

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 1 January – March 2020 15

FPGA-Assisted Assertion-Based Verification

Platform

Nurita Mohamad1,2, Chia Yee Ooi1, Jwing Teh2, Norlina Paraman3, Hasliza Hassan4 and Nordinah Ismail1
1Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.

2Intel Programmable Solutions Group Technology Centre, Plot 6 Bayan Lepas Technoplex, Penang, Malaysia.
3School of Electrical Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia.

4Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia.

nuritamohamad89@gmail.com

Abstract— In this paper, field programmable gate array

(FPGA)-assisted verification platform is devised to enhance the

assertion-based verification methodology to address the issues of

high demand of integrated circuit with the advanced features to

be delivered to market within tight Time-To-Market. The

concept of SystemVerilog Assertion (SVA) checker generator is

introduced to translate non-synthesizable verification coding

into hardware so-called assertion checker in Verilog. A lookup

table, which comprises of SVA operators mapped to their

corresponding synthesizable Verilog coding was developed to

generate assertion checker, which produces a single bit 1 when

the assertion fails. Collection module implemented using a

memory block and an arbiter was devised to be simple and fast

enough to collect assertion results from the assertion checker.

Since assertion checker can produce assertion result at any time,

an arbiter is required to act as an interface between assertion

checker and collection module. Case studies have been

conducted on the proof-of-concept designs, which are the first-

in-first-out (FIFO), up-down counter and Context Adaptive

Variable Length Coding (CAVLC) to evaluate the effectiveness

of the proposed FPGA-assisted verification platform. In the case

studies, we have shown that the proposed FPGA-assisted

verification platform works correctly. Besides, we also evaluated

the method in area utilizations (ALMs). It has been proven that

simulation-based verification time can be reduced for as much

as 50% for complexity of VLSI design. Thus, implementing

assertions using hardware such as FPGA becomes a solution to

alleviate issue of long simulation time.

Index Terms—Arbitration; Assertion-based Verification;

Assertion checker; FPGA; System Verilog Assertion; Verilog.

I. INTRODUCTION

With design ability lagging behind the fabrication ability,

electronic production is facing the risk of product re-spins. In

this case, verification can be considered as one of the ways to

address this issue. Verification is a process that ensures the

implemented device is matched with the product intended to

define for the device before sending the device for

manufacturing. Verification requirements have increased

exponentially due to the increased complexity of hardware

designs. Furthermore, it has become increasingly critical in

the product development cycle, requiring effort at least 70%

of the system on chip (SoC) development cycle [1, 2]. When

market windows become increasingly tight, high-quality

verification is essential for successful chip prototype delivery

to reduce the probability of delayed tape-out and re-spin [3].

However, verification ability is still far lagging behind the

fabrication. Thus, there is a rising edge of the verification gap,

in which the new acceleration methodology needed to cover

up these issues and optimize the productivity gap. Assertion-

based verification (ABV) was then introduced to reduce the

gap.

In ABV, assertions are used to ensure the design fulfils its

given specification. Assertions are additional statements that

are bound together with Device-under-Verification (DUV) to

check the design behavior [4]. This improves the

observability of verification compared to the conventional

verification, which allows only observation at DUV’s output.

The role of assertions in ABV intensely improves the

efficiency of detecting bugs and monitors the behavior for a

set of given input stimuli in verification [5, 6]. In addition,

ABV is widely gaining acceptance in the industry because it

has been proved that simulation-based verification time can

be reduced for as much as 50% when using ABV because it

directly gives feedbacks for the correctness of a design

property or behavior specified [7]. In fact, it improves the

observability of verification as can be seen in the successful

identification of many corner case bugs [8, 9]. Moreover,

ABV allows reusability of coding framework [10]. The

increasing complexity of VLSI design demands a large

number of complex assertions to be simulated so verification

needs longer simulation time. Thus, implementing assertions

using hardware such as field programmable gate array

(FPGA) becomes a solution to alleviate issue of long

simulation time [11–14].

Hardware-assisted verification can be divided into

emulation and prototyping. Some research suggested

synthesizing assertions for verification using hardware

emulation [15-18]. Examples of emulator in the market are

Palladium from Cadence, Veloce from Mentor Graphic and

Zebu from Synopsys. Hardware emulation is usually used

when the circuit design is complex because hardware

implementation can exploit the parallel nature of a logic

circuit to verify DUV that is mapped onto the hardware.

Author in [18] debugged the design in FPGA-based

prototyping board with emulation mode and control the

functionality of synthesized assertions in PSL, monitors and

checker. However, the emulator environment is only capable

to provide user’s viewer based on GUI software such as to

observe changing of debug symbols and it does not mention

how to capture the assertion result. Thus, user needs to

observe assertion manually and this action might create a

possibility of assertion losses. Some issues on coverage

measurement have been identified, one of which is little

debug capability when using an FPGA-based prototype since

signal as well as assertions cannot be observed using a

waveform viewer [19]. Although using scan-chain techniques

Journal of Telecommunication, Electronic and Computer Engineering

16 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 1 January – March 2020

can help user in coverage measurement, signals must

propagate through the entire chain until they reach the output

before we can observe the bug that happens in the scan

register.

It has been proved in [19] that emulation could be 82%

faster than the regular register transfer level (RTL)

simulation. Unfortunately, when logic design becomes larger,

the area utilized in hardware emulation becomes bigger.

Thus, there is a trade-off between the speed of the verification

and logic utilization. Another approach to solve the

performance issues is using emulator platform based on

commercial FPGA, which enables execution at high speed

but limited in terms of flexibility. Besides, emulator is costly

in the market. In addition, the generated hardware must

consume the least amount of hardware resources. Yet,

emulator has a limitation, whereby it cannot run at full speed

and connect the same system as the final design [20]. Thus,

the number of engineers required to run the emulation at the

same time increases as more emulators are needed to

complete the complex design.

Prototyping is a hardware representation of a design which

is often created using FPGAs that operates at the target

system speeds. FPGA prototyping is one of the platform for

system integration and verification. Software integration is

depending on the quality of the test case applied during

simulation and the ability in writing the assertions for

discovering any bugs in the design [21]. By using FPGA

prototyping, the assertions can only be asserted when it is

necessary and can utilize fewer hardware resources. This

method may increase the observability of the design and

reduce time for debugging [22].

