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Modeling and Simulation of Finite State Machine Memory Built-in Self Test Architecture for Embedded Memories

Abstract

Memory Built-in Self Test (MBIST) or as some 
refer to it array as built-in self-test is an amazing 
piece of logic. Without any (direct) connection 
to the outside world, a very complex embedded 
memory can be tested efficiently, easily and at 
lower cost. Modeling and simulation of Finite 
State Machine (FSM) MBIST is presented in 
this paper. The design architecture is written 
using Very High Speed Integrated Circuit 
Hardware Description Language (VHDL) 
code using Xilinx ISE tools. The architecture 
is modeled and synthesized using register 
transfer level (RTL) abstraction. Verification of 
this architecture is carried out by testing stuck-
at-faults SRAM. Two BIST algorithms are 
implemented, i.e., MATS and March C- to test 
the faulty SRAM. 

Keywords: Memories, Built-in Self Test, Finite 
State Machine, Very High Speed Integrated 
Circuit Design Language.

I.	 INTRODUCTION

There are several Designs for Testability 
(DfT) techniques for embedded memories. 
Each of the methods has advantages and 
disadvantages. As embedded memories 
are becoming dense, their controllability 
and observability are difficult to predict. 
This is where built-in self test (BIST) 
technique plays its part.  BIST technique 
integrates the functionality of an 
automatic test system onto the same die 
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as embedded memories. Therefore, test 
pattern generation and response can be 
performed automatically.

The generic memory BIST architecture is 
illustrated in Figure 1.  The architecture 
consists of three main blocks: controller, 
pattern   generator   and   signature   
analysis   register.       The controller is 
used to govern the overall sequence 
of events.   For example, if the address 
counter should be counting up or down 
or if the data is being generated should be 
a marching 0 or marching 1 pattern. 
The test pattern generation block contains 
the circuitry to produce the address, data, 
and control values necessary to create 
each test stimulus that is to be   applied   
to  the  memory.    This   block   typically 

Figure 1: Generic MBIST architecture

contains an up/down counter for 
generating the address sequences needed 
by most memory test algorithms.
 
The signature analysis register compares 
the values read out of the memory with 
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expected values generated by the signal 
generation block. The result of each 
comparison is accumulated into a status 
flip-flop in order to provide an accept/
reject result at the end of the test. 

In this paper, a finite state machine-based 
architecture controller is presented. 
Previous papers [3]-[6] have discussed 
this architecture but using either 
assembly or C language. These languages 
cannot be implemented in hardware 
such as Field Programmable Logic Array 
(FPGA) or Application Specific Integrated 
Circuit (ASIC). A hardware description 
language (HDL)-based MBIST would 
be interesting for educational purposes. 
Many universities are migrating to HDL 
such as VHDL and Verilog in teaching 
electronics subjects such as embedded 
systems and digital communication. 
Furthermore, designs written using HDLs 
can be implemented into FPGA or ASIC 
for further investigation.

The rest of the paper is organized as 
follows. Section II describes memory faults. 
Section III describes design methodology. 
Section IV reports simulation results 
whilst Section V concludes and suggests 
future works.

II.  	MEMORY FAULTS

There are numerous fault models 
applicable to memories. As new memory 
circuit topologies are designed, new 
models are required. This is to ensure 
that the memories are free from faults.  
The fault model can be summarized as 
follows [1]-[3]:

a.	 Stuck-at-faults (SAF)

These faults imply that either a cell or line 
is stuck to logical ‘1’ or ‘0’ which is called 
Stuck-at-1 and Stuck-at-0 respectively.

b.	 Transition faults (TF)

Transition faults seem to be similar to 
Stuck-at-faults. However, in this case once 

the memory cells are written to one state 
it is impossible to transition back.

c.	 Coupling faults (CF)

Coupling faults involve coupling between 
two adjacent cells. When a 0 to 1 (or 1 to 0) 
is written to a cell, it caused the neighbor 
cell to change its desired value. These 
faults can be classified into inversion or 
idempotent.

d.	 Neighborhood pattern sensitive 	
	 faults (NPSF)

These faults involve a base memory cell in 
the centre which is surrounded by eight 
neighboring cells. It is possible for base 
memory cell to transit to a certain value 
influenced by its neighborhood cells.

e.	 Data retention faults (DF)

These faults occur in memory cells that 
are unable to retain their value some time 
after a write or read operation.

f.	A ddress decoder faults (AF)

These faults occur due to no cell can be 
accessed with a certain address, multiple 
cells are accessed simultaneously or a 
certain cell can be accessed with multiple 
addresses.

