on Raspberry Pi and MyRIO

Mochammad Hannats Hanafi Ichsan, Wijaya Kurniawan, and Joniar Dimas Wicaksono
Computer Engineering Department, Brawijaya University, Malang, Indonesia

wjaykurnia@ub.ac.id

Abstract— Smart home environment is an environment by

which there are equipments that are able to communicate with

each other and can be monitored or controlled remotely through

the internet. Nowadays, it still requires complex configuration

to achieve those requirements. Pervasive computing is a method,

which facilitates humans to ease configuring the devices. Based

on previous researches that designed and tested the Pervasive

system using UDP and LabVIEW on Personal Computer (PC),

this research focused on implementing it on embedded systems,

which are Raspberry Pi 3 as the host and NI MyRIOs as the

clients. UDP protocol was used because it has lightweight

attribute and does not require large memory. Several

experiments have been done, such as measuring discovery time

for each 86.62 bytes of data. Discovery time on the host was

56.417 ms, while the discovery on the client was 251.067 ms.

Therefore, the whole discovery process was 313.417 ms.

Whereas if the host fails, the time which client needs to

reconnect was 10384.23 ms. When sending data testing between

the host and client, the average data being send was 86.3 bytes,

data transmission sensor took 58.26 ms, LED control took

5350.926 ms, and push button took 255.67 ms.

Index Terms— MyRIO; Pervasive; Raspberry; Smart Home;

UDP Protocol.

I. INTRODUCTION

The smart home environment is an environment by which

many equipments communicate each other [1] and they can

be monitored or controlled remotely through the internet [2]

for better human living[3]. With this technology, it eases us

to monitor and control various equipments in the house such

as electrical equipments [4], room’s temperature [5], home

securities [6], surveillance cameras [7], and so on. In the

future, smart home is a choice to facilitate people’s wellbeing

using technology.

Currently, pervasive computing has been developed to

facilitate the usage of connected devices without complex

configuration [8], such as declaring types and functions of the

devices, configuring the address of devices in network, or

making relationships between devices. This technology

makes it possible to enjoy each service facilitated by

interconnected devices. Every task, job, or process will

become easier, faster and more efficient because it is

processed automatically [9].

The commonly used network protocols are the

Transmission Control Protocol (TCP) [10] and User

Datagram Protocol (UDP). Each of these protocols have its

own advantages and disadvantages depending on the desired

objectives. UDP is a lightweight protocol that can save

memory and processor resources [11-13]. In a smart home

environment, it is suitable to use UDP protocol since the data

to be sent is small [14]. TCP protocol needs a three-way-

handshaking process, causing traffic jams. Thus, processes

need longer time to be completed [15].

Based on previous research, this pervasive system has

already been designed in LabVIEW that works on Personal

Computer (PC). The state machine, adopting in the research,

gives the pervasive computing models of a communication

between a host and a client. A research about state machine

implementation between one host and more than one client

has also been done and they were successfully tested and

running well [16]. Another research was conducted by

integrating the state machine with the cloud server [17]. In

this research, the host communicate with the client and the

communication between them is sent into the cloud server so

that it can be observed and controlled via internet.

Despite of PC, this research emphasized implementing the

pervasive computing on the embedded devices, specifically

NI MyRIO and Raspberry Pi 3 devices. These embedded

devices have an advantage by which they can be placed

anywhere [18]. Besides, the other advantages of these two

devices are: NI MyRIO already contains accelerometer

sensor and it has the ease of adding other needed external

sensors such as EEG, PIR, heat, rain, ultrasonic, infrared etc

[19-21]. While Raspberry Pi 3 is a mini computer that does

not require large electrical power [22]. In this research, NI

MyRIO as the client acted as a sensor node and Raspberry Pi

3 acted as the host that has functions to store the detected

sensor nodes around it. It is also used to monitor and control

those sensor nodes. The system took all data communication

and operated based on some predefined system requirements

[23].