To map assertions onto emulator or prototype, we first need

to synthesize assertions into Hardware Description Language

(HDL). Therefore, hardware assertion checker generator tool

has become an attractive solution. There are commonly

hardware verification languages to express the assertions

such as property specification language (PSL) and

SystemVerilog Assertion (SVA). The assertion checker

generation is typically a synthesizer to generate HDL that

describes the given assertions behavior to be used in

hardware-assisted verification [23]. FOCs is a tool developed

by IBM to automatically generate checkers for design

properties by synthesizing property specification in RTCL

into finite state machine in VHDL [24]. Thus, FoCs does not

process assertions written in any standard verification

language. Authors in [23] have developed a checker

generation called MBAC, which deals with a complete set of

PSL properties. MBAC can automatically generate hardware

assertion checkers in VHDL from the given assertions to be

used for hardware emulation. In MBAC checker generation

process, a PSL property is written in temporal logic equation.

Boolean logic part is first transformed into edges of automata

whereas temporal logic part is transformed into states in the

automata. Each state is then mapped to a flip-flop whereas

each edge is mapped to a combinational logic when

synthesizing the automata into checker circuit. One drawback

is that a property that consists of n repetition counts or

repetition range of n will be synthesized into a circuit with at

least n flip-flop. However, this could be further optimized by

using counter as count of n could be realized by counter

consisting of ⌈log2 n⌉ flip-flops. This means the area

consumed by verification should not be large to ensure the

size of the design is not large. Note that ⌈log2 n⌉ < n.

Besides PSL, assertion checker based on SVA is also

important because SVA has verification features not found in

PSL. Different from PSL, SVA is a part of SystemVerilog

language that can be written directly into SystemVerilog

design and testbenches [25]. This allows faster identification

of design bugs. Furthermore, SVA inherits the expression

language of SystemVerilog, including its data types,

expression syntax and semantics. Intuitively, translating SVA

to synthesizable Verilog codes is easier since the languages

are similar.

II. METHODOLOGY

A. FPGA-Assisted Verification Platform

In our verification platform, we proposed FPGA-assisted

verification platform, as shown in Figure 1. It consists mainly

of two tools; SVA checker generator and SVA signal

extractor. SVA checker generator is to synthesize the

assertions required by DUV into hardware that is so-called

Assertion Module using modular approach whereas SVA

signal extractor is to generate necessary signals to connect

DUV and the Assertion Module. Both the DUV and the

Assertion Module are assumed to be at register-transfer level

(RTL). Meanwhile, we also proposed the collection module

to collect assertion results from the assertion module.

Collection module is composed of a memory block as storage

and an arbiter to interface between the memory and the

assertion module. SVA signal extractor is also responsible to

generate signals that connect verifiable hardware module

(combining both DUV and assertion module) and the

collection module.

Figure 1: Proposed verification platform consist of verifiable hardware
module and collection module

B. SVA Checker Generator

SVA describes SystemVerilog behavior of a given DUV

for verification purpose. Unfortunately, it is only for

simulation-based verification because these syntax, operator

and system function are not synthesizable. Our approach is to

synthesize all the required assertions into RTL hardware

called assertion checkers. Thus, the given verification file

should be translated to synthesizable Verilog coding.

Referring to [5], syntax of a property declaration and

sequence declaration are described as follows:

property_declaration ::=

propertyproperty_identifier[property_formal_list]‘;’

{ property_decl_item }

property_spec ‘;’

endproperty[‘:’ property_identifier]

sequence_declaration ::=

sequencesequence_identifier[sequence_formal_list] ‘;’

Verification Platform

Testbench

SVA Signal ExtractorSVA Checker Generator

 Arria V GX FPGA Board

Verifiable Hardware Module

Design Under

Verification

(DUV)

Assertion

Module

Collection Module

 Interface

Design

(Arbitration)

request grant

(Memory design)

Memory

Block

SignalTap II Logic Analyzer Instances
JTAG

Hub

Quartus II

Software

FPGA-Assisted Assertion-Based Verification Platform

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 1 January – March 2020 17

{ assertion_variable_declaration }

sequence_expr ‘;’

endsequence[‘:’sequence_identifier]

The property uses formal mathematical techniques to

describe some behavior of a design to be verified [20].

Sequence is the building block of properties and concurrent

assertions where the evaluation is based on clock semantic

that ignores all the glitch occurrence [5]. Since both the

property and the sequence are non-synthesizable, they are

transformed into hardware modules by the proposed SVA

checker generator. In the property_formal_list (resp.

sequence_formal_list), which lists variables involved in the

property (resp. sequence), SVA checker generator adds one

additional output named property_identifier‘_out’ (resp.

sequence_identifier‘_out’) during the generation process.

This additional output is to indicate whether the property

(resp. sequence) is fulfilled (resp. occurring) or not when the

assertion is being monitored. The property_decl_item and the

assertion_variable_declaration are the declaration of local

variables required by the property and sequence, respectively.

Property_spec consists of event control, such as clocking

event and asynchronous reset, and property expression. Both

clocking event and asynchronous reset are translated to

Verilog coding of clocking event and asynchronous reset.

sequence_expr denotes sequence expression. Both property

expression and sequence expression are composed by SVA

operators and system function. SVA checker generator

translates these operators and functions to RTL synthesizable

Verilog modules.

Table 1 is the lookup table that summarizes a set of

important and frequently used SVA operators and system

functions, and their corresponding synthesizable Verilog

coding used in SVA checker generation. s1_out (resp.

p1_out) is the signal that indicates whether s1 (resp. p1)

occurs or not whereas op_i denotes the Boolean signal that

represents a coverage result for the operator or system

function. temp_clock is used in some operators with posedge

as a temporary clock direction because an actual clock signal

name and its triggering direction could only be known from

the complete property declaration’s clocking event given a

DUV. Note that the inversion of coverage result will provide

the assertion result. The synthesis detail of each operator or

system function is elaborated in the following subsections.

