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Abstract— In this paper, field programmable gate array 

(FPGA)-assisted verification platform is devised to enhance the 

assertion-based verification methodology to address the issues of 

high demand of integrated circuit with the advanced features to 

be delivered to market within tight Time-To-Market. The 

concept of SystemVerilog Assertion (SVA) checker generator is 

introduced to translate non-synthesizable verification coding 

into hardware so-called assertion checker in Verilog. A lookup 

table, which comprises of SVA operators mapped to their 

corresponding synthesizable Verilog coding was developed to 

generate assertion checker, which produces a single bit 1 when 

the assertion fails. Collection module implemented using a 

memory block and an arbiter was devised to be simple and fast 

enough to collect assertion results from the assertion checker. 

Since assertion checker can produce assertion result at any time, 

an arbiter is required to act as an interface between assertion 

checker and collection module. Case studies have been 

conducted on the proof-of-concept designs, which are the first-

in-first-out (FIFO), up-down counter and Context Adaptive 

Variable Length Coding (CAVLC) to evaluate the effectiveness 

of the proposed FPGA-assisted verification platform. In the case 

studies, we have shown that the proposed FPGA-assisted 

verification platform works correctly. Besides, we also evaluated 

the method in area utilizations (ALMs). It has been proven that 

simulation-based verification time can be reduced for as much 

as 50% for complexity of VLSI design. Thus, implementing 

assertions using hardware such as FPGA becomes a solution to 

alleviate issue of long simulation time.  

 

Index Terms—Arbitration; Assertion-based Verification; 

Assertion checker; FPGA; System Verilog Assertion; Verilog. 
 

I. INTRODUCTION 

 

With design ability lagging behind the fabrication ability, 

electronic production is facing the risk of product re-spins. In 

this case, verification can be considered as one of the ways to 

address this issue. Verification is a process that ensures the 

implemented device is matched with the product intended to 

define for the device before sending the device for 

manufacturing. Verification requirements have increased 

exponentially due to the increased complexity of hardware 

designs. Furthermore, it has become increasingly critical in 

the product development cycle, requiring effort at least 70% 

of the system on chip (SoC) development cycle [1, 2]. When 

market windows become increasingly tight, high-quality 

verification is essential for successful chip prototype delivery 

to reduce the probability of delayed tape-out and re-spin [3]. 

However, verification ability is still far lagging behind the 

fabrication. Thus, there is a rising edge of the verification gap, 

in which the new acceleration methodology needed to cover 

up these issues and optimize the productivity gap. Assertion-

based verification (ABV) was then introduced to reduce the 

gap. 

In ABV, assertions are used to ensure the design fulfils its 

given specification. Assertions are additional statements that 

are bound together with Device-under-Verification (DUV) to 

check the design behavior [4]. This improves the 

observability of verification compared to the conventional 

verification, which allows only observation at DUV’s output. 

The role of assertions in ABV intensely improves the 

efficiency of detecting bugs and monitors the behavior for a 

set of given input stimuli in verification [5, 6]. In addition, 

ABV is widely gaining acceptance in the industry because it 

has been proved that simulation-based verification time can 

be reduced for as much as 50% when using ABV because it 

directly gives feedbacks for the correctness of a design 

property or behavior specified [7].  In fact, it improves the 

observability of verification as can be seen in the successful 

identification of many corner case bugs [8, 9]. Moreover, 

ABV allows reusability of coding framework [10]. The 

increasing complexity of VLSI design demands a large 

number of complex assertions to be simulated so verification 

needs longer simulation time. Thus, implementing assertions 

using hardware such as field programmable gate array 

(FPGA) becomes a solution to alleviate issue of long 

simulation time [11–14]. 

Hardware-assisted verification can be divided into 

emulation and prototyping. Some research suggested 

synthesizing assertions for verification using hardware 

emulation [15-18]. Examples of emulator in the market are 

Palladium from Cadence, Veloce from Mentor Graphic and 

Zebu from Synopsys. Hardware emulation is usually used 

when the circuit design is complex because hardware 

implementation can exploit the parallel nature of a logic 

circuit to verify DUV that is mapped onto the hardware. 

Author in [18] debugged the design in FPGA-based 

prototyping board with emulation mode and control the 

functionality of synthesized assertions in PSL, monitors and 

checker. However, the emulator environment is only capable 

to provide user’s viewer based on GUI software such as to 

observe changing of debug symbols and it does not mention 

how to capture the assertion result. Thus, user needs to 

observe assertion manually and this action might create a 

possibility of assertion losses. Some issues on coverage 

measurement have been identified, one of which is little 

debug capability when using an FPGA-based prototype since 

signal as well as assertions cannot be observed using a 

waveform viewer [19]. Although using scan-chain techniques 
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can help user in coverage measurement, signals must 

propagate through the entire chain until they reach the output 

before we can observe the bug that happens in the scan 

register.  

It has been proved in [19] that emulation could be 82% 

faster than the regular register transfer level (RTL) 

simulation. Unfortunately, when logic design becomes larger, 

the area utilized in hardware emulation becomes bigger. 

Thus, there is a trade-off between the speed of the verification 

and logic utilization. Another approach to solve the 

performance issues is using emulator platform based on 

commercial FPGA, which enables execution at high speed 

but limited in terms of flexibility. Besides, emulator is costly 

in the market. In addition, the generated hardware must 

consume the least amount of hardware resources. Yet, 

emulator has a limitation, whereby it cannot run at full speed 

and connect the same system as the final design [20]. Thus, 

the number of engineers required to run the emulation at the 

same time increases as more emulators are needed to 

complete the complex design.  

