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Abstract—Clustering algorithms are used to produce 

powerful extension to design a three-term (proportional plus 

integral plus derivative—PID) fuzzy logic controller(FLC). 

They can be used to eliminate the presumption of the existence 

of expert information and extract rules that can satisfactorily 

represent the systems. In this paper, a non-parametric 

clustering algorithm based on data similarity, which is free of 

user-defined parameters is proposed. This algorithm is simple 

and fast. For comparison purposes, two methods of extracting 

the rules for a three-term FLC from the generated clusters were 

presented. These two methods entail on the use of the linguistic-

type model and the Takagi-Sugeno-Kang (TSK)-type model. 

Two applications representing second-order systems and third-

order systems were used to analyze the performance of the 

proposed design methods and compared with other design 

methods. The analysis shows that the proposed design methods 

are efficient and superior to other design methods with respect 

to transient response, accuracy, and robustness to variation of 

defuzzification methods. 

 

Index Terms—Clustering Algorithms; Fuzzy Logic Controller; 

PID Controller; Three-Term Controller. 

 

I. INTRODUCTION 

 

Three-term (proportional plus integral plus derivative—PID) 

fuzzy logic controller (FLC), or simply PID-like FLC, 

algorithms have been and continued to be a very active and 

fruitful research field since Mamdani and Assilian’s 

pioneering work in 1974. In [1], the conventional and normal 

fuzzy logic PID controllers were compared. As there are 

many methods of designing PID-like FLCs, a performance 
comparison was carried out with some methods in [2]. 

The objective in this paper is to develop a new clustering 

algorithm that is free of user-defined parameters, called 

similarity measure-based algorithm (SMBA). The purpose of 

this algorithm is to eliminate the effect of user-defined 

parameters on the number of generated clusters. The 

generated clusters will be used to extract the rule-base for the 

three-term FLC. The proposed method is based on Gowda 

and Diday’s similarity algorithm. Gowda and Diday [3], [4] 

proposed a simple and effective non-parametric algorithm for 

clustering symbolic data. Their method is built on a novel 
similarity measure, which is based on the "position," "span," 

and "content" of symbolic data. Although this measure is 

proposed for clustering symbolic data, in this study, it is 

modified to be used for clustering numerical data. Only the 

"position" component of this measure is used as a measure of 

similarity. Other modifications to the algorithm are proposed 

to develop the rules of the three-term FLC. The rule-base 

could be the linguistic-type model or the TSK-type model. In 

general, the proposed design method can be used in the design 

of any kind of FLC (PI-like FLC, PD-like FLC, etc.). 

The remainder of this paper is organized as follows: 

Section II describes the novel of non-parametric similarity-

based clustering algorithm. Section III proposes two methods 

to generate the rule-bases for the three-term FLC. These m 

ethods are built on the linguistic-type model and the TSK-

type model. Section IV compares the performance of the 

proposed design method and of other design methods using a 

second-order armature-controlled DC motor and a third-order 

field-controlled DC motor as case studies. Finally, section V 

presents the conclusions of the proposed work. 

 
II. DESIGNING A PID-LIKE FLC WITH NON 

PARAMETRIC SIMILARITY-BASED CLUSTERING 

 

In the previous study [5], various clustering algorithms that 

could be used to design a PID-like FLC were discussed. 

These algorithms require the determination of some 

parameters that affects the number of clusters to be generated. 

In the next subsections, an algorithm based on Gowda and 

Diday’s similarity measure is proposed. It is non-parametric, 

hierarchical, and agglomerative in nature, and its criterion is 

to merge the most similar mutual pair at each step.  

 
A. Composite Objects 

Successive merging lies at the heart of agglomerative 

clustering methods. Merging is the process of gathering 

together, on the basis of the similarity measure, two samples 

and assigning them to the same-cluster membership or a label 

for further clustering [3], [4]. For example, let A and B be two 

objects; Gowda and Diday proposed to compose these two 

objects by considering their minimum interval, which 

includes both A and B. Due to the non-interval data, the 

composite object O, resulting from the merging of A and B is 

proposed as: 
 

O = mean (A, B) (1) 

 

B. Mutual Pair 

Gowda and Krishna [6], [7] introduced the concept of 

mutual nearest neighborhood and successfully used it for 

agglomerative and disaggregate clustering, learning, 

condensed nearest-neighbor rule, editing, and error 

correction.  