Different from automata concept in MBAC [5], the concept

of counter in translating consecutive repetition and goto

repetition is used to reduce the number of flip-flops required.

For temporal delay s1##N s2, shift registers is used to store

the occurrence of s1 and s2 for N clock cycles and occurrence

of s1 at clock N-1 is compared with the occurrence of s2 at

clock 0.

Table 1

Lookup Table for SVA Checker Generation

No.

SVA Operators

and System

Function

Synthesizable Verilog Coding

i Consecutive

repetition:

s1 [*N:M]

always @(posedge temp_clock)

begin

 if (s1_out==1'b0)
begin

 count = 2'b0;

 enable =1'b0;
end

 if (s1_out==1'b1)

 enable =1'b1;

No.

SVA Operators

and System
Function

Synthesizable Verilog Coding

 if (count<M && enable)

 count = count+ 2'b01;

 else count=count;
 if (count>=N && count <=M)

 op_i=s1_out;

 else op_i=1'b0;
end

ii Goto repetition:

s1[->N:M]

parameter N = 2; parameter M = 4;

reg enable;

always @(posedge temp_clock)

begin
 if (s1_out==0)

 enable = 1'b0;

 else if (s1_out ==1)
 enable =1'b1;

 if (count<=M && enable==1'b1)

 count = count+2'b01;
 if (count>=N && count<=M)

 op_i = s1_out;

else
 op_i = 1'b0;

 if (count == M)
 count = 2'b0;

else if (count == 2'b0 &&

enable == 1'b1)
 op_i = 1'b1;

end

iii Temporal delay:
##N , ##[N:M],

Eg: s1##N s2

always @(posedge temp_clock)
begin

 s1_reg = {s1_out, s1_reg[N-1:1]};

 s2_reg = {s2_out, s2_reg[N-1:1]};
if (s1_reg[0] && s2_out &&

(s2_reg [N-2:0] == { (N-1) {1'b0} }))

 op_i=1'b1;
else

 op_i=1'b0;

end
iv And : s1 and s2 always @(posedge clock)

begin

 if (s1_off && s2_off)
begin

 temp_s1 <= 0; end

 else if (s1_out)
 temp_s1 <= s1_out;

 else

 temp_s1 <= temp_s1;
end

always @(posedge clock)

begin
 if (s1_off && s2_off)

begin

 temp_s2 <= 0; end
 else if (s2_out)

 temp_s2 <= s2_out;

 else
 temp_s2 <= temp_s2;

end

always @(posedge clock)

begin

 if (s1_off && s2_off) begin

 comb_out <= 0; end
 else if (s1_on && s2_on)

 comb_out <= s1_on & s2_on;

 else
 comb_out <= comb_out;

end

assign op_i = temp_s1 & emp_s2 &
comb_out;

v Intersection:

s1 intersect s2

always @(posedge clock)

begin
 if (s1_off && s2_off) begin

 match_start <= 0; end

 else if (s1_on && s2_on)
 match_start <= s1_on & s2_on;

 else
 match_start <= match_start;

Journal of Telecommunication, Electronic and Computer Engineering

18 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 1 January – March 2020

No.

SVA Operators

and System
Function

Synthesizable Verilog Coding

 op_i <= s1_out & s2_out

 & match_start;

 end
vi Condition:

if(expr) p1

if(expr) p1
else p2

assign op_i=(expr)?p1_out:1’b0;

assign op_i=(expr)?p1_out:p2_out;

vii Overlapping

Implication:
s1 |-> p1

always @(posedge clk)

op_i <= |s1_out && |p1_out;

viii Non-Overlapping

Implication:
s1|=> p1

always @ (posedge clk)

begin
s1_prev <= s1_out;

op_i <= |s1_prev && | p1_out;

end
ix System function:

$past (A)

always @ (posedge clk)

op_i <= temp_A;

assign temp_A = A ? A :1'b0;
x System function:

$stable (A)

always @ (posedge clk)

old_A <= A;

assign op_i=(A==old_A)?1'b1:1'b0;

Consecutive repetition s1 [*N:M] is a repetition of

sequence s1 for N times or between N to M times. The

repetition can hold any number of cycles including zero [5].

As shown in Table 1, s1[*N:M] is synthesized into a counter

that has input s1_out to indicate the occurrence of sequence

s1 and produces the output op_i whenever the occurrence of

s1 is at Nth to Mth time. The number of bits for the counter is

⌈log2 N⌉, which is smaller than N. The counter will only be

enabled to start counting when s1 has occurred. The counting

continues whenever a new occurrence of s1 takes place while

the count is less than M. Note that M and N are declared as

parameters of the counter. For example, s1[*2:4] specifies

that s1 is repeating for 2 to 4 times.

Go to repetition s1[->N:M] is a repetition of sequence s1

for between N to M times. The repetition might be found at

the end of the Boolean expression because it is non-

consecutive cycles [5]. As shown in Table 1, s1[N:M] is

synthesized into a counter that operates based on input s1_out

that indicates the occurrence of s1 and produces the output

op_i whenever the occurrence of s1 is between Nth to Mth

time. The number of bits for counter is ⌈log2 N⌉. The counter

will only be enabled to start counting when s1 has occurred.

The counting continues whenever a new occurrence of s1

takes place while the count is less than or equal to M. Note

that M and N are declared as parameter of the counter. For

example, [-> 2:4] specifies that s1 is repeating for 2 times, 2

to 4 times or 3 to 4 times.

Temporal delay operator s1##N s2 specifies that when s1

occurs on the current clock tick, s2 must occur on the Nth

subsequent clock tick. As shown in Table 1, s1##N s2 is

synthesized into a pair of registers, namely s1_reg and

s2_reg, of length N each, which store the occurrence of s1 and

s2, respectively. Note that s1_out and s2_out feed to shift

registers s1_reg and s2_reg respectively. When s1_out is high

and the content of s2_reg is zero, this indicates the occurrence

of s1##N s2, so it produces output op_i. For example, s1##4

s2 specifies that s2 must happen after s1 occurs after 4 clock

cycles.

Operator s1 and s2 is a match operator of two sequences

that occur at the same time but may end at different time.