Prototyping is a hardware representation of a design which 

is often created using FPGAs that operates at the target 

system speeds. FPGA prototyping is one of the platform for 

system integration and verification. Software integration is 

depending on the quality of the test case applied during 

simulation and the ability in writing the assertions for 

discovering any bugs in the design [21]. By using FPGA 

prototyping, the assertions can only be asserted when it is 

necessary and can utilize fewer hardware resources. This 

method may increase the observability of the design and 

reduce time for debugging [22]. 

To map assertions onto emulator or prototype, we first need 

to synthesize assertions into Hardware Description Language 

(HDL). Therefore, hardware assertion checker generator tool 

has become an attractive solution. There are commonly 

hardware verification languages to express the assertions 

such as property specification language (PSL) and 

SystemVerilog Assertion (SVA). The assertion checker 

generation is typically a synthesizer to generate HDL that 

describes the given assertions behavior to be used in 

hardware-assisted verification [23]. FOCs is a tool developed 

by IBM to automatically generate checkers for design 

properties by synthesizing property specification in RTCL 

into finite state machine in VHDL [24]. Thus, FoCs does not 

process assertions written in any standard verification 

language. Authors in [23] have developed a checker 

generation called MBAC, which deals with a complete set of 

PSL properties. MBAC can automatically generate hardware 

assertion checkers in VHDL from the given assertions to be 

used for hardware emulation. In MBAC checker generation 

process, a PSL property is written in temporal logic equation. 

Boolean logic part is first transformed into edges of automata 

whereas temporal logic part is transformed into states in the 

automata. Each state is then mapped to a flip-flop whereas 

each edge is mapped to a combinational logic when 

synthesizing the automata into checker circuit. One drawback 

is that a property that consists of n repetition counts or 

repetition range of n will be synthesized into a circuit with at 

least n flip-flop. However, this could be further optimized by 

using counter as count of n could be realized by counter 

consisting of ⌈log2 n⌉ flip-flops. This means the area 

consumed by verification should not be large to ensure the 

size of the design is not large. Note that ⌈log2 n⌉ < n. 

Besides PSL, assertion checker based on SVA is also 

important because SVA has verification features not found in 

PSL. Different from PSL, SVA is a part of SystemVerilog 

language that can be written directly into SystemVerilog 

design and testbenches [25]. This allows faster identification 

of design bugs. Furthermore, SVA inherits the expression 

language of SystemVerilog, including its data types, 

expression syntax and semantics. Intuitively, translating SVA 

to synthesizable Verilog codes is easier since the languages 

are similar. 

 

II. METHODOLOGY 

 

A. FPGA-Assisted Verification Platform  

In our verification platform, we proposed FPGA-assisted 

verification platform, as shown in Figure 1. It consists mainly 

of two tools; SVA checker generator and SVA signal 

extractor. SVA checker generator is to synthesize the 

assertions required by DUV into hardware that is so-called 

Assertion Module using modular approach whereas SVA 

signal extractor is to generate necessary signals to connect 

DUV and the Assertion Module. Both the DUV and the 

Assertion Module are assumed to be at register-transfer level 

(RTL). Meanwhile, we also proposed the collection module 

to collect assertion results from the assertion module. 

Collection module is composed of a memory block as storage 

and an arbiter to interface between the memory and the 

assertion module. SVA signal extractor is also responsible to 

generate signals that connect verifiable hardware module 

(combining both DUV and assertion module) and the 

collection module. 

 

 
 

Figure 1: Proposed verification platform consist of verifiable hardware 
module and collection module 

 

B.   SVA Checker Generator 

SVA describes SystemVerilog behavior of a given DUV 

for verification purpose. Unfortunately, it is only for 

simulation-based verification because these syntax, operator 

and system function are not synthesizable. Our approach is to 

synthesize all the required assertions into RTL hardware 

called assertion checkers. Thus, the given verification file 

should be translated to synthesizable Verilog coding. 

Referring to [5], syntax of a property declaration and 

sequence declaration are described as follows: 

 

property_declaration ::= 

propertyproperty_identifier[property_formal_list ]‘;’ 

{ property_decl_item } 

property_spec ‘;’ 

endproperty[ ‘:’ property_identifier] 

 

sequence_declaration ::= 

sequencesequence_identifier[sequence_formal_list] ‘;’ 
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{ assertion_variable_declaration } 

sequence_expr ‘;’ 

endsequence[‘:’sequence_identifier ] 

 
The property uses formal mathematical techniques to 

describe some behavior of a design to be verified [20]. 

Sequence is the building block of properties and concurrent 

assertions where the evaluation is based on clock semantic 

that ignores all the glitch occurrence [5]. Since both the 

property and the sequence are non-synthesizable, they are 

transformed into hardware modules by the proposed SVA 

checker generator. In the property_formal_list (resp. 

sequence_formal_list), which lists variables involved in the 

property (resp. sequence), SVA checker generator adds one 

additional output named property_identifier‘_out’ (resp. 

sequence_identifier‘_out’) during the generation process. 

This additional output is to indicate whether the property 

(resp. sequence) is fulfilled (resp. occurring) or not when the 

assertion is being monitored. The property_decl_item and the 

assertion_variable_declaration are the declaration of local 

variables required by the property and sequence, respectively. 