In a data set, on the basis of a similarity or dissimilarity 

measure, if an object Xi is the first nearest neighbor of an 

object Xj, and Xj is the first nearest neighbor of Xi, then Xi 
and Xj constitute a mutual pair. The mutual pair with the 

highest similarity value corresponds to the two objects of the 

data set having the highest similarity, while the mutual pair 

with the lowest dissimilarity value corresponds to the two 

objects of the data set having the lowest dissimilarity. 
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C. Dissimilarity and Similarity Measures 

The dissimilarity and similarity measures indicate the 

relative positions of two point values on a real line. The 

dissimilarity D between two points A and B is defined as 

Equation (1), in which the ||.|| as any inner product norm 
metric is chosen as the Euclidean norm. 

 

D(A,B) = ||A-B|| (2) 

 

Thus, it is represented by Equation (3) as follows: 

 

 

(3) 

 

The values of the dissimilarity D are normalized within the 

range between 0 and 1 by the following linear transformation: 

 

 

(4) 

 

where: Dmin = Minimum dissimilarity value 

Dmax = Maximum dissimilarity value 

 

Similarity is just another aspect of dissimilarity, which 

leads to the view that the more similar the two objects, the 

less dissimilar they are. On this basis, the similarity between 

the two points A and B is defined as follows: 

 

 
(5) 

 

D. Similarity Measure-Based Algorithm (SMBA) 

The similarity measure-based algorithm (SMBA) proceeds 

as follows [3], [4]: 
1. Let {X1, X2, …, XN} be a set of N objects. Let the 

initial number of clusters be N, with each cluster 

having a cluster weight (number of objects) of 1. 

2. Compute the weighted similarities Sw or weighted 

dissimilarities Dw between all points in the data set, as 

follows: 

 

𝑆𝑤(𝑋𝑖 , 𝑋𝑗) = 𝑆(𝑋𝑖 , 𝑋𝑗).√
𝑛𝑖 . 𝑛𝑗

𝑛𝑖 + 𝑛𝑗

 (6) 

  

𝐷𝑤(𝑋𝑖 , 𝑋𝑗) = 𝐷(𝑋𝑖 , 𝑋𝑗).√
𝑛𝑖 . 𝑛𝑗

𝑛𝑖 + 𝑛𝑗

 (7) 

 

where: ni = Cluster weights of Xi  

nj = Cluster weights of Xj  

S(Xi, Xj) = Similarity value is given by (5) 

D(Xi, Xj) = Dissimilarity value is given by (3) 

 

Determine the mutual pair with the highest weighted 

similarity or the lowest weighted dissimilarity and 

form a composite object by merging the individuals of 
this pair. Reduce the number of clusters by 1. 

3. Repeat step 2 until the number of clusters is equal to 1. 

 

4. Repeat step 2 until the number of clusters is equal to 1. 

5. Calculate the cluster indicator (CI) value using 

equation (8). The stage of maximum CI value indicates 

the number of clusters in the data. The composite 

objects of the stage describe the objects representing 

the clusters. 

At each stage (p), maximum similarity (Sm) indicates the 
similarities between the individual objects of the mutual pair 

that are combined to form a composite object. The minimum 

similarity value at each stage indicates the similarity between 

the most distant clusters. The lower this value, the better the 

separation between the clusters [3]. 

The CI value at the pth stage is: 

 

𝐶𝐼 =
|𝑆𝑚  at (𝑝 + 1) − 𝑆𝑚  at (𝑝) |

𝑆𝑚  at (𝑝)
 (8) 

 

III. DEVELOPING THE RULE-BASE OF THE THREE-

TERM FLC USING CLUSTERING ALGORITHMS 

 

Fuzzy system models basically fall into two categories, 

which differ fundamentally in their ability to represent 

different types of information [8]. The first includes linguistic 

models (LMs) that are based on collections of IF–THEN rules 

with vague predicates and use fuzzy reasoning. The second 

category of fuzzy models is based on the Takagi-Sugeno-
Kang (TSK) method of reasoning [9]. These models are 

formed by logical rules that have a fuzzy antecedent part and 

a functional consequent; essentially, they are combination of 

fuzzy and non-fuzzy models. This section is a discussion of 

how both kinds of models can be applied in the design of a 

three-term FLC.  