Under the coverage, the expression of this operator is only

true when the last sequence has finished [5]. As shown in

Table 1, s1 and s2 were synthesized based on s1’s starting

signal s1_on, s1’s ending signal s1_off, s2’s starting signal

s2_on and s2’s ending signal s2_off.

Intersect operator s1 intersect s2 is a match operator of two

sequences that occur and end at the same time. Intersect

operator is similar to and operator, but it is more similar to

logical and in Verilog. As shown in Table 1, s1 and s2 were

synthesized based on s1’s starting signal s1_on, s1’s ending

signal s1_off, s2’s starting signal s2_on and s2’s ending signal

s2_off.

Operators if (expr) p1 and if (expr) p1 else p2 are the

conditional operators. These operators are similarly with the

procedural if() statement in Verilog [5]. As shown in Table 1,

if (expr) p1 and if (expr) p1 else p2 were synthesized into a

conditional Verilog operator that operates according to

condition of expr that indicates the evaluation on p1. p1 and

p2 denote a property and expr denote an expression given in

the design. For example, if (expr) p1 specifies that p1

evaluates to true if Boolean expression expr has occurred or

else it evaluates to false or zero. Meanwhile, if (expr) p1 else

p2 specifies that p1 evaluates to true if Boolean expression

expr has occurred or else p2 evaluates to true.

Implication operator s1 |-> s2 and s1 |=> s2 respectively

are overlapping and non-overlapping implication. The

concept of implication is similar to if() statement [5]. As

shown in Table 1, s1_out |-> p1_out were synthesized to a

logic that produces output of op_i when input p1_out is

followed by the occurrence of s1_out immediately. Property

p1_out at the right-hand side (RHS) of the implication is

called a consequence. It is a test condition for sequence

s1_out as the antecedent at the left-hand side (LHS) to

evaluate the operation to true. On the other hand, s1_out |=>

p1_out start evaluation if p1_out happens at the next cycle

later.

System function $past is a function that evaluates the

previous expression value. $past returns true in the current

clock cycle if the previous expression value is true in the

previous clock cycle. For example, $past(A) is true if A has

occurred in the previous cycle.

System function $stable is a function that evaluates the

previous expression value and the current expression value.

Previous expression value must be the same as the current

expression value in order for $stable to return true. For

example, $stable (A) is true when previous value of A is

similar to A. As shown in Table 1, $stable (A) was

synthesized into a logic that produces output op_i when A’s

old value, old_A is the same as value of A.

C. Assertion Monitor Synthesis

Assertion monitor functions to store the result of assertion

whenever the assertion is checked in the hardware. It allows

user to retrieve the assertion results during or after the

verification. We proposed to synthesize the assertion monitor

into the collection module so that assertion results could be

stored directly into hardware instead of being passed to the

host computer that normally takes longer time.

1) Collection Module Design Process

Figure 2 shows the operation of collection module’s

operation. The proposed approach collected the assertion

results from the assertion module through arbiter and stored

them in a memory. Note that if there are n assertion outputs

from the assertion module, each output has unique index i

where 0 ≤ i ≤ n-1 .The concept of arbitration was used to

design the memory interface in the collection module because

the occurrence of assertions is unpredicted and there maybe

FPGA-Assisted Assertion-Based Verification Platform

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 1 January – March 2020 19

multiple assertions occur at one time. The arbiter decides

which assertion result has the highest priority and issues a

grant signal accordingly. Thus, when an assertion output Oi

is produced and at the same time, receives a grant signal in

the current cycle, its index i which represents the identity of

the granted assertion will be encoded and stored in the

memory. The process is terminated after n assertions have

occurred or the user interrupts to read the memory.

Figure 2: Operation of collection module

Figure 3: Proposed N-bits architecture of the memory design as

collection module

Collection module consists of an arbiter, memory block

and other components as shown in Figure 3. The illustrated

design is able to receive and store at least 1000 assertion

results. The concept of arbitration was used to design the

memory interface in the collection module because the

occurrence of assertions is unpredicted and there maybe

multiple assertions occur at one time. The arbiter decides

which assertion result has the highest priority and issues a

grant signal accordingly. Counter is used to count the number

of assertion results that have been stored and to generate

memory address at which assertion results are stored.

Encoder functions to encode grant signal of 1000 lines to 10

lines, which represents a 10-bit assertion location or identity

namely data_in to represent assertion result. data_out sends

out assertion result to another output peripheral of FPGA

whenever the memory is read. OR gate functions to enable

the counter when a grant signal is generated or when user

intends to read the memory which can be enabled through

din_user. din_user can interrupt the memory to read out the

assertion result at data_out when necessary. In scan-chain

approach, as discussed in the literature review, the assertion

result is shifted out batch by batch or one by one after the

completion of the verification process. Nevertheless, this

proposed approach allows interruption or termination of the

verification process anytime subject to user's decision on

when to read the assertion results. For instance, user may wish

to abort the verification after detection of a critical bug.

2) Oblivious Arbiter with Blocking Logic

We augment the oblivious arbiter with block logic to be

used to arbitrate the assertion results. The blocking logic

functions to block the same assertion from being stored again

in the memory. By avoiding serving the same assertion, it

minimizes the chance of failing to store an assertion result

that occurs at the same time with other assertion checked for

the first time.

Figure 4: Slice circuit of the memory interface architecture; a)
Oblivious arbiter architecture for slice i; b) Round-Robin arbiter

architecture for slice i

Figure 4 illustrates the proposed arbiter architecture. It

consists of blocking logic and grant logic. The function of

each port and its internal signals are illustrated below:

 request: input to the arbiter, which receives signal

from assertion module output.

 grant: output from the arbiter that indicates which

assertion results to be stored.

 carryin: signal that acknowledges the arbiter to

consider current request to be granted.

 tmpcout: signal that acknowledges the arbiter to

consider next request to be granted.

 block: signal that acknowledges the block logic to

block the request if it has been served previously.