Based on the explanation above, this research proposed a

technology that allows people to use devices that have the

ability to know each other without complex configuration

[23]. In this research, the Raspberry Pi 3 has already suceeded

to recognize the active NI MyRIO sensor node devices

around it. All these devices are connected via Wi-Fi on the

local network using the UDP protocol. The used program is

data-flow programming, namely LabVIEW, with the state

machine method implemented on the devices. LINX

LabVIEW Library is needed so that the LabVIEW program

code can be downloaded on Raspberry Pi 3 device. All these

are necessary to meet the requirements so that MyRIO and

Raspberry Pi 3 can be used as representatives for smart home

devices that have the ability to communicate each other.

II. SYSTEM DESIGN

This section explains the general description of the System

Architecture and System Design. The System Architecture

describes the topology of data communication, while the

system design describes the communication between the Host

and the Clients.

Journal of Telecommunication, Electronic and Computer Engineering

54 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 2 April – June 2020

A. System Architecture

The goal of this research is that the devices in a smart home

environment can be connected pervasively, so that there is no

need for human to do a manual configuration. The device is

NI MyRIOs, which are used as clients and Raspberry Pi 3

used as the host. The clients represent sensor nodes, wherein

they sends the accelerometer data and LED status to the host.

The LED on these clients are controlled by the host.The host

also operates monitor and control features to be owned by

the clients.

Figure 1: System architecture

There are three devices on Figure 1 that are proposed in the

system architecture, the Raspberry Pi 3 device and two

MyRIOs devices. The Raspberry Pi 3 device can be called the

host and NI MyRIOs can be called the clients. Both of these

devices (client and host) are connected via Wi-Fi with the

pervasive method. The clients sent a broadcast message on

connected network containing client’s informations such as

IP and its available sensors. After the broadcast, the messages

are received and stored by the host. Subsequently, the host

replied the messages to the client’s IP that contains the host’s

information. This delivery process utilizes the UDP protocol

provided by the LabVIEW.

B. System Design

Based on previous research [9][17], system design in

Figure 2 is used on this research. Unlike the previous research

that was conducted by testing the design suitability on PC,

this research was conducted by implementing this system on

embedded systems. In the first state, the host is in a condition

of listening state, where the host listens to broadcast messages

sent by the clients. When clients sends a broadcast message,

the host checks whether the client information is a duplicated

one. In cases where the client information is new, the host

saves the information. The contents of the information are the

IP, the client’s name, and the provided features. After saving

the information, the host sends a reply message to the client

IP. The Send ACK state contains IP information of the host.

After the host and client know each other's information, the

host can monitor and control the client’s features. The host

sends a request message to the clients, and the clients start

sending sensor data and wait for the command sent by the

host. The host receives the sensor data and controls the

client’s features, which is LED available on the client.

Figure 2: Proposed pervasive algorithm machine to machine area
network

Table 1

Host Event from State Machine

Code Host Event (e)

e0 Port initialization

e1 Receive broadcast message

e2 Receive client information

e3 Sent ACK message

e4 Hardware Push button

e5 Client control feature

e6 Finish hardware control from client

Figure 3: Host state machine diagram

Figure 3 shows the state machine used on the host and the

related information, shown in Table 1. Firstly, the host enters

the Initialize state where it initializes the required variables

and opens the UDP protocol port. Afterward, “e0” event

occurs when the port initialization and variable have been

finished. It is then moved to the Listen state. This state is

where the host’s condition listena to the broadcast messages

sent by the clients.

When the host receives a broadcast message from the

clients, event “e1” occurs, and it then does a hardware

duplication check in Check HW state. The host checks the

received information with the stored information. If the client

information is new, the information is stored by the host,

whereas if the information has been previously saved, the

previous information is deleted and replaced with a new one.

After it is completed, it triggers the “e2” event and moves to

Send ACK state. At this state, it sends a reply message to the

client containing the host’s information. Afterward, event

“e3” occurs, by which it returns to the Listen condition state.

In Listen state, the host can control and monitor the sensor

nodes owned by the clients whose information has been

Pervasive Service Discovery Implementation Using UDP Protocol on Raspberry Pi and MyRIO

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 2 April – June 2020 55

previously saved. The host sends a request message to the

client, where event “e4” occurs and waits for a response

whether the messages have been received or otherwise. If a

message is received, it goes to the Send Request state,

otherwise it returns to the Listen state condition. In the Send

Request status, the host receives accelerometer sensor data,

push-button status data, and client’s LED data. LEDs on the

clients can be controlled directly by the host in this situation.