Property_spec consists of event control, such as clocking 

event and asynchronous reset, and property expression. Both 

clocking event and asynchronous reset are translated to 

Verilog coding of clocking event and asynchronous reset. 

sequence_expr denotes sequence expression. Both property 

expression and sequence expression are composed by SVA 

operators and system function. SVA checker generator 

translates these operators and functions to RTL synthesizable 

Verilog modules. 

Table 1 is the lookup table that summarizes a set of 

important and frequently used SVA operators and system 

functions, and their corresponding synthesizable Verilog 

coding used in SVA checker generation. s1_out (resp. 

p1_out) is the signal that indicates whether s1 (resp. p1) 

occurs or not whereas op_i denotes the Boolean signal that 

represents a coverage result for the operator or system 

function. temp_clock is used in some operators with posedge 

as a temporary clock direction because an actual clock signal 

name and its triggering direction could only be known from 

the complete property declaration’s clocking event given a 

DUV. Note that the inversion of coverage result will provide 

the assertion result. The synthesis detail of each operator or 

system function is elaborated in the following subsections. 

Different from automata concept in MBAC [5], the concept 

of counter in translating consecutive repetition and goto 

repetition is used to reduce the number of flip-flops required. 

For temporal delay s1##N s2, shift registers is used to store 

the occurrence of s1 and s2 for N clock cycles and occurrence 

of s1 at clock N-1 is compared with the occurrence of s2 at 

clock 0. 

 
Table 1 

Lookup Table for SVA Checker Generation 
 

No. 

SVA Operators 

and System 

Function 

Synthesizable Verilog Coding 

i Consecutive 

repetition: 

s1 [*N:M] 

always @(posedge temp_clock)  

begin 

 if (s1_out==1'b0)  
begin 

          count = 2'b0; 

          enable =1'b0;  
end 

     if (s1_out==1'b1) 

 enable =1'b1; 

No. 

SVA Operators 

and System 
Function 

Synthesizable Verilog Coding 

     if (count<M && enable) 

 count = count+ 2'b01; 

     else  count=count; 
      if (count>=N && count   <=M) 

 op_i=s1_out; 

      else op_i=1'b0;  
end 

ii Goto repetition: 

s1[->N:M] 

parameter N = 2; parameter M = 4; 

reg enable; 
 

always @(posedge temp_clock)  

begin 
  if (s1_out==0) 

 enable = 1'b0; 

  else if (s1_out ==1) 
 enable =1'b1; 

   if (count<=M && enable==1'b1) 

 count = count+2'b01; 
   if (count>=N && count<=M) 

 op_i = s1_out;  

else 
 op_i = 1'b0; 

   if (count == M) 
 count = 2'b0; 

else if (count == 2'b0 &&  

enable == 1'b1) 
 op_i = 1'b1; 

end 

iii Temporal delay: 
##N , ##[N:M], 

Eg: s1##N s2 

always @(posedge temp_clock)  
begin 

     s1_reg = {s1_out, s1_reg[N-1:1]}; 

     s2_reg = {s2_out, s2_reg[N-1:1]}; 
if (s1_reg[0] && s2_out &&    

(s2_reg [N-2:0] == { (N-1) {1'b0} })) 

        op_i=1'b1;  
else  

     op_i=1'b0;  

end 
iv And : s1 and s2 always @(posedge clock)  

begin 

   if (s1_off && s2_off)  
begin 

 temp_s1 <= 0; end 

   else if (s1_out) 
 temp_s1 <= s1_out;  

   else  

 temp_s1 <= temp_s1;  
end 

always @(posedge clock) 

begin 
  if (s1_off && s2_off)  

begin 

          temp_s2 <= 0; end 
  else if (s2_out) 

      temp_s2 <= s2_out; 

  else  
      temp_s2 <= temp_s2;  

end 

always @(posedge clock)  

begin 

 if (s1_off && s2_off) begin 

      comb_out <= 0; end 
 else if (s1_on && s2_on)            

    comb_out <= s1_on & s2_on; 

 else  
      comb_out <= comb_out;  

end  

assign op_i = temp_s1 & emp_s2 & 
comb_out; 

v Intersection: 

s1 intersect s2 

always @(posedge clock)  

begin 
  if (s1_off && s2_off) begin 

        match_start <= 0; end 

  else if (s1_on && s2_on) 
        match_start <= s1_on & s2_on; 

  else  
        match_start <= match_start; 
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No. 

SVA Operators 

and System 
Function 

Synthesizable Verilog Coding 

        op_i <= s1_out & s2_out  

        & match_start; 

  end 
vi Condition: 

if(expr) p1 

if(expr) p1         
else p2 

assign op_i=(expr)?p1_out:1’b0; 

assign op_i=(expr)?p1_out:p2_out; 

vii Overlapping 

Implication: 
s1 |-> p1 

always @(posedge clk) 

op_i <= |s1_out && |p1_out; 

viii Non-Overlapping 

Implication: 
s1|=> p1 

always @ (posedge clk)  

begin 
s1_prev <= s1_out; 

op_i <= |s1_prev && | p1_out;  

end 
ix System function: 

$past (A) 

always @ (posedge clk) 

op_i <= temp_A; 

assign temp_A = A ? A :1'b0; 
x System function: 

$stable (A) 

always @ (posedge clk) 

old_A <= A; 

assign op_i=(A==old_A)?1'b1:1'b0; 

 

Consecutive repetition s1 [*N:M] is a repetition of 

sequence s1 for N times or between N to M times. The 

repetition can hold any number of cycles including zero [5]. 