Some of the faults that may occur in SRAM 
cell are pictured in Figure 2 below.

Figure 2: Possible faults in SRAM [3].



ISSN: 2180 - 1843     Vol. 1     No. 1     July - December 2009 79

Modeling and Simulation of Finite State Machine Memory Built-in Self Test Architecture for Embedded Memories

III. 	METHODOLOGY

The methodology used in accomplished 
the simulation and modeling is presented 
in this section. First, the concept of finite 
sate machine (FSM)-based memory built-
in self test (MBIST) is presented. Next, 
FSM test pattern based on March C- 
algorithm is given. After that, the design 
entry which uses VHDL is described, and 
finally the behavioral simulation set up is 
explained.

a.	F inite state machine (FSM)-based 	
	 MBIST

Figure 3 shows the block diagram of the 
designed FSM-based MBIST architecture. 
It consists of a pattern controller, address 
generator, address limiter, data generator, 
read/write generator and comparator. 

Figure 3: Block diagram of FSM-based MBIST 
controller

The pattern controller is an important 
component of this MBIST architecture. 
The controller interacts with other 
components as a finite state machine 
would. The state machine defines control 
signals and determines when the system 
proceeds from one stage (state) to the 
next. Each state has its own sub states 
detailing its particular operation.

The pattern controller interacts with the 
read/write controller to allow the correct 
series of “reads” and “writes” for each 

unique pattern. It also interacts with the 
data generator and address counter to 
provide the correct data and address 
stimuli to the memory.

The address counter interacts with the 
address limiter and address comparator 
for identifying the proper start and stop 
address points. The address comparator 
interacts with the pattern controller to 
help identify when one pattern is finished. 
The write/read controller determines 
how many cycles a given address is 
maintained before the address counter is 
incremented. 

The data generator interacts with the 
address counter, the read/write controller 
and the pattern controller. These 
interactions allow the data generator to 
provide the memory with the correct data 
corresponding to the particular element 
of the test pattern.

All the portions work together to provide 
stimuli to the memory under test. Then the 
memory under test provides the output 
to the comparator at the memory output. 
A pass or fail indication is determined by 
comparator where the data from memory 
output and data generator must be 
equally same. The comparator also works 
with the remainder of the BIST sections to 
form a complete test cycle by cycle.

A test collar is designed to provide signal 
channeling either from BIST controller or 
from system. When BIST is turned on, data 
from BIST controller will be write to and 
read from memory. If BIST is turned off, 
data from system such as microprocessor 
will be sent to or retrieved from memory.

b.	 FSM test pattern

The key element for any state machine 
MBIST component is a counter. For 
example, an address generator that works 
in up/down sequences can be designed 
using counter. The counter determines 
which address to be inserted with 
appropriate data. The maximum address 
control signal is generated to indicate that 
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the entire memory addresses have been 
tested and hence enabling the process to 
proceed to next pattern.

In [4]-[5], the example of March C data 
generation is implemented using state 
machine sequence. The operation starts 
upon receiving data generation control 
signal from the controller. Each state will 
be executed until maximum address is 
reached. ‘Finish’ state indicates that all 
March C elements have been applied to 
entire memory.

A state diagram describing the first two 
operations of read/write generator of                    
March C- (  (w0),  (r0, w1) are 
illustrated in Figure 4 [2]. The operation 
starts upon receiving read/write control 
signal from controller. Note that when 
the first element (write 0) has reached 
maximum address, the next element 
of read ‘0 and write ‘1’ is executed. The 
execution will stop when ‘Finish’ state is 
reached.

c.	 Design entry

The various components of MBIST 
controller design entry is implemented 
using Very High Speed Integrated Circuit 
Hardware Description Language (VHDL) 
code. This versatile design language 
allows users to describe circuits in many 
levels of abstraction. The design is written 
in behavioral VHDL description for 
compatibility reason (register transfer 
level (RTL) modeling and synthesis). The 
RTL abstraction produces detailed clock-
driven design at the level of registers, 
memories, and latches. The synthesized 
design is capable in meeting the functional 
specifications when implemented in 
FPGA.