 

A. Linguistic Models as Tools for FLC Representation 

One of the main directions in the theory of fuzzy systems 

is the linguistic approach, based on linguistically described 

models. Starting with the observed data pairs (ek, dek, sek, Uk), 
the clustering methods provide a collection of clusters and 

their centers (eCi, deCi, seCi, UCi). Each center can be viewed 

as a prototypical fuzzy point in the relationship between input 

and output, as shown in Figure 1. Hence, each cluster center 

can be used as the basis of a rule that describes the system 

behavior. 

 

 
 

Figure 1: Three-dimensional input–output data clustering for rule 

determination 

 
It is proposed that the rules in the PID-like FLC rule-based 

are formed linguistically as follows: 
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IF error is close to cluster i  

AND error-change is close to cluster i  

AND error-sum is close to cluster i,  

THEN control action is close to cluster i 

 

(For i = 1 … C) 

(9) 

 

where:  C = Number of clusters 

 

The cluster centers (eCi, deCi, seCi, UCi) of each fuzzy 

variable are considered to be the peaks of their membership 

functions. 

To achieve a systematic method of defining the 

membership functions of the antecedent fuzzy sets, the use of 

the Gaussian curve membership function is proposed: 

 

𝜇𝑖(𝑦) = 𝑒𝑥𝑝(
−(𝑦 − 𝑦𝑖

∗)2

2𝜎2
) (10) 

 

where:  y = Input vector 

y*
i = Center of the cluster i 

 = Width of the cluster i 
 

To compute the initial value of  for the clusters in the 
fuzzy variable X (e, de, se, and U), the following equation is 

proposed: 

 

𝜎 =
Maximum point in 𝑋−Minimum point in 𝑋

Number of clusters
  (11) 

 

To refine the  value for each variable, the algorithm 1 is 
proposed: 

 
Algorithm 1 

Optimizing  Values 

 

Input: initial  value for each variable 

Output: optimized  value for each variable 

1 Use eq. (11) to get the initial  value to each variable; 

2 Initialize SSE (sum-squared error) to large value; 

3 For i=1 to maximum number of epochs to refine all  

4    If SSE < sse_goal, break, end if 

5     For j=1 to minimum no. of epochs to refinement one  

6         Run the experiment and get new_sse; 

7         If (new_sse  SSE) 

8             SSE = new_sse; 

9             Save ;  

10            =   increase_ratio; 

11       else 

12           =   decrease_ratio; 

13      end if 

14   end for 

15 end for 

 

The use of a decrease ratio of 0.7 and an increase ratio of 

1.05 is suggested. 

 

B. TSK Models as Tools for PID FLC Representation 

A known disadvantage of the LMs is that they do not 
contain in an explicit form of the objective knowledge of the 

system if such knowledge cannot be expressed and/or 

incorporated into the fuzzy set framework. A definition of the 

TSK rules in the PID-like FLC rule-based is proposed as 

follows: 

 

IF error (y1) is close to cluster i 

AND error-change (y2) is close to cluster i 

AND error-sum (y3) is close to cluster i, 

THEN control action is ai1y1 + ai2y2 + ai3y3 + 

ai4 

 
(For i = 1 … C) 

(12) 

 

This subsection contains a description of Chiu’s method 

[10], [11] for fuzzy model identification. His method for 

fuzzy model identification from data is based on the use of a 

cluster estimation method to determine the number of rules 

and initial rule parameters and then on the application of 

optimization algorithms to tune the rule parameters. Chiu 

uses a recursive least squares estimation algorithm to 

optimize the fuzzy model. The issue with this algorithm is 

that it is iterative and slow. To optimize the fuzzy model, the 

use of a singular value decomposition method is proposed. 
This is a non-iterative algorithm capable of obtaining the 

parameter estimates very quickly and reliably. 