As shown in Table 1, s1[*N:M] is synthesized into a counter 

that has input s1_out to indicate the occurrence of sequence 

s1 and produces the output op_i whenever the occurrence of 

s1 is at Nth to Mth time. The number of bits for the counter is 

⌈log2 N⌉, which is smaller than N.  The counter will only be 

enabled to start counting when s1 has occurred. The counting 

continues whenever a new occurrence of s1 takes place while 

the count is less than M. Note that M and N are declared as 

parameters of the counter. For example, s1[*2:4] specifies 

that s1 is repeating for 2 to 4 times. 

Go to repetition s1[->N:M] is a repetition of sequence s1 

for between N to M times. The repetition might be found at 

the end of the Boolean expression because it is non-

consecutive cycles [5]. As shown in Table 1, s1[N:M] is 

synthesized into a counter that operates based on input s1_out 

that indicates the occurrence of s1 and produces the output 

op_i whenever the occurrence of s1 is between Nth to Mth 

time. The number of bits for counter is ⌈log2 N⌉. The counter 

will only be enabled to start counting when s1 has occurred. 

The counting continues whenever a new occurrence of s1 

takes place while the count is less than or equal to M. Note 

that M and N are declared as parameter of the counter. For 

example, [-> 2:4 ] specifies that s1 is repeating for 2 times, 2 

to 4 times or 3 to 4 times. 

Temporal delay operator s1##N s2 specifies that when s1 

occurs on the current clock tick, s2 must occur on the Nth 

subsequent clock tick. As shown in Table 1, s1##N s2 is 

synthesized into a pair of registers, namely s1_reg and 

s2_reg, of length N each, which store the occurrence of s1 and 

s2, respectively. Note that s1_out and s2_out feed to shift 

registers s1_reg and s2_reg respectively. When s1_out is high 

and the content of s2_reg is zero, this indicates the occurrence 

of s1##N s2, so it produces output op_i. For example, s1##4 

s2 specifies that s2 must happen after s1 occurs after 4 clock 

cycles. 

Operator s1 and s2 is a match operator of two sequences 

that occur at the same time but may end at different time. 

Under the coverage, the expression of this operator is only 

true when the last sequence has finished [5]. As shown in 

Table 1, s1 and s2 were synthesized based on s1’s starting 

signal s1_on, s1’s ending signal s1_off, s2’s starting signal 

s2_on and s2’s ending signal s2_off. 

Intersect operator s1 intersect s2 is a match operator of two 

sequences that occur and end at the same time. Intersect 

operator is similar to and operator, but it is more similar to 

logical and in Verilog. As shown in Table 1, s1 and s2 were 

synthesized based on s1’s starting signal s1_on, s1’s ending 

signal s1_off, s2’s starting signal s2_on and s2’s ending signal 

s2_off. 

Operators if (expr) p1 and if (expr) p1 else p2 are the 

conditional operators. These operators are similarly with the 

procedural if() statement in Verilog [5]. As shown in Table 1, 

if (expr) p1 and if (expr) p1 else p2 were synthesized into a 

conditional Verilog operator that operates according to 

condition of expr that indicates the evaluation on p1. p1 and 

p2 denote a property and expr denote an expression given in 

the design. For example, if (expr) p1 specifies that p1 

evaluates to true if Boolean expression expr has occurred or 

else it evaluates to false or zero. Meanwhile, if (expr) p1 else 

p2 specifies that p1 evaluates to true if Boolean expression 

expr has occurred or else p2 evaluates to true. 

Implication operator s1 |-> s2 and s1 |=> s2 respectively 

are overlapping and non-overlapping implication. The 

concept of implication is similar to if() statement [5]. As 

shown in Table 1, s1_out |-> p1_out were synthesized to a 

logic that produces output of op_i when input p1_out is 

followed by the occurrence of s1_out immediately. Property 

p1_out at the right-hand side (RHS) of the implication is 

called a consequence. It is a test condition for sequence 

s1_out as the antecedent at the left-hand side (LHS) to 

evaluate the operation to true. On the other hand, s1_out |=> 

p1_out start evaluation if p1_out happens at the next cycle 

later. 

System function $past is a function that evaluates the 

previous expression value. $past returns true in the current 

clock cycle if the previous expression value is true in the 

previous clock cycle. For example, $past(A) is true if A has 

occurred in the previous cycle. 

System function $stable is a function that evaluates the 

previous expression value and the current expression value. 

Previous expression value must be the same as the current 

expression value in order for $stable to return true. For 

example, $stable (A) is true when previous value of A is 

similar to A. As shown in Table 1, $stable (A) was 

synthesized into a logic that produces output op_i when A’s 

old value, old_A is the same as value of A. 

 

C.    Assertion Monitor Synthesis 

Assertion monitor functions to store the result of assertion 

whenever the assertion is checked in the hardware. It allows 

user to retrieve the assertion results during or after the 

verification. We proposed to synthesize the assertion monitor 

into the collection module so that assertion results could be 

stored directly into hardware instead of being passed to the 

host computer that normally takes longer time. 