The proposed blocking logic in Figure 4 is designed to

block the request which has already been served from being

served again in the next cycle onward. In other words, the

assertion result is served once only to be kept to the memory

after it happens. Initially, signal block[i] is set to high which

allow any initial request[i] that issues a request to have a

grant permission. When signal grant[i] goes high, the

blocking logic produces low block[i] such that permission is

not given to the same request[i] to have grant anymore. For

example, when condition grant[0] is high, block[0] which is

also high activates the blocking function. block[0] is then

changed to low.

The grant logic behaves such that when there are many

requests to the arbiter, they will be served according to the

priority set and block signal. Only one request is granted in

one cycle. Initially, the active-low input block is set to high

to have the request granted based on the set priority. The first

carryin in the circuit is set to high as an initial value, for

example, the 4-bit request. When condition request[3] is

issued, a grant is given since block[3] is initially set to high,

which means no blocking. Otherwise, other request[N-1] can

have their grant based on signal block[N-1].

Encoder

Memory

OR

Memory

Interface

Design

request
din_user

address_memory

data_in

data_out

CS

OE

WE
clock

clock
reset

grant

Collection Module

ENB

Counter

ENB

1000

10

1

1000
10

10
1

Oblivious Arbiter

Blocking Logic Circuit

Block

Grant Logic

Circuit Block

grant [i-1] carryin[i]

request[i]

tmpcout[i]

grant[i]

block [i]block_in [i]

 Arbiter

Journal of Telecommunication, Electronic and Computer Engineering

20 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 1 January – March 2020

D. SVA Signal Extractor

In System Verilog language, it provides a bind feature that

links internal nets or wires of DUV to the assertion module,

as illustrated in Figure 5 a) for verification purpose. When the

assertion module is implemented as hardware, these nets and

wires need to be transformed into new outputs of DUV, which

are also new inputs to the synthesized assertion module as

illustrated in Figure 5 b). To automate the transformation,

SVA signal extractor is developed to identify the required

signals involved in the assertion statements using the Perl

script. These signals could be inputs or internal wires of

DUV, which connect DUV to the assertion modules. Besides,

outputs of assertion modules that produce assertions result are

also generated by SVA signal extractor and they are

connected from assertion module to the collection module

automatically.

Figure 5 c) illustrates the SVA signal extractor that first

reads the Verilog files of the original DUV and the

synthesized assertion module. Then, it creates new signals to

replace internal signals linked by bind feature to connect

DUV to assertion module. Besides, it generates collection

module and necessary signals that connect assertion module

to the collection module based on the number of assertion

results derived by the synthesized assertion module.

(a) (b)

(c)

Figure 5: a) Internal signal through bind that connected DUV and
assertion module, b) New output signal required for hardware

verification, and c) Structure arrangement of the script directory

Figure 6 shows the first step of SVA signal extraction,

which generates the signals that connect DUV to the

synthesized assertion module. Firstly, the SVA signal

extractor reads the DUV, assertion file and sub modules of

DUV to identify common signals between DUV and assertion

module. While identifying the common signals, the signal

directions (input or output), ports, data type and internal nets

and pins are extracted and kept in an array. Ports between

DUV and assertion module are compared based on their

names similarity to check whether a port is common to

connect DUV to assertion module or not. If an input port of

assertion module does not exist in the DUV, a new output port

is created in the DUV. This is to convert the DUV’s internal

signals, which are originally connecting to the assertion

module through bind feature, into DUV’s output signal fed to

assertion module. Then, the existing output ports and the new

output port(s) are included in the output list of the new DUV.

After the DUV file is processed to fulfill the signals

requirement, the remaining unchanged content of the original

DUV is copied as the content of the new DUV. During this

process, conditional compiler directive such as `ifdef, `else,

`elseif, `endif, and `ifndef in the original DUV file are

removed and eliminated except `include directive line,

because those syntaxes are non-synthesizable in the

hardware.

Figure 6: Flow chart of main script to produce new DUV file with new

output port

Figure 7: Flow chart of Script 2 to produce new top DUV with new

instances

Figure 7 illustrates the second step of SVA signal

extraction, which is generating the collection module and

its relevant signals that connect assertion module with the

collection module. The number of assertions is counted

based on the keyword output in the assertion file. It will be

recorded as N. Next, parameter M of collection module is

computed as ⌈log2 N⌉ where M is the number of address

bits of the memory that is supposed to store the assertion

results. Then, new top level Verilog file is created. This

empty object will be filled with the signals extracted earlier

by the first step and new parameters M and N besides

instances of DUV, assertion module and collection module

together with their nets and pins. In generating the

collection module, signal request is assigned as a fixed

Design Under

Verification

(DUV)

Assertion

module

Internal signal through bind

<DUV.sv> <assertion_module.v>

signals

Design Under

Verification

(DUV)

Assertion

module

New output signal for DUV

<DUV_new.sv> <assertion_module.v>
signals

Read the DUV and assertion file

including their sub-modules

Extract signals, direction,

ports, data_type and nets

Comparing output ports in

DUV and input ports of

assertion file

Create the non-existent

ports of assertion file as

new output of DUV

Not exist

Include the output ports as part

of output list in DUV

Copy the remaining content of

DUV to new DUV

Co-exist

New Design

Under

Verification

(DUV)

Assertion

module

New output signal for DUV

<DUV_new.sv> <assertion_module.v>
signals

Design Under

Verification

(DUV)

Assertion

module

Internal signal through bind

<DUV.sv> <assertion_module.v>

signals
Verilog-Perl package

(Verilog::Netlist, Verilog::SigParser)
Verilog-Perl package (Verilog::Preproc)

Read input files and

their submodules

Extract signals, direction,

ports, data_type, nets, cell

and pin for new netlist

Count number of assertions

and record it as N

Compute M parameter as

 log2 N
Create new top

level

Create instances to be

put in new top level

Iterate through

instances to create

new pin and net

Connect pin and net

between instances

Connect assertions pin

to pin request of

collection module

Declare

 request as

internal signal

Iterate through new top

level module to identify

required signals to be input

and output ports

Standardize reg and

 wire to logic data type.