 

i. Fuzzy Model Identification  

Consider a set of C cluster centers {c1, c2, ..., cC} in an M 

dimensional space. Let the first N dimensions correspond to 

input variables and the last M-N dimensions correspond to 

output variables. Each vector ci is decomposed into two 

components y*
i and z*

i, where y*
i contains the first N elements 

of ci (i.e., the coordinates of the cluster center in input space) 

and z*
i contains the last M-N elements (i.e., the coordinates of 

the cluster center in output space). Given an input vector y, 

the degree to which rule i is fulfilled is defined as [10], [11]: 

 

𝜏𝑖 = exp (−‖𝑦 − 𝑦𝑖
∗‖2) (13) 

 

The output vector z can be computed via: 

 

𝑧 =
∑ 𝜏𝑖𝑧𝑖

∗𝐶
𝑖=1

∑ 𝜏𝑖
𝐶
𝑖=1

 (14) 

 

To systematically define the membership functions of the 
antecedent fuzzy sets, the use of the Gaussian curve 

membership function as defined by (10) is proposed. 

Equation (11) should be used to compute the  value for the 
Gaussian curves. 

 

ii. Optimizing the Fuzzy Model 

Equations (13) and (14) provide a simple and direct way to 

translate a set of cluster centers into a fuzzy model. Equation 

(14) can be used to optimize the rules by allowing z*
i to be a 

linear function of the input variables, instead of a simple 

constant. That is: 

 

z*
i = Gi y  + hi (15) 

 

where: Gi = (M-N)  N constant matrix 
hi = Constant column vector with M-N elements 

 

Expressing z*
i as a linear function of the input allows a 

significant degree of rule optimization to be performed 

without adding much computational complexity. As pointed 

out by Takagi and Sugeno [9], given a set of rules with fixed 

premises, the optimization of the parameters in the 

consequent equations with respect to training data is reduced 
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to a least-squares estimation problem. Such problems can be 

solved easily and the solution is always globally optimal. To 

convert the equation parameter-optimization problem into the 

least-squares estimation problem, let us define: 

 

𝜌𝑖 =
𝜏𝑖

∑ 𝜏𝑗
𝐶
𝑗=1

 (16) 

 

Equation (14) can then be rewritten as equations (17) or 

(18):  

 

𝑧 = ∑𝜌𝑖

𝐶

𝑖=1

𝑧𝑖
∗ = ∑𝜌𝑖

𝐶

𝑖=1

(𝐺𝑖𝑦 + ℎ𝑖) (17) 

  

𝑧𝑇 = [𝜌1𝑦
𝑇    𝜌1  … 𝜌𝐶𝑦𝑇   𝜌𝐶]

[
 
 
 
 
 
 
 
𝐺1

𝑇

ℎ1
𝑇

 
⋮
 

𝐺𝐶
𝑇

ℎ𝐶
𝑇 ]
 
 
 
 
 
 
 

 (18) 

 

where: zT = Row vector 

yT = Row vectors 

 

Given a collection of n input data points {y1, y2, ..., yn}, the 

resultant collection of model output is given by: 
 

[
 
 
 
 
𝑧1

𝑇

 
⋮
 

𝑧𝑛
𝑇]
 
 
 
 

=

[
 
 
 
 
𝜌1,1𝑦1

𝑇    𝜌1,1  … 𝜌𝐶,1𝑦1
𝑇  𝜌𝐶,1

 
⋮
 

𝜌1,𝑛𝑦1
𝑇    𝜌1,𝑛  … 𝜌𝐶,𝑛𝑦𝑛

𝑇   𝜌𝐶,𝑛]
 
 
 
 

[
 
 
 
 
 
 
 
𝐺1

𝑇

ℎ1
𝑇

 
⋮
 

𝐺𝐶
𝑇

ℎ𝐶
𝑇 ]
 
 
 
 
 
 
 

 (19) 

 

where:  i,j = i evaluated at yj  
 

Note that given {y1, y2,..., yn}, the first matrix on the right-

hand side of equation (19) is constant, while the second 

matrix contains all the parameters to be optimized. To 

minimize the squared error between the model output and that 

of the training data, the least-squares estimation problem in 

equation (19) is solved by replacing the matrix on the left-

hand side with the actual output of the training data. Of 

course, implicit in the least-squares estimation problem is the 

assumption that the number of training data is greater than the 
number of parameters to be optimized. 