 

1) Collection Module Design Process 

Figure 2 shows the operation of collection module’s 

operation. The proposed approach collected the assertion 

results from the assertion module through arbiter and stored 

them in a memory. Note that if there are n assertion outputs 

from the assertion module, each output has unique index i  

where 0 ≤ i ≤ n-1 .The concept of arbitration was used to 

design the memory interface in the collection module because 

the occurrence of assertions is unpredicted and there maybe 
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multiple assertions occur at one time. The arbiter decides 

which assertion result has the highest priority and issues a 

grant signal accordingly. Thus, when an assertion output Oi 

is produced and at the same time, receives a grant signal in 

the current cycle, its index i which represents the identity of 

the granted assertion will be encoded and stored in the 

memory. The process is terminated after n assertions have 

occurred or the user interrupts to read the memory. 

 

 
 

Figure 2: Operation of collection module 

 

 
 

Figure 3: Proposed N-bits architecture of the memory design as 

collection module 

 

Collection module consists of an arbiter, memory block 

and other components as shown in Figure 3. The illustrated 

design is able to receive and store at least 1000 assertion 

results. The concept of arbitration was used to design the 

memory interface in the collection module because the 

occurrence of assertions is unpredicted and there maybe 

multiple assertions occur at one time. The arbiter decides 

which assertion result has the highest priority and issues a 

grant signal accordingly. Counter is used to count the number 

of assertion results that have been stored and to generate 

memory address at which assertion results are stored. 

Encoder functions to encode grant signal of 1000 lines to 10 

lines, which represents a 10-bit assertion location or identity 

namely data_in to represent assertion result. data_out sends 

out assertion result to another output peripheral of FPGA 

whenever the memory is read. OR gate functions to enable 

the counter when a grant signal is generated or when user 

intends to read the memory which can be enabled through 

din_user. din_user can interrupt the memory to read out the 

assertion result at data_out when necessary. In scan-chain 

approach, as discussed in the literature review, the assertion 

result is shifted out batch by batch or one by one after the 

completion of the verification process. Nevertheless, this 

proposed approach allows interruption or termination of the 

verification process anytime subject to user's decision on 

when to read the assertion results. For instance, user may wish 

to abort the verification after detection of a critical bug. 

 

2) Oblivious Arbiter with Blocking Logic 

We augment the oblivious arbiter with block logic to be 

used to arbitrate the assertion results. The blocking logic 

functions to block the same assertion from being stored again 

in the memory. By avoiding serving the same assertion, it 

minimizes the chance of failing to store an assertion result 

that occurs at the same time with other assertion checked for 

the first time.  

 

 
 

Figure 4: Slice circuit of the memory interface architecture; a) 
Oblivious arbiter architecture for slice i; b) Round-Robin arbiter 

architecture for slice i 

 

Figure 4 illustrates the proposed arbiter architecture. It 

consists of blocking logic and grant logic. The function of 

each port and its internal signals are illustrated below: 

 request: input to the arbiter, which receives signal 

from assertion module output. 

 grant: output from the arbiter that indicates which 

assertion results to be stored. 

 carryin: signal that acknowledges the arbiter to 

consider current request to be granted. 

 tmpcout: signal that acknowledges the arbiter to 

consider next request to be granted. 

 block: signal that acknowledges the block logic to 

block the request if it has been served previously. 

The proposed blocking logic in Figure 4 is designed to 

block the request which has already been served from being 

served again in the next cycle onward. In other words, the 

assertion result is served once only to be kept to the memory 

after it happens. Initially, signal block[i] is set to high which 

allow any initial request[i] that issues a request to have a 

grant permission. When signal grant[i] goes high, the 

blocking logic produces low block[i] such that permission is 

not given to the same request[i] to have grant anymore. For 

example, when condition grant[0] is high, block[0] which is 

also high activates the blocking function. block[0] is then 

changed to low. 

The grant logic behaves such that when there are many 

requests to the arbiter, they will be served according to the 

priority set and block signal. Only one request is granted in 

one cycle. Initially, the active-low input block is set to high 

to have the request granted based on the set priority. The first 

carryin in the circuit is set to high as an initial value, for 

example, the 4-bit request. When condition request[3] is 

issued, a grant is given since block[3] is initially set to high, 

which means no blocking. Otherwise, other request[N-1] can 

have their grant based on signal block[N-1]. 
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D.  SVA Signal Extractor 

In System Verilog language, it provides a bind feature that 

links internal nets or wires of DUV to the assertion module, 

as illustrated in Figure 5 a) for verification purpose. When the 

assertion module is implemented as hardware, these nets and 

wires need to be transformed into new outputs of DUV, which 

are also new inputs to the synthesized assertion module as 

illustrated in Figure 5 b). To automate the transformation, 

SVA signal extractor is developed to identify the required 

signals involved in the assertion statements using the Perl 

script. These signals could be inputs or internal wires of 

DUV, which connect DUV to the assertion modules. Besides, 

outputs of assertion modules that produce assertions result are 

also generated by SVA signal extractor and they are 

connected from assertion module to the collection module 

automatically. 

Figure 5 c) illustrates the SVA signal extractor that first 

reads the Verilog files of the original DUV and the 

synthesized assertion module. Then, it creates new signals to 

replace internal signals linked by bind feature to connect 

DUV to assertion module. Besides, it generates collection 

module and necessary signals that connect assertion module 

to the collection module based on the number of assertion 

results derived by the synthesized assertion module.  

