
ISSN: 2180 - 1843 Vol. 1 No. 1 July - December 2009 77

Modeling and Simulation of Finite State Machine Memory Built-in Self Test Architecture for Embedded Memories

Abstract

Memory Built-in Self Test (MBIST) or as some
refer to it array as built-in self-test is an amazing
piece of logic. Without any (direct) connection
to the outside world, a very complex embedded
memory can be tested efficiently, easily and at
lower cost. Modeling and simulation of Finite
State Machine (FSM) MBIST is presented in
this paper. The design architecture is written
using Very High Speed Integrated Circuit
Hardware Description Language (VHDL)
code using Xilinx ISE tools. The architecture
is modeled and synthesized using register
transfer level (RTL) abstraction. Verification of
this architecture is carried out by testing stuck-
at-faults SRAM. Two BIST algorithms are
implemented, i.e., MATS and March C- to test
the faulty SRAM.

Keywords: Memories, Built-in Self Test, Finite
State Machine, Very High Speed Integrated
Circuit Design Language.

I.	 INTRODUCTION

There are several Designs for Testability
(DfT) techniques for embedded memories.
Each of the methods has advantages and
disadvantages. As embedded memories
are becoming dense, their controllability
and observability are difficult to predict.
This is where built-in self test (BIST)
technique plays its part. BIST technique
integrates the functionality of an
automatic test system onto the same die

Modeling and Simulation of Finite State Machine
Memory Built-in Self Test Architecture for

Embedded Memories

 Nor Zaidi Haron 1, Siti Aisah Mat Junos @Yunus 1,
Abdul Hadi Abdul Razak 2

1Faculty of Electronics and Computer Engineering,
Universiti Teknikal Malaysia Melaka (UTeM)

2Faculty of Electrical Engineering, Universiti Teknologi Mara

zaidi@utem.edu.my, aisah@utem.edu.my,
adi3443@salam.uitm.edu.my

as embedded memories. Therefore, test
pattern generation and response can be
performed automatically.

The generic memory BIST architecture is
illustrated in Figure 1. The architecture
consists of three main blocks: controller,
pattern generator and signature
analysis register. The controller is
used to govern the overall sequence
of events. For example, if the address
counter should be counting up or down
or if the data is being generated should be
a marching 0 or marching 1 pattern.
The test pattern generation block contains
the circuitry to produce the address, data,
and control values necessary to create
each test stimulus that is to be applied
to the memory. This block typically

Figure 1: Generic MBIST architecture

contains an up/down counter for
generating the address sequences needed
by most memory test algorithms.

The signature analysis register compares
the values read out of the memory with

ISSN: 2180 - 1843 Vol. 1 No. 1 July - December 2009

Journal of Telecommunication, Electronic and Computer Engineering

78

expected values generated by the signal
generation block. The result of each
comparison is accumulated into a status
flip-flop in order to provide an accept/
reject result at the end of the test.

In this paper, a finite state machine-based
architecture controller is presented.
Previous papers [3]-[6] have discussed
this architecture but using either
assembly or C language. These languages
cannot be implemented in hardware
such as Field Programmable Logic Array
(FPGA) or Application Specific Integrated
Circuit (ASIC). A hardware description
language (HDL)-based MBIST would
be interesting for educational purposes.
Many universities are migrating to HDL
such as VHDL and Verilog in teaching
electronics subjects such as embedded
systems and digital communication.
Furthermore, designs written using HDLs
can be implemented into FPGA or ASIC
for further investigation.

The rest of the paper is organized as
follows. Section II describes memory faults.
Section III describes design methodology.
Section IV reports simulation results
whilst Section V concludes and suggests
future works.

II. 	MEMORY FAULTS

There are numerous fault models
applicable to memories. As new memory
circuit topologies are designed, new
models are required. This is to ensure
that the memories are free from faults.
The fault model can be summarized as
follows [1]-[3]:

a.	 Stuck-at-faults (SAF)

These faults imply that either a cell or line
is stuck to logical ‘1’ or ‘0’ which is called
Stuck-at-1 and Stuck-at-0 respectively.

b.	 Transition faults (TF)

Transition faults seem to be similar to
Stuck-at-faults. However, in this case once

the memory cells are written to one state
it is impossible to transition back.

c.	 Coupling faults (CF)

Coupling faults involve coupling between
two adjacent cells. When a 0 to 1 (or 1 to 0)
is written to a cell, it caused the neighbor
cell to change its desired value. These
faults can be classified into inversion or
idempotent.

d.	 Neighborhood pattern sensitive 	
	 faults (NPSF)

These faults involve a base memory cell in
the centre which is surrounded by eight
neighboring cells. It is possible for base
memory cell to transit to a certain value
influenced by its neighborhood