Using the standard notation widely adopted in literature, 

the least-squares estimation problem in equation (19) is 

written as: 

 

AX = B (20) 

 

where:  B = Matrix of output values 

A = Constant matrix 

X = Matrix of parameters to be estimated 

 
Let us choose X in such a way that the following objective 

function J is minimized [12], [13]: 

 

𝐽 = ‖𝐵 − 𝐴𝑋‖2
2 ≡ (𝐵 − 𝐴𝑋)−𝑇(𝐵 − 𝐴𝑋) (21) 

To carry out the minimization, J is differentiated with 

respect to X and the result is equated to zero. Thus: 

 
𝜕𝐽

𝜕𝑋
= −2𝐴𝑇𝐵 + 2𝐴𝑇𝑋 = 0 (22) 

 

From which X can be solved as: 

 

𝑋 = (𝐴𝑇𝐴)−1 + 𝐴𝑇𝐵 (23) 

 

In practice, the most reliable method of computing the 
pseudo-inverse of a matrix is the singular value 

decomposition (SVD). The SVD method is based on the 

following theorem of linear algebra, whose proof is beyond 

the present scope [14]:  

Any M  N matrix A where M  N, can be written as the 

product of an M  N orthogonal-columns matrix U, an N  N 
diagonal matrix S with nonnegative elements in decreasing 

order, and the transpose of an N  N orthogonal matrix V. 
The SVD can also be carried out when M < N. In this case, 

the singular values sj for j = M + 1, …, N are all zero, and the 

corresponding columns of U are also zero. The SVD is one of 

the most powerful tools of numerical linear algebra and has 

been successfully applied in various areas such as statistical 

analysis, image and signal processing, system identification, 

and linear control. For an overview of the SVD, its theory, 

and numerical details, the reader is referred to [14]. 
 

IV. PERFORMANCE ANALYSIS OF THE PROPOSED 

METHOD 

 

Once a controller is designed, it is important to validate its 

performance and compare it with other types of controllers, 

possibly designed using other methodologies. In section A, it 

is suggested that two performance measures with two 

simulated systems be used. The objectives of the simulation 

are to demonstrate the feasibility of the proposed three-term 

design method when applied to second-order and third-order 

systems.  
The following section presents the performance measures 

that will be used during the study and the applications that 

will be used in testing and analyzing the performance. The 

simulation results will be presented in section B.  

 

A. Performance Study  

To test the models, two performance measures have been 

chosen, which will be used to analyze the performance of the 

proposed method for designing a PID FLC. They are:  

1. Accuracy: To design a PID-like FLC with clustering 

algorithms, the rise-time, overshoot, and settling-time 
performance measures will be omitted, because a 

teacher signal is used with these algorithms as a 

reference model. To validate the results, it is proposed 

that an accuracy criterion be employed. Accuracy 

means the correctness of the answer. In order to 

measure it, the use of the sum of squares for error is 

proposed. Thus, the smaller the error, the better the 

accuracy, and the larger the error, the worse the 

accuracy will be. The error here is the error between 

the output of the system under analysis and its 

reference model. 
2. Robustness: A robust controller is capable of dealing 

with significant parameter variations. The examination 

of its performance for parameter values that are 
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different from the designed values is a method of 

assessing controller robustness. The analysis of the 

effects of parameter variations on PID-like FLC design 

methods provides a useful quantitative, albeit 

empirical, measure of robustness. 

To measure robustness, it is proposed that the 
defuzzification method parameter be varied. During the 

design of the PID-like FLC, center of area (COA) was chosen 

as a defuzzification method. To measure the robustness of 

this controller, the use of bisector of area (BOA) as a 

defuzzification method [15] is suggested, which is defined 

by: 

 

𝑈 = {𝑥|∫ 𝜇(𝑥)𝑑𝑥 = ∫ 𝜇(𝑥)𝑑𝑥
𝑥

𝑀𝑖𝑛

𝑥

𝑀𝑖𝑛

} (24) 

 

where:  U = Control action 

x = Running point in the universe 

 (x) = Membership 
Min = Leftmost value of the universe 

Max = Rightmost value of the universe 

 

This method picks the abscissa of the vertical line that 

divides the area under the curve in two equal halves. The 

procedure used to implement this method, as shown in 

algorithm 2. 