 

  
(a) (b) 

 

 
(c) 

 

Figure 5: a) Internal signal through bind that connected DUV and 
assertion module, b) New output signal required for hardware 

verification, and c) Structure arrangement of the script directory 

 

Figure 6 shows the first step of SVA signal extraction, 

which generates the signals that connect DUV to the 

synthesized assertion module. Firstly, the SVA signal 

extractor reads the DUV, assertion file and sub modules of 

DUV to identify common signals between DUV and assertion 

module. While identifying the common signals, the signal 

directions (input or output), ports, data type and internal nets 

and pins are extracted and kept in an array. Ports between 

DUV and assertion module are compared based on their 

names similarity to check whether a port is common to 

connect DUV to assertion module or not. If an input port of 

assertion module does not exist in the DUV, a new output port 

is created in the DUV. This is to convert the DUV’s internal 

signals, which are originally connecting to the assertion 

module through bind feature, into DUV’s output signal fed to 

assertion module. Then, the existing output ports and the new 

output port(s) are included in the output list of the new DUV. 

After the DUV file is processed to fulfill the signals 

requirement, the remaining unchanged content of the original 

DUV is copied as the content of the new DUV. During this 

process, conditional compiler directive such as `ifdef, `else, 

`elseif, `endif, and `ifndef in the original DUV file are 

removed and eliminated except `include directive line, 

because those syntaxes are non-synthesizable in the 

hardware. 

 

 
 
Figure 6: Flow chart of main script to produce new DUV file with new 

output port 

 

 
 

Figure 7: Flow chart of Script 2 to produce new top DUV with new 

instances 

 

Figure 7 illustrates the second step of SVA signal 

extraction, which is generating the collection module and 

its relevant signals that connect assertion module with the 

collection module. The number of assertions is counted 

based on the keyword output in the assertion file. It will be 

recorded as N. Next, parameter M of collection module is 

computed as ⌈log2 N⌉ where M is the number of address 

bits of the memory that is supposed to store the assertion 

results. Then, new top level Verilog file is created. This 

empty object will be filled with the signals extracted earlier 

by the first step and new parameters M and N besides 

instances of DUV, assertion module and collection module 

together with their nets and pins. In generating the 

collection module, signal request is assigned as a fixed 
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signal name which receives an assertion result signal to be 

fed to the arbiter in the collection module. Signal request 

is declared as an internal signal for the top level file. 

Finally, all the unchanged functionality content of the 

DUV and the assertion module are written to the new top 

level file. The new top level module file consists of new 

DUV, assertion and collection instances. 
 

III. RESULT AND DISCUSSION 

 

A. Implementation of FPGA-Assisted Verification 

Platform  

Given a DUV and its verification file, SVA checker 

generator provides the assertion checkers whereas SVA 

signal extractor extracts signals required to connect DUV, 

assertion module and collection module. On top of that, 

necessary new inputs and outputs are added to the new top 

level Verilog file. To evaluate the proposed FPGA-assisted 

platform in the actual environment, the new top-level file that 

consist of new DUV, assertion module and collection module 

is implemented to FPGA. Then, the resource utilization is 

evaluated and discussed in the next section. Besides, we also 

demonstrate the verification platform using FPGA and 

SignalTap II analyzer. 

 

1) Area Effectiveness of SVA Checker 

The proposed SVA checker generator was experimented 

and tested using case studies below: 

i. Up-down counter; 

ii. Single FIFO; and 

iii. Multiple FIFO. 

 

FPGA area consumed by the assertion module resulted 

from our proposed SVA checker generator is compared with 

the results from MBAC for each case study. There are four 

assertions, namely ASR_1, ASR_2, ASR_3 and ASR_4 

designed to verify the up-down counter, as described in Table 

2. We derived the synthesized assertion checkers of these four 

assertions based on the concept of our proposed SVA checker 

generator and existing MBAC tool, respectively. For each 

assertion in Table 2, the first column describes the SVA 

coding for the assertion. The second column shows the 

synthesizable Verilog coding for the assertion which was 

generated by MBAC tool. s[i]s is the next state signal 

whereas the signal s[i]sq is the present state of the automata, 

which functions as an intermediate representation that stores 

bit representing sequence result, and ASR_[k] is the assertion 

signal or assertion result. The third column shows the 

synthesizable Verilog coding generated by the proposed SVA 

checker generator.  However, for assertion that involves 

repetition such as ASR_4, the number of flip-flops in the SVA 

checkers generated by MBAC tool consists of at least n to 

keep track of the sequence that involves a repetition of n. This 

could be further optimized by using counter as repetition of n 

could be counted and tracked by counter consisting of ⌈log2 

n⌉ flip-flops. Thus, the area consumed by verification-related 

hardware could be reduced, which is especially essential 

when the design is large. MBAC tool synthesizes ASR_4 that 

involves repetition count of 10 using 10 flip-flops. It is 

different with our proposed SVA checker generator, which 

implements a 4-bit counter using four flip-flops for the same 

assertion. 