Copy the functionality

contents of top level

module to new top level

module

New DUV
Assertions
Module

<DUV_new.sv> <assertion.v> <collection_module.v>

Collection
Module

New Design
Under
Verification

(DUV)

Assertions
Module

Instance module inside new top module

Collection
Module

DUV_new_top.sv

request

Use Verilog-Perl package (Verilog::Preproc, Verilog::Netlist)

Use Verilog-Perl package

(Verilog::Netlist)

Use Verilog-Perl package

(Verilog::Netlist)

Synthesizable

FPGA-Assisted Assertion-Based Verification Platform

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 1 January – March 2020 21

signal name which receives an assertion result signal to be

fed to the arbiter in the collection module. Signal request

is declared as an internal signal for the top level file.

Finally, all the unchanged functionality content of the

DUV and the assertion module are written to the new top

level file. The new top level module file consists of new

DUV, assertion and collection instances.

III. RESULT AND DISCUSSION

A. Implementation of FPGA-Assisted Verification

Platform

Given a DUV and its verification file, SVA checker

generator provides the assertion checkers whereas SVA

signal extractor extracts signals required to connect DUV,

assertion module and collection module. On top of that,

necessary new inputs and outputs are added to the new top

level Verilog file. To evaluate the proposed FPGA-assisted

platform in the actual environment, the new top-level file that

consist of new DUV, assertion module and collection module

is implemented to FPGA. Then, the resource utilization is

evaluated and discussed in the next section. Besides, we also

demonstrate the verification platform using FPGA and

SignalTap II analyzer.

1) Area Effectiveness of SVA Checker

The proposed SVA checker generator was experimented

and tested using case studies below:

i. Up-down counter;

ii. Single FIFO; and

iii. Multiple FIFO.

FPGA area consumed by the assertion module resulted

from our proposed SVA checker generator is compared with

the results from MBAC for each case study. There are four

assertions, namely ASR_1, ASR_2, ASR_3 and ASR_4

designed to verify the up-down counter, as described in Table

2. We derived the synthesized assertion checkers of these four

assertions based on the concept of our proposed SVA checker

generator and existing MBAC tool, respectively. For each

assertion in Table 2, the first column describes the SVA

coding for the assertion. The second column shows the

synthesizable Verilog coding for the assertion which was

generated by MBAC tool. s[i]s is the next state signal

whereas the signal s[i]sq is the present state of the automata,

which functions as an intermediate representation that stores

bit representing sequence result, and ASR_[k] is the assertion

signal or assertion result. The third column shows the

synthesizable Verilog coding generated by the proposed SVA

checker generator. However, for assertion that involves

repetition such as ASR_4, the number of flip-flops in the SVA

checkers generated by MBAC tool consists of at least n to

keep track of the sequence that involves a repetition of n. This

could be further optimized by using counter as repetition of n

could be counted and tracked by counter consisting of ⌈log2

n⌉ flip-flops. Thus, the area consumed by verification-related

hardware could be reduced, which is especially essential

when the design is large. MBAC tool synthesizes ASR_4 that

involves repetition count of 10 using 10 flip-flops. It is

different with our proposed SVA checker generator, which

implements a 4-bit counter using four flip-flops for the same

assertion.

Table 2

SVA and Synthesizable SVA in Verilog from MBAC Tool and SVA
Checker Generator

Assertion in SVA MBAC
Proposed SVA

Checker Generator

ASR_1:

assert property

(@(posedge clk)
(!en_ud &&

!en_load) |=>

stable(cnt));

always @(posedge clk)
s1<=cnt;

assign s2 = s1 == cnt;

always @(posedge clk)
if (`MBACRPS reset)

s3sq<=3'h4;

else
s3sq<=s3s;

assign s3s={1'b1,((!

en_ud) && (! en_load)),
(s3sq[1] && !(s2))};

always @(posedge clk)

if (`MBACRPS reset)
ASR_1<=0;

else

ASR_1 <= (s3s[0]);

always@(posedge
clk)

old_A <= cnt;

assign B = (cnt
=== old_A)?

1'b1 : 1'b0;

always@(posedge

clk)

begin
A <= !en_ud

&& !en_load;

yy <= |A && |
!B;

end

assign ASR_1 = !reset
&& yy;

ASR_2:

assert property
(@(posedge clk)

(en_load) |-> ##1

(cnt ==
$past(load)));

always @(posedge clk)

s4<=load;
always @(posedge clk)

if (`MBACRPS reset)
s5sq<=3'h4;

else

s5sq<=s5s;
assign s5s={1'b1, en_load,

(s5sq[1] && !((cnt ==

s4)))};
always @(posedge clk)

if (`MBACRPS reset)

ASR_2<=0;
else

ASR_2 <= (s5s[0]);

assign temp_load =

load ? load :1'b0;
always @ (posedge

clk)
past_B<= temp_load;

assign B = (cnt ==

past_B);
always @ (posedge

clk)

begin
A <= en_load;

yy <= |A && |!B;

end
assign ASR_2 = yy

&& !reset;

ASR_3:

assert property

(@(posedge clk)

(!en_load) |-> ##1

(!(cnt ==
~$past(cnt) &&

cnt[width-

1]==cnt[0])));

always@(posedgeclk)
s6<=cnt;

always@(posedge clk)

if (`MBACRPS reset)

s7sq<=3'h4;

else

 s7sq<=s7s;
assign

s7s={1'b1,!(en_load),(s7sq[

1] && ((cnt == (~s6)) &&
(cnt[width-1] == cnt[0])))};

always @(posedge clk)

if (`MBACRPS reset)
ASR_3<=0;

else

ASR_3 <= (s7s[0]);

 always @ (posedge

clk)

begin

A <= !en_load;

yy <= |A && |!B; end
always @ (posedge

clk)

past_B <= cnt;
assign B = ((cnt ==

past_B)&& (cnt[7]

== cnt[0]));
assign ASR_3 = yy

&& !reset;

ASR_4:

assert property

(@(posedge clk)

not (!en_load &&
!en_ud)[*10]);

always @(posedge clk)

if (‘MBACRPS reset)
s8sq<=11’h400;

else

8sq<=s8s;
assign

s8s={1’b1,((!en_load)&&(!

en_ud)),
(s8sq[9] && ((! en_load)

&& (! en_ud))),

(s8sq[8] && ((! en_load)
&& (! en_ud))),

 ...