 
Algorithm 2:  

Calculating the Control Action U 

 

Input: define input vector x; 

           define membership functions vector; 

Output: control action U 

1 Total_area = sum of all membership functions; 

2 temp = 0; 

3 For i = 1 to length of input vector x 

4     temp = temp + membership_function [i]; 

5     If  temp > =  Total_area / 2 

6         Break; 

7     end if 

8 end for 

9 U = x [i]; 

 

Two types of direct current (DC) motors are analyzed to 

examine the performance of proposed design methods: 

armature-controlled with fixed field and field-controlled 

with fixed armature current [16]. The same details and 

parameters as described in our previous studies [1], [2], [18] 

were used for these two systems. MATLAB with Fuzzy Logic 

Toolbox was used to simulate the PID-like FLC.  

For the clustering technique, the reference model with 

inputs [e, de, se]T and output U is used to designate the desired 

performance. To design a PID-like FLC using the fuzzy c-
means (FCM) algorithm, the weighting exponent parameter q 

for the membership functions matrix M was chosen as 2.0 

[17], [10]. To design a PID-like FLC with a subtractive 

algorithm, the cluster radius ra as 0.5 for all data dimensions, 

squash factor rb as 1.5, accept ratio as 0.5, and reject ratio 

 as 0.15 [10] were chosen. 
 

B. Simulation Results 

The performance of the PID-like FLC design methods is 

examined by analyzing the transient response and accuracy in 

subsection 1 and robustness in subsection 2. 

 

i. Transient Response and Accuracy 

The following subsection focuses on the performance of 

the armature-controlled DC motor, while subsection b 

focuses on the performance of the field-controlled motor.  

 

a. Armature-Controlled DC Motor System 

The CI for the armature-controlled DC motor system is 

shown in Figure 2. This figure shows that the SMBA 
generates only 5 clusters from 40 sampling points. 

 

 
 

Figure 2: Cluster indicator for armature-controlled DC motor system 

 

To design the linguistic-type SMBA, Figure 3 shows the 

membership functions generated by the proposed algorithm. 

 

 
 

(a) 

 

 
 

(b) 
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(c) 

 

 
 

(d) 

 

Figure 3: Membership functions generated for SMBA used to develop 

linguistic type model PID FLC for armature-controlled DC motor system 

 

Figure 4 shows the step responses and accuracy of the 
armature-controlled DC motor system. The FCM algorithm 

used to generate three clusters and five clusters for 

comparison. It can be seen how the controller output gets 

close to the reference model as more clusters are considered. 

The subtractive algorithm generates only one cluster for this 

system, so it cannot be used with this model. A comparison 

between the SSE for the linguistic-type SMBA and other 

controller shows that they are comparable. Note that SSE for 

the SMBA is significantly smaller than the SSE for the other 

controller. Thus, we can conclude that no over-transient 

response occurs with SMBA method. 

 

 
 

(a) Step response of FCM with 3 clusters and 5 clusters 

 

 
 

(b) Step response of proposed non-parametric SMBA 

 

 
 

(c) Accuracy of clustering algorithms 

 

Figure 4: Step responses and accuracy of armature-controlled DC motor 

system using clustering algorithms with PID-like FLC 

 

Figure 5 shows the step responses and accuracy of the 

armature-controlled DC motor system using the FCM 
algorithm (used to generate 5 clusters), the subtractive 

algorithm, and the SMBA for the TSK-type model of the PID-

like FLC. It is possible to observe that SSE does not reach the 

1m radian and again the transient response of the proposed 

controller is better than other controller performance. 

 

 
 

(a) Step response of FCM and SMBA 

 

 
 

(b) Step response of subtractive clustering algorithm 
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(c) Accuracy of FCM, SMBA, and DMBA 

 

 
 

(d) Accuracy of subtractive clustering algorithm 

 

Figure 5: Step responses (A) and accuracy (B) of armature-controlled DC 

motor system using clustering algorithms used to develop TSK type 

model PID-like FLC 

 
b. Field-Controlled DC Motor System 

The cluster indicator (CI) for the armature-controlled DC 

motor system using the non-parametric clustering algorithm 

(SMBA) is shown in Figure 6. This figure shows that the 

SMBA generates 10 clusters from 40 sampling points.  