Figure 4: First two March C- algorithm state 
diagram [2]

Each of the components is combined using 
structural description. Schematic design 
entry can also be used for this purpose. 
The different is structural description 
is code-based (similar to behavioral 
description) whilst schematic is graphical 
symbol design technique. Although 
schematic seems easier to deal with than 
the code-based writing, schematic symbol 
needs to be created for each components 
before it can be used. Figure 5 shows the 
Xilinx ISE Webpack design tools, which is 
used to perform this step.

Figure 5: Xilinx ISE interface [7]

d.	 Behavioral Simulation

Several tools provide simulator to execute 
this step in order to test the design prior 
to the actual construction. This step is 
done through the use of a testbench. 
A testbench is a set of test stimuli with 
timing corresponding to circuit design. 
The response of the circuit under test is 
then read out in term of waveform or set of 
predetermined output dialog associated 
with certain errors. 
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The testbench file is responsible to 
provide input stimuli to the memory 
under test (MUT) such as clock and 
various test control signals. Then the 
MUT will produce a response in term of 
the detected failure signals that will be 
displayed as waveform. Others internal 
signals can also be displayed by selecting 
the simulator option. A part of waveform, 
output dialogues that are predetermined 
with expected errors can also be set. This 
project uses Modelsim XE III simulator 
provided in Xilinx ISE 8.2i design tool 
package from website [7].

IV. EXPERIMENTAL RESULTS

The simulation waveform on a fault-free 
SRAM is a reference for a website [8] 
is depicted in Figure 6. There are four 
groups of waveform namely; global clock, 
system signals, bist signals and memory 
signal. Global clock is the clock used by 
the architecture operated at 20 MHz. 

Figure 6: Fault-free memory

System signals consist of signals operated 
in normal cycle that is during start_test 
signal is deactivated. At this period, 
system signals are selected by test 
collar and passed to memory. Upon the 
activation of start_test signal, bist_on is 
also active which marks the start of test 
cycle. BIST signals are multiplexed and 
pass to the memory until the completion 
of testing phase. This can be observed 
when bist_end or test_end transits to 
logic high. Testing time is taken at this 
point by moving the cursor and time is 
automatically displayed at the bottom of 

the cursor.

The SRAM model is also amended to 
be in defective state by inserting stuck 
at 1 fault failure. In Figure 7, fail_detect 
signal indicates the failures detected by 
microcode MBIST. When tested data 
are dissimilar with the expected data 
generated by data generator, comparator 
will invoke this signal. 

There are four fail_detect pulses displayed 
in Figure 7 but the failure is actually 
detected only at address 3 and 10.  The 
stuck at fault failures set in the SRAM 
model can be easily detected by March C- 
elements. Each rw (read, write) element 
in up or down direction is able to detect 
these faults. For an example, bit 0 in 
memory address 3 and bit 15 in memory 
address 10 are stucked at logic 0 and logic 
1 respectively. The testing starts by writing 
sixteen bits of zeroes into memory. When 
second element takes place, the read data 
is compared with expected all zeroes data. 
The conflicting data in address 10 activates 
the fault signal.  The third element writes 
sixteen bits of ones into memory. Then, 
the read data is compared with expected 
all zeroes data again. At this point, data in 
memory 3 invokes fault signal.

Figure7: Faulty memory

V.  CONCLUSION

The simulated waveforms have shown 
that FSM-based MBIST architecture is an 
effective testing method to test embedded 
memories as it offers good fault coverage 
and low cost of testing method. Redesign 
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work needs to be performed only on 
pattern controller when new testing 
pattern algorithm is applied to the 
controller. Therefore design time and 
verification process can be reduced. Both 
two testing algorithms implemented are 
able to detect stuck at fault set in the 
SRAM under test. 

This BIST circuitry can be embedded 
in SRAM where automatic testing can 
be done after manufacturing (or even 
by the users). By doing this, memory 
manufacturer can alleviate to use 
automatic testing equipments (test 
machines) which are very expensive 
and time consuming to test all of their 
products (memories). Further works will 
concentrate on the improvement of area 
overhead and testing time
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