(s8sq[1] && ((! en_load)
&& (! en_ud)))};

always @(posedge clk)

if (‘MBACRPS reset)
ASR_4<=0;

else

 ASR_4 <= (s8s[0]);

assign A = !en_load

&& !en_ud;

always@(posedge

clk)

 if (reset)

counter <=0;
else if (A)

counter<=counter +1;

assign
ASR_4=(counter > 10

&& A) ? 1'b1 : 1'b0;

Similar experiment has been conducted on single FIFO and

multiple FIFO. Table 3 summarizes FPGA area utilized by

synthesized assertions for all the case studies. ALMs

Journal of Telecommunication, Electronic and Computer Engineering

22 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 1 January – March 2020

represent total logic elements, and FF represents the number

of flip-flops in the FPGA. Assertion checkers produced by

MBAC tool and the proposed method were compiled and

simulated using Quartus II simulator targeted on Altera Arria

V FPGA 5AGTFD7K3F40I3 board. The syntaxes were

verified using VCS simulator and no error was found. Based

on the results depicted in Table 3, using the proposed SVA

checker generator, the logic utilization and total registers in

the design has reduced on average by 12.1% and 23.4%

respectively. The improvement was mainly due to the

reduction of states in the SVA checkers that involves

sequences of repetition and delay. The reduction of states is

realized by the reduction of flip-flops to ⌈log2 n⌉ flip-flops

from n also leads to the greater improvement achieved in the

reduction of total registers consumed in the FPGA (average

23.4%).

Table 3

 Area Utilization of DUV with Assertion Module Resulted from MBAC

Tool and the Proposed SVA Checker Generator

DUV
No. of

Assertions

MBAC Tool

Proposed
SVA

Checker

Generator

%

Improvement

ALMs FF ALMs FF ALMs FF

Up-

Down

Counter

4 15 31 14 26 6.7 16.1

Single

FIFO

10
46 83 38 60 17.4 27.7

Multiple
FIFO

32
349 269 306 198 12.3 26.4

Average 12.1 23.4

The FIFO design used in this experiment is able to store 16

words, each of which is an 8-bit data. It has one reset and

clock domain. The design was verified with ten assertions.

According to Table 3, MBAC tool and SVA checker

generator were used to generate the corresponding assertion

checkers and their area utilization was evaluated. They were

executed using Quartus II with targeted Altera Arria V FPGA

5AGTFD7K3F40I3 board. One of the ten assertions was

using repetition count. It showed that 17.4% of ALMs

improvement has been achieved compared to MBAC tool.

Besides, the total register was 23 flip-flops less than MBAC

tool.

Next, we created bigger circuit by duplicating the single

FIFO with 10 assertions for three times. The circuit consists

of three FIFOs with multiple clock and reset domain. Two

additional assertions were added to top level design of

multiple FIFO on top of the 10 assertions used for each single

FIFO module to make up 32 assertions totally. The additional

assertions are:

i. ERROR_FIFO_ALL_SHOULD_BE_FULL to

check if all three FIFOs are full.

ii. ERROR_FIFO_ALL_SHOULD_BE_EMPTY to

check if all three FIFOs are empty.

The area utilization for synthesized circuits of the 32

assertions using the proposed SVA checker generator

consumed less logics and registers compared to MBAC tool

by 12.3% improvement of ALMs. In other words, the

proposed tool achieved an improvement in terms of area

utilization for the checker's size.

Table 4 tabulates the total area utilization when the circuits

are also augmented with the collection module to store

assertion results besides the assertion module. We added

bigger design named CAVLC with the assertion module and

the collection module to be evaluated with different number

of assertions as shown in Table 4, which are 100, 500, and

1000 assertions, respectively. CAVLC is an important

module in MPEG4 that performs context-adaptive variable-

length coding. We varied the number of assertions and

observed that the area utilization was dominated by both the

assertion module and collection module; the more the

assertions used to verify the DUV, the larger the area

consumed and the growing trend is linear to the number of

assertions.
Table 4

Area Utilization the Proposed Verification Platform

DUV
No. of

Assertions
ALMs FF Pins

Single FIFO
10 165 90 40

13 182 102 40

Multiple FIFO

2 112 112 45

29 466 265 105

32 468 265 105

CAVLC

100 2,347 926 71

500 4,985 1728 73

1000 8,989 2729 74

2) Verification Procedure

Figure 8a) shows the experimental setup used to

demonstrate the verification procedure of the FPGA-assisted

platform. It involves Ultrabook Lenovo with 64-bit operating

system, monitor and FPGA device. The connection between

Ultrabook and FPGA device were applied using USB blaster

through JTAG programmer. The input and output peripherals

were assigned as shown in Figure 8b):

 Din_user: a switch to interrupt the verification

process to enable read mode to read coverage results

from the collection module.

 Reset: switch to reset the registers. It is necessary

before starting the evaluation.

 Reset clock: a switch to reset the system counter of

the design that generates the memory address to

store the coverage results.

 Coverage results: eight red LEDs to indicate 8-bit

coverage results.

 Address memory: eight green LEDs to indicate 8-bit

memory address of a location in the collection

module, where the assertion result is stored.

 VALID: a red LED to indicate whether the output is

valid or not.

 We: a red LED to indicate the write mode is enabled.

(a)

FPGA-Assisted Assertion-Based Verification Platform

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 1 January – March 2020 23

(b)

Figure 8: a) Experimental setup, and b) The structure of the input and

output peripherals for CAVLC module

Initially, all the switches (sw1-sw3) were in off state to

disable all the systems. Figure 9 shows the output signal value

when the collection module is in write mode, where din_user

is low, we is high and coverage_result is empty. The

collection module stored the 9th coverage result of CAVLC

design into the memory, while the coverage_result (the

memory output) was empty at the given address since it was

in write mode where the coverage result was being written.

Hence, both captured waveforms from Figure 9(a) and Figure

9(b) agreed with each other.