 

 
 

Figure 6: Cluster indicator for field-controlled DC motor system 

using non-parametric SMBA 

 

Figure 7 shows the step responses and accuracy of the field-

controlled DC motor system using the SMBA to develop a 

linguistic-type model of the PID-like FLC. The subtractive 

algorithm generates only one cluster for this system, so it 

cannot be used to develop a linguistic-type model of the PID-

like FLC. 

 

 
 

(a) Step responses of proposed non-parametric SMBA 

 

 
 

(b) Accuracy of proposed non-parametric SMBA 

 

Figure 7: Performance of field-controlled DC motor system using FLC 
 

From Figure 8, it can be seen that the step response and 

accuracy results by the proposed TSK-type SMBA algorithm 

is better than the FCM algorithm (used to generate 5 clusters) 

and the subtractive clustering algorithm. Where, zero 

overshoot achieved in FCM and SMBA methods. The results 

show that the novel proposed tuning method works more 

precisely than other tested controllers. 

 

 
 

(a) FCM algorithm with 5 clusters 

 

 
 

(b) Subtractive clustering algorithm 
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(c) Proposed non-parametric SMBA 
 

Figure 8: Step responses (of field-controlled DC motor system) using 

clustering algorithms used to develop TSK type model PID-like FLC 
 

ii. Robustness Test 

The following subsection analyzes the robustness of the 

FLC design methods when varying the defuzzification 

method from COA to BOA. This test cannot be used with the 

TSK-type model. The only defuzzification method that can 

be used with this model is the weighted average method, 

because the fuzzy output does not have a geometric shape. 
 

 
 

(a) Step response of FCM clustering algorithm 

 

 
 

(b) Step response of non-parametric SMBA 

 

 
 

(c) Accuracy test of FCM clustering algorithm 

 
 

(d) Accuracy test of non-parametric SMBA 

 

Figure 9: Robustness test for armature-controlled DC motor system 
 

Figures 9 and 10 show the step responses and accuracy of 

the armature-controlled DC motor and the field-controlled 

DC motor respectively, using the FCM algorithm (used to 
generate 5 clusters) and the SMBA to develop a linguistic-

type model of the PID-like FLC. It is shown that there is a 

substantial improvement in the time domain specification in 

terms of lesser rise time, settling time and overshoot using 

SMBA algorithm. Hence, this method is a robust design 

method for determining the PID controller parameters. 

 

 
 

(a) Step response of FCM clustering algorithm 

 

 
 

(b) Step response of non-parametric SMBA 
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(c) Accuracy test of clustering algorithms 

 

Figure 10: Robustness test for field-controlled DC motor system 
 

In general, the proposed non-parametric clustering 

algorithm based on the SMBA is more accurate than the FCM 

and subtractive algorithms for both systems used in the study. 
This enhanced accuracy is observed for both models used to 

design a PID-like FLC (linguistic and TSK models). 

Enhanced robustness is also observed for both the linguistic 

and the TSK models. However, designing a PID-like FLC 

using the SMBA produces more robust results than the FCM 

algorithm for both systems used in the study. From the 

simulation, it can be noticed that when designing a PID-like 

FLC, the TSK-type model is more accurate than the 

linguistic-type model for both systems used in the study.  

 

V. CONCLUSION 

 
The problem of clustering algorithms used in fuzzy systems 

is having non-deterministic parameters that must be defined 

by the user before the algorithms start. These parameters 

affect the number of clusters that the algorithms generate. To 

eliminate this, a non-parametric clustering method based on 

similarity algorithm was proposed. When designing a three-

mode FLC using the clustering method, the performance 

analysis shows that the proposed non-parametric clustering 

method based on the SMBA is more accurate than the FCM 

and subtractive algorithms for both systems used in the study. 

This enhanced accuracy is observed for both models used to 
design the three-mode FLC (linguistic and TSK). Combining 

the cluster estimation method with a SVD estimation 

procedure provides a fast algorithm for identifying fuzzy 

models from numerical data. When designing a three-mode 

FLC, the TSK-type model is more accurate than the 

linguistic-type model.  
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