In the process of sending and receiving data, event “e5”

occurs, which is a time out process and it repeats the Send

Request state .

When event “e5” finished, the Finish Hardware button in

the host can be pressed, and subsequently it triggers the event

“e6” and then it moves to the Listen state again. In the Listen

and Send Status request state, the host can be stopped by

pressing the Stop button. When the stop button is pressed,

event “e7” occurs causing it to move to the Stop state. In this

stop state, the host closes the port, while initializing and

releasing the used memory.

Table 2

Client Event from State Machine

Code Host Event (e)

e0 Port initialization

e1
Broadcast message was not received

by host

e2 Broadcast message received by host

e3 No reply from host

e4 Received reply from host

e5 Wait reply from host

e6 Didn’t receive ping message from host

e7 Receive request message

e8 Request done

e9 Send and receive data from host

e10 Stop

Figure 4: Client state machine diagram

Figure 4 is related to Table 2, which is the state machine

used on the client. In the initial conditions, the client enters

the Initialize state where client initializes the required

variables and opens the UDP protocol port. Then event “e0”

occurs where the port initialization and variables are

completed. It then moves towards to Broadcast state.

Broadcast State is a condition where the client sends

broadcast messages to IP broadcasts. If the message has no

reply, it triggers event “e1” which is a time out to repeat the

Broadcast status again. If the message is received by the host,

it triggers event “e2” and then it moves to the ACK state. In

the ACK state, the client waits for a reply from the host

regarding the information held by it. If the client does not

receive a reply, it triggers event “e3” where it returns to

broadcast status. If it receives a reply from the host, it triggers

event “e4” and moves to the Wait Command state.

In the Wait Command state, the client waits for the request

message sent by the host. If no message is sent within the

specified time, it triggers event “e5” as a time out to repeat

the Wait Command state. If the client does not receive the

ping sent by the host at a specified time, it triggers event “e6”,

where the client returns to broadcast status again to find a new

host because the previously host is assumed to be inactive.

When the client receives a request message, it triggers

event “e7”, where it moves to the Request state. In this

Request state, the client sends the accelerometer sensor data

and the information from the push button, and also the state

of LED owned by the client. In this case, when some time out

have been passed away, it triggers event “e9” that repeats the

Request state so that it can always send information to the

host. If the host has finished requesting data, it triggers event

“e7”, where the client moves to the Wait Command state

again. In the Broadcast, Wait for Command and Request

state, the client can be stopped by pressing the Stop button.

When the stop button is pressed, event “e10” occurs, by

which it then moves to the Stop status state. In this stop

condition, the client closes the opened port while initializing

and releasing the used memory.

III. EXPERIMENT RESULTS

This section explains the experiment and its results

analysis. The experiment is tested in two phases, the first

phase is the discovery and the re-discovery experiment

scenario and the second phase is the feature experiment

scenario. Based on both scenario, it evaluates the fulfillment

of the system requirements about whether the system is

acceptable to be implemented in real-time or real

environment condition.

A. Discovery Experiment Scenario

This scenario is carried out on three devices: one host and

two clients. The host stores information from the client and it

saves the transition time since receiving a broadcast message

until replying the message. The client stores information from

the host after receiving the ACK message and saves the

transition time since sending broadcast messages until it waits

for a request.

The experiment was done 60 times by which it was 30

attempts at each client. The results showed that the system

works well. The average of discovery time on the host was

56.417 ms. This time is measured from the time when the host

receives a broadcast message, stores information, and replies

the message with the ACK message. While on the client, it

has 257 ms for the transition time from broadcast

transmission to Wait Command.

Figure 5 is a graph drawn from the discovery experiment

result. At the early first ten discovery experiments, the result

was fluctuating, but after that, until the end of experiments,

the results was stable. This result is expected because of the

hardware condition on the device, by which it is an old one

with older firmware version compared to other devices. On

the graph, it can be seen that there were different results on

client1 with a value of 1036 ms, while the minimum value

was 270 ms. The average results of discovery in client1 was

333.633 ms. The graph for discovery time in client2 was

stable with a maximum value of 441 ms and a minimum value

of 274 ms. The average value obtained on the client2 was

293.2 ms. Thus, it can be concluded that the entire time of the

Journal of Telecommunication, Electronic and Computer Engineering

56 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 2 April – June 2020

discovery process since sending broadcast messages until the

client is ready to receive a request was 313.417 ms.