(a) Captured Modelsim waveform

(b) Captured SignalTap II analyzer waveform

Figure 9: Waveform comparison between simulation and real-time

execution in hardware during write condition

For the second example, Figure 10 shows the waveform

when collection module is in read mode where din_user is

high, we is low and coverage_result is 86 in decimal. During

the read mode, coverage_result was able to be read where the

value of 86 corresponds to 86th coverage result captured from

CAVLC design and stored at 86th memory address. Both

captured waveforms in Figure 10(a) and (b) agreed with each

other.

(a) Captured Modelsim waveform

(b) Captured SignalTap II analyzer waveform

Figure 10: Waveform comparison between simulation and real-time

execution in hardware during read condition

IV. CONCLUSION

The proposed FPGA-assisted verification platform

includes SVA checker generator, collection module and SVA

signal extractor was successfully implemented. In addition,

the proposed arbiter in the collection module selected the

assertion result to be passed and stored to the memory.

Implementing SVA signal extractor helps the user to identify

the required signals between assertion module, collection

module and DUV automatically. Experiment on FIFO and

CAVLC have demonstrated that the proposed FPGA-assisted

verification platform has been successfully realized.

ACKNOWLEDGMENT

This work is a joint research between Altera

Corporation (Now is part of Intel as Intel Programmable

Solution Group) and Malaysia-Japan International

Institute of Technology, Malaysia (MJIIT) and

supported by a research grant numbered 4B139 from

Collaborative Research in Engineering, Science &

Technology (CREST).

REFERENCES

[1] Foster HD. Trends in Functional Verification : A 2014 Industry Study

2015.

[2] Kuznik Ct, Mueller W, Le HM, Große D, Drechsler R. The System

Verification Methodology for Advanced TLM Verification Categories
and Subject Descriptors, 2011, pp. 313–322.

[3] Bamford N, Bangalore RK, Chapman E, Chavez H, Dasari R, Lin Y, et

al. "Challenges in System on Chip Verification," Seventh International

Workshop on Microprocessor Test and Verification, 2006, pp. 52–60.

[4] Boulâe M, Zilic Z. Generating hardware assertion checkers. Montreal:

Springer Science + Business Media B.V, 2008.
[5] Foster H, Krolnik A, Lacey D. Assertion-based design. Boston: Kluwer

Academic Publisher, 2005.

[6] Hutchison D, Mitchell JC. Formal Methods for Hardware Verification.
Germany: Springer, 2006.

[7] Pierre L, Pancher F, Suescun R, Quévremont J, "On the effectiveness

of assertion-based verification in an industrial context," Proceedings of
the 18th International Workshop on Formal Methods for Industrial

Critical Systems, Volume 8187, New York, NY, USA: Springer-Verlag

New York, Inc, 2013.
[8] Abarbanel Y, Beer I, Gluhovsky L, Keidar S, "FoCs: automatic

generation of simulation checkers from formal specifications," Proc.

12th International Conference on computer aided verification, 2000.
[9] Foster H, Assertion-based verification: Industry myths to realities

(invited tutorial). Lecture Notes in Computer Science (Including

a) Captured Modelsim waveform

b) Captured SignalTap II analyzer waveform

a) Captured Modelsim waveform

b) Captured SignalTap II analyzer waveform

a) Capture Modelsim waveform

b) Capture SignalTap II analyzer waveform

a) Capture Modelsim waveform

b) Capture SignalTap II analyzer waveform

Journal of Telecommunication, Electronic and Computer Engineering

24 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 12 No. 1 January – March 2020

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2008, pp. 5–10.
[10] Bombieri N, Fummi F, Guarnieri V, Pravadelli G, Stefanni F,

Ghasempouri T, et al, "On the reuse of RTL assertions," in SystemC

TLM verification, 2014.
[11] Šimková M, Lengál O, Kajan M. HAVEN, An open framework for

FPGA-accelerated functional verification of hardware. Lecture Notes

in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 2012, pp. 247–253.

[12] Boul M, Chenard J samuel, Zilic Z, Assertion Checkers in Verification,

Silicon Debug and In-Field Diagnosis 2007.
[13] Lu Y, Zhu Y, Assertion Synthesis : Enabling Assertion-Based

Verification For Simulation, Formal and Emulation Flows, pp. 1–7.

[14] Das S, Mohanty R, Dasgupta P, Chakrabarti PP, "Synthesis of system
verilog assertions," Proceedings-Design, Automation and Test in

Europe, DATE 2006, pp. 70–75.

[15] Chuang C. Lung, Liu C Nan J, "Hybrid Testbench Acceleration for
Reducing Communication Overhead," 2011, pp. 40–51.

[16] Boul M, Zilic Z, "Incorporating efficient assertion checkers into

hardware emulation," Proceedings of the 2005 International
Conference on Computer Design (ICCD’05), 2005.

[17] Koczor A, Matoga L, Penkala P, Pawlak A, "Verification approach

based on emulation technology," Proceedings of the 2016 IEEE 19th

International Symposium on Design and Diagnostics of Electronic

Circuits and Systems, 2016.
[18] Tomas BJ, Jiang Y, Yang M, "SoC Scan-Chain verification utilizing

FPGA-based emulation platform and SCE-MI interface," International

System on Chip Conference 2014, pp. 398–403.
[19] Tong JG, Boulé M, Zilic Z, "Test compaction techniques for assertion-

based test generation," ACM Transactions on Design Automation of

Electronic Systems, 2013.
[20] Bailey B, Martin G, Arderson T, Taxonomies for the Development and

Verification of Digital Systems, United States: Springer Science +

Business Media B.V, 2005.
[21] Li Y, Wu W, Hou L, Cheng H, "A study on the assertion-based

verification of digital IC," International Conference on Information

and Computing Science, 2009, pp. 25–28.
[22] Boulé M, Zilic Z, "Automata-based assertion-checker synthesis of PSL

properties," ACM Transactions on Design Automation of Electronic

Systems, 2008.
[23] Pellauer M, Lis M, Baltus D, Nikhil R, Synthesis of Synchronous

Assertions with Guarded Atomic Actions, 2005.

[24] Sonny AT, OVL, PSL, SVA : Assertion Based Verification Using
Checkers and Standard Assertion Languages.

[25] Kumar Tala D. World of Asic 2014. http://www.asic-

world.com/systemverilog/operators.html.