 

 

Table 2   

SVA and Synthesizable SVA in Verilog from MBAC Tool and SVA 
Checker Generator 

 

Assertion in SVA MBAC 
Proposed SVA 

Checker Generator 

ASR_1: 
 

assert property 

(@(posedge clk) 
(!en_ud && 

!en_load) |=> 

stable(cnt)); 

always @(posedge clk)   
s1<=cnt; 

assign s2 = s1 == cnt; 

always @(posedge clk)  
if (`MBACRPS  reset)  

s3sq<=3'h4;   

else  
s3sq<=s3s;  

assign s3s={1'b1,((! 

en_ud) && (! en_load)), 
(s3sq[1] && !(s2))}; 

always @(posedge clk)  

if (`MBACRPS  reset)  
ASR_1<=0;  

else  

ASR_1 <= (s3s[0]); 

always@(posedge 
clk) 

old_A <= cnt; 

assign B = (cnt 
=== old_A )? 

1'b1 : 1'b0; 

 
always@(posedge 

clk)  

begin 
A <= !en_ud 

&& !en_load; 

yy <= |A && | 
!B;  

end 

assign ASR_1 = !reset 
&& yy; 

ASR_2: 

 
 

assert property 
(@(posedge clk) 

(en_load) |-> ##1 

(cnt == 
$past(load))); 

always @(posedge clk)   

s4<=load; 
always @(posedge clk)  

if (`MBACRPS reset)   
s5sq<=3'h4;   

else  

s5sq<=s5s; 
assign s5s={1'b1, en_load, 

(s5sq[1] && !((cnt == 

s4)))}; 
always @(posedge clk)  

if  (`MBACRPS  reset)  

ASR_2<=0;  
else  

ASR_2 <= (s5s[0]); 

assign temp_load = 

load ? load :1'b0; 
always @ (posedge 

clk)  
past_B<= temp_load;  

assign B = (cnt == 

past_B); 
always @ (posedge 

clk)  

begin 
A <= en_load; 

yy <= |A && |!B; 

end 
assign ASR_2 = yy 

&& !reset; 

ASR_3: 
 

 

assert property 

(@(posedge clk)  

(!en_load) |-> ##1 

(!(cnt == 
~$past(cnt) && 

cnt[width-

1]==cnt[0]))); 

always@(posedgeclk) 
s6<=cnt; 

always@(posedge clk)  

if (`MBACRPS reset) 

s7sq<=3'h4;  

else 

 s7sq<=s7s; 
assign 

s7s={1'b1,!(en_load),(s7sq[

1] && ((cnt == (~s6)) && 
(cnt[width-1] == cnt[0])))}; 

always @(posedge clk)  

if (`MBACRPS reset)  
ASR_3<=0;  

else  

ASR_3 <= (s7s[0]); 
 

 always @ (posedge 

clk)  

begin 

A <= !en_load; 

yy <= |A && |!B; end 
always @ (posedge 

clk)  

past_B <= cnt;  
assign B = ((cnt == 

past_B )&& (cnt[7] 

== cnt[0]));  
assign ASR_3 = yy 

&& !reset; 

ASR_4: 

 
assert property 

(@(posedge clk)  

not (!en_load && 
!en_ud)[ *10]); 

always @(posedge clk)  

if (‘MBACRPS reset) 
s8sq<=11’h400;  

else  

8sq<=s8s; 
assign 

s8s={1’b1,((!en_load)&&(!

en_ud)), 
(s8sq[9] && ((! en_load) 

&& (! en_ud))), 

(s8sq[8] && ((! en_load) 
&& (! en_ud))), 

 ... 

(s8sq[1] && ((! en_load) 
&& (! en_ud)))}; 

always @(posedge clk)  

if (‘MBACRPS reset) 
ASR_4<=0;  

else 

 ASR_4 <= (s8s[0]); 

assign A = !en_load 

&& !en_ud; 

always@(posedge 

clk) 

 if (reset) 

counter <=0; 
else if (A)   

counter<=counter +1;  

assign 
ASR_4=(counter > 10 

&& A ) ? 1'b1 : 1'b0; 

 
 

 

Similar experiment has been conducted on single FIFO and 

multiple FIFO. Table 3 summarizes FPGA area utilized by 

synthesized assertions for all the case studies. ALMs 
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represent total logic elements, and FF represents the number 

of flip-flops in the FPGA. Assertion checkers produced by 

MBAC tool and the proposed method were compiled and 

simulated using Quartus II simulator targeted on Altera Arria 

V FPGA 5AGTFD7K3F40I3 board. The syntaxes were 

verified using VCS simulator and no error was found. Based 

on the results depicted in Table 3, using the proposed SVA 

checker generator, the logic utilization and total registers in 

the design has reduced on average by 12.1% and 23.4% 

respectively. The improvement was mainly due to the 

reduction of states in the SVA checkers that involves 

sequences of repetition and delay. The reduction of states is 

realized by the reduction of flip-flops to ⌈log2 n⌉ flip-flops 

from n also leads to the greater improvement achieved in the 

reduction of total registers consumed in the FPGA (average 

23.4%). 

 
Table 3  

 Area Utilization of DUV with Assertion Module Resulted from MBAC 

Tool and the Proposed SVA Checker Generator 

 

DUV 
No. of 

Assertions 

MBAC Tool 

Proposed 
SVA 

Checker 

Generator 

% 

Improvement 

ALMs FF ALMs FF ALMs FF 

Up-

Down 

Counter 

 

4 15 31 14 26 6.7 16.1 

Single 

FIFO 

10 
46 83 38 60 17.4 27.7 

Multiple 
FIFO 

32 
349 269 306 198 12.3 26.4 

Average 12.1 23.4 

 

The FIFO design used in this experiment is able to store 16 

words, each of which is an 8-bit data. It has one reset and 

clock domain. The design was verified with ten assertions. 