Figure 5: Discovery testing result

B. Re-Discovery Experiment Scenario

This experiment results can be seen on Figure 6. The host

is created by forcing it to be failed or disconnected. It is done

by stopping the program and re-deploying it. The client waits

for the specified time until the client re-discovery the host and

reconnected to it. The test was carried out 60 times, where

each client made 30 attempts. Time is measured from when

the client is disconnected from the host. The client has a

timeout to return to the discovery condition which is 10

seconds. Client’s return time to the discovery condition was

10056.88 ms. After returning to the discovery process, the

client returns to the Wait Command state with an average of

291 ms. On the host, the discovery process is obtained at an

average of 36.35ms.

Overall, the result of a re-discovery experiments were

fluctuative. The data given by Figure 6 shows that each

scenario was successfully tested without error, but the result

was not stable both for client1 and client2. The obtained time

were different in each experiment. In client1, the maximum

value was 10568 ms and the minimum value was 10281 ms

so that the average value of client1 was 10391.2 ms. Whereas

in the client2, the maximum value was 10579 ms and the

minimum value was 10568 ms so the average value obtained

from the client2 was 10377.27 ms. The total time needed to

do a reconnection has an average of 10.384.23 ms. It is

expected that this fluctuation is caused by the difference in

time needed from the host to shut down and restart its

program.

Figure 6: Re-discovery testing result

C. Feature Experiment Scenario

In this test, the host sends a request message to control and

monitor features owned by the client. There are three used

data: the accelerometer sensor data, LED control data, and the

client’s push button data. The experiment was carried out 30

times in each client. Testing run well without any error.

Table 3 shows the overall value at the client1 and client2.

The data produced by each client was 86.3 bytes in client1

and 86.93 bytes in client2. Thus, the average data sent by the

client is 86.62 bytes. The time measurement occurs at the

beginning of sending data on both clients. The maximum time

of sending sensor data to client1 was 508.63 ms, while the

value on client2 was 691.809 ms. The minimum value of

sending sensor data to client1 was 0.97 ms, while for client2

was 5.53 ms. So, the average value for sending sensor data

from both clients was 58.26 ms. The next experiment is the

sending time of the push button state to the host. Based on the

overall results, the maximum value on client1 was 548.28 ms

and for client2 was 246.18 ms. For the minimum value on

client1, it was 44.62 ms while for client2 was 239.78 ms.

Thus, the average time needed for sending the push button

data in both client is 255.7 ms.

Table 3

Overall Feature Testing Result

Testing Min Max Average

Client1Sensor (ms) 0.97 508.63 74.25

Client1 Push button (ms) 44.62 548.28 267.86

Client1 Led (ms) 3809.27 15346.77 9054.65

Client1 Data Sizes (bytes) 76.00 90.00 86.30

Client2 Sensor (ms) 5.53 691.81 36.57

Client2 Push button (ms) 239.78 246.18 243.51

Client2 Led (ms) 480.63 3003.92 2115.63

Client2 Data Sizes (bytes) 84.00 89.00 86.93

The maximum delivery time for LED data from client1 was

15346.77 ms, while for client2 was 3003.918 ms. The

minimum delivery time from client1 was 3809.27 ms, while

for client2 was 480.63 ms. These results show that the

required delivery time was longer for each subsequent time.

It happens because there is a difference in speed between

sending and receiving caused by the process in buffer on the

receiver. For both clients, there was a very large time

difference, because client1 is no longer connected to the host

before doing the experiment, causing the buffering of the

accumulated data, compared to the client2 that is not

connected in longer time. The required time for data

delivering has an average value of 5350.93 ms for both

clients.

All of those time measurement results have a lower value

compared to other researches which have a value in the range

of 200 s or about 3 mins [25].

IV. CONCLUSION AND FUTURE WORKS

It can be concluded that the device succedded in

recognizing the surrounding devices without requiring

complex configuration by human, particularly using the

pervasive computing method. In this method, humans do not

have to bother with configuration process for each devices.

The devices are programmed to disseminate information

automatically, and they can store information from other

devices when receiving a reply. In this research, the used

protocol is UDP protocol, which contains data about 86.62

Pervasive Service Discovery Implementation Using UDP Protocol on Raspberry Pi and MyRIO

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 2 April – June 2020 57

bytes in average. Thus, the message is light and does not

overload the device’s memory. The system in this study was

implemented on Raspberry Pi 3 devices as the host and two

MyRIO NI as the clients. These devices are programmed by

LabVIEW. The discovery and re-discovery experiments were

used to measure the quality of the system. The result of

discovery and re-discovery experiments showed that it is

implemented without error, but it had unstable time for both

scenarios.

 The program is made by implementing a state machine

method. Each device can make discoveries so that they know

each other, including its information without manual complex

configuration. The system is also successfully implemented

and tested without any error in the feature owned by MyRIO

such as a sensor, push button, and LED. Each of those

services has an average time in sending data for both clients,

which is 58.26 ms, 255.7 ms, and 5350.93 ms respectively.

Based on this research, the system is acceptable for being

implemented on smart home environment. MyRIO can be

implemented as a server or slave or Host Node and Raspberry

PI can be implemented as an end node, slave or Client Node.

More client node can be attached on the implementation. The

number on clients is not tested on this research, and it can be

implemented and analyzed for further research. The

measurement of the availability, suitability, portability, etc

will be done at that time after some several requirements have

been added. Other research can be done by adding more

sensors to fulfill the user requirements.

ACKNOWLEDGMENT

The team thanks to the Laboratory of Computer System and

Robotics, Computer Engineering Department, Faculty of

Computer Science. This paper is an extension of work

originally published and reported in “IAES 2016:

International Conference on Electrical Engineering,

Computer Science and Informatics (EECSI 2016)” at

Semarang, East Java, Indonesia 22-25 November 2016, with

the title “Lightweight UDP Pervasive Protocol in Smart

Home Environment based on LabView”. The other works

that related are “UDP Pervasive Protocol Implementation for

Smart Home Environment on MyRIO using LabVIEW”, Vol

8, No 1 February 2018 and “UDP Pervasive Protocol

Integration with IoT for Smart Home Environment using

LabVIEW”, Vol 8, No 6, December 2018 (Part II).

REFERENCES

[1] S. D. T. Kelly, N. K. Suryadevara, and S. C. Mukhopadhyay, "Towards

the Implementation of IoT for Environmental Condition Monitoring in

Home," IEEE Sensors Journal, vol. 13, no. 10, pp. 3846-3853, Oct.
2013.

[2] Arda Editya; Surya Sumpeno; Istas Pratomo, "Performance IEEE

802.14.5 and zigbee protocol on realtime monitoring augmented reality
based wireless sensor network system," International Journal of

Advances in Intelligent Informatics, vol. 3, no. 2, pp. 90-97, 2017.

[3] L. Atzori, A. Iera, and G. Morabito, "Making things socialize in the
Internet — Does it help our lives?," in Proceedings of ITU

Kaleidoscope 2011: The Fully Networked Human? - Innovations for

Future Networks and Services (K-2011), Cape Town, 2011.
[4] B. Zhou et al., "Smart home energy management systems: Concept,

configurations, and scheduling strategies," Renewable and Sustainable

Energy Reviews, vol. 61, pp. 30-40, 2016.

[5] I. Lee and K. Lee, "The Internet of Things (IoT): Applications,
investments, and challenges for enterprises," Business Horizons, vol.

58, no. 4, pp. 431-440, 2015.

[6] S. Dey, A. Roy, and S. Das, "Home automation using Internet of
Thing," in 2016 IEEE 7th Annual Ubiquitous Computing, Electronics

& Mobile Communication Conference (UEMCON), New York, 2016,

pp. 1-6.
[7] A.Jacobsson, M.Boldt, and B.Carlsson, "A risk analysis of a smart

home automation system," Future Generation Computer Systems, vol.

56, pp. 719-733, 2016.
[8] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, "Context

Aware Computing for The Internet of Things: A Survey," IEEE

Communications Surveys & Tutorials, vol. 16, no. 1, pp. 414-454,
2014.