According to Table 3, MBAC tool and SVA checker 

generator were used to generate the corresponding assertion 

checkers and their area utilization was evaluated. They were 

executed using Quartus II with targeted Altera Arria V FPGA 

5AGTFD7K3F40I3 board. One of the ten assertions was 

using repetition count. It showed that 17.4% of ALMs 

improvement has been achieved compared to MBAC tool. 

Besides, the total register was 23 flip-flops less than MBAC 

tool. 

Next, we created bigger circuit by duplicating the single 

FIFO with 10 assertions for three times. The circuit consists 

of three FIFOs with multiple clock and reset domain. Two 

additional assertions were added to top level design of 

multiple FIFO on top of the 10 assertions used for each single 

FIFO module to make up 32 assertions totally. The additional 

assertions are: 

i. ERROR_FIFO_ALL_SHOULD_BE_FULL to 

check if all three FIFOs are full. 

ii. ERROR_FIFO_ALL_SHOULD_BE_EMPTY to 

check if all three FIFOs are empty. 

The area utilization for synthesized circuits of the 32 

assertions using the proposed SVA checker generator 

consumed less logics and registers compared to MBAC tool 

by 12.3% improvement of ALMs. In other words, the 

proposed tool achieved an improvement in terms of area 

utilization for the checker's size.  

Table 4 tabulates the total area utilization when the circuits 

are also augmented with the collection module to store 

assertion results besides the assertion module. We added 

bigger design named CAVLC with the assertion module and 

the collection module to be evaluated with different number 

of assertions as shown in Table 4, which are 100, 500, and 

1000 assertions, respectively. CAVLC is an important 

module in MPEG4 that performs context-adaptive variable-

length coding. We varied the number of assertions and 

observed that the area utilization was dominated by both the 

assertion module and collection module; the more the 

assertions used to verify the DUV, the larger the area 

consumed and the growing trend is linear to the number of 

assertions.  
Table 4 

Area Utilization the Proposed Verification Platform 
 

DUV 
No. of 

Assertions 
ALMs FF Pins 

Single FIFO 
10 165 90 40 

13 182 102 40 

Multiple FIFO 

2 112 112 45 

29 466 265 105 

32 468 265 105 

CAVLC 

100 2,347 926 71 

500 4,985 1728 73 

1000 8,989 2729 74 

 

2) Verification Procedure 

Figure 8a) shows the experimental setup used to 

demonstrate the verification procedure of the FPGA-assisted 

platform. It involves Ultrabook Lenovo with 64-bit operating 

system, monitor and FPGA device. The connection between 

Ultrabook and FPGA device were applied using USB blaster 

through JTAG programmer. The input and output peripherals 

were assigned as shown in Figure 8b): 

 Din_user: a switch to interrupt the verification 

process to enable read mode to read coverage results 

from the collection module. 

 Reset: switch to reset the registers. It is necessary 

before starting the evaluation. 

 Reset clock: a switch to reset the system counter of 

the design that generates the memory address to 

store the coverage results. 

 Coverage results: eight red LEDs to indicate 8-bit 

coverage results. 

 Address memory: eight green LEDs to indicate 8-bit 

memory address of a location in the collection 

module, where the assertion result is stored. 

 VALID: a red LED to indicate whether the output is 

valid or not. 

 We: a red LED to indicate the write mode is enabled. 

 

 
(a) 
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(b) 

 
Figure 8: a) Experimental setup, and b) The structure of the input and 

output peripherals for CAVLC module 

Initially, all the switches (sw1-sw3) were in off state to 

disable all the systems. Figure 9 shows the output signal value 

when the collection module is in write mode, where din_user 

is low, we is high and coverage_result is empty. The 

collection module stored the 9th coverage result of CAVLC 

design into the memory, while the coverage_result (the 

memory output) was empty at the given address since it was 

in write mode where the coverage result was being written. 

Hence, both captured waveforms from Figure 9(a) and Figure 

9(b) agreed with each other. 

 

 
(a) Captured Modelsim waveform 

 

 
(b) Captured SignalTap II analyzer waveform 

 

Figure 9: Waveform comparison between simulation and real-time 

execution in hardware during write condition 

 

For the second example, Figure 10 shows the waveform 

when collection module is in read mode where din_user is 

high, we is low and coverage_result is 86 in decimal. During 

the read mode, coverage_result was able to be read where the 

value of 86 corresponds to 86th coverage result captured from 

CAVLC design and stored at 86th memory address. Both 

captured waveforms in Figure 10(a) and (b) agreed with each 

other. 

 

 
(a) Captured Modelsim waveform 

 

 
(b) Captured SignalTap II analyzer waveform 

 

Figure 10: Waveform comparison between simulation and real-time 

execution in hardware during read condition 

   

IV. CONCLUSION 

 

The proposed FPGA-assisted verification platform 

includes SVA checker generator, collection module and SVA 

signal extractor was successfully implemented. In addition, 

the proposed arbiter in the collection module selected the 

assertion result to be passed and stored to the memory. 

Implementing SVA signal extractor helps the user to identify 

the required signals between assertion module, collection 

module and DUV automatically. Experiment on FIFO and 

CAVLC have demonstrated that the proposed FPGA-assisted 

verification platform has been successfully realized.  
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