[9] Kurniawan, W., Ichsan, M.H.H., Akbar, S.R., and Arwani, I.,

"Lightweight UDP Pervasive Protocol in Smart Home Environment
Based on Labview," in IAES International Conference on Electrical

Engineering, Computer Science and Informatics (EECSI 2016),

Semarang, Indonesia, 2016.
[10] M. Duke, R. Braden, W. Eddy, E. Blanton, and A. Zimmermann, "A

Roadmap for Transmission Control Protocol (TCP) Specification

Documents," , February 2015.
[11] M. Iglesias-Urkia et al., "Towards a lightweight protocol for Industry

4.0: An implementation based benchmark," in IEEE International

Workshop of Electronics, Control, Measurement, Signals and their
Application to Mechatronics (ECMSM), Donostia-San Sebastian,

2017.
[12] R. Morabito, R. Petrolo, V. Loscrí, and N. Mitton, "Enabling a

lightweight Edge Gateway-as-a-Service for the Internet of Things," in

7th International Conference on the Network of the Future (NOF),
Buzios, 2016.

[13] Z. Sheng, D. Tian, and V. C. M. Leung, "Toward an Energy and

Resource Efficient Internet of Things: A Design Principle Combining
Computation, Communications, and Protocols," IEEE

Communications Magazine, vol. 56, no. 7, pp. 89-95, 2018.

[14] Pallavi Sethi and Smruti R. Sarangi, "Internet of Things: Architectures,
Protocols, and Applications," Journal of Electrical and Computer

Engineering, vol. 2017, p. 25, 2017.

[15] P. Dalal, M. Sarkar, N. Kothari, and K. Dasgupta, "efining TCP's RTT
dependent mechanism by utilizing link retransmission delay

measurement in Wireless LAN," International Journal of

Communication Systems, vol. 30, no. 5, 2015.
[16] W. Kurniawan, M. H. H. Ichsan, and S. R. Akbar, "UDP Pervasive

Protocol Implementation for Smart Home Environment on MyRIO

using LabVIEW," International Journal of Electrical and Computer
Engineering (IJECE), vol. 8, no. 1, pp. 113-123, February 2018.

[17] M.H.H. Ichsan, W. Kurniawan, and S.R. Akbar, "UDP Pervasive

Protocol Integration with IoT for Smart Home Environment using
LabVIEW," International Journal of Electrical and Computer

Engineering (IJECE), vol. 8, no. 6 Part II, December 2018.

[18] P. P. Merino, E. S. Ruiz, G. C. Fernandez, and M. C. Gil, "A Wireless
robotic educational platform approach," in 13th International

Conference on Remote Engineering and Virtual Instrumentation

(REV), Madrid, 2016.

[19] L. Zimmermann, R. Weigel, and G. Fischer, "Fusion of Nonintrusive

Environmental Sensors for Occupancy Detection in Smart Homes,"

IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2343-2352, 2018.
[20] R. Raj, R. K. Sahu, B. Chaudhary, B. R. Prasad, and S. Agarwal, "Real

time complex event processing and analytics for smart building," in

Conference on Information and Communication Technology (CICT),
Gwalior, 2017, pp. 1-6.

[21] V. Bhanumathi and K. Kalaivanan, The Role of Geospatial Technology

with IoT for Precision Agriculture.: Springer, Cham, 2018, vol. 49.
[22] V. Vujović and M. Maksimović, "Raspberry Pi as a Sensor Web node

for home automation," Computers & Electrical Engineering, vol. 44,

pp. 153-171, 2015.
[23] Ioannis Giachos, Evangelos Papakitsos, and Georgios Chorozoglou,

"Exploring natural language understanding in robotic interfaces,"

International Journal of Advances in Intelligent Informatics, vol. 3, no.
1, pp. 10-19, 2017.

[24] M. H. H. Ichsan, W. Kurniawan, and M. Huda, "Water Quality

Monitoring with Fuzzy Logic Control Based on Graphical
Programming," TELKOMNIKA, vol. 14, no. 4, pp. 1446-1453, 2016.

[25] O. A. Mohamad, R. T. Hameed, N. Tapus, "Smart Home System Based

on Comparative Analysis Among AODV and DSDV Protocols in
MANET," in 19th International Conference on System Theory,

Control, and Computing (ICSTCC), Cheile Gradistei, Romania, 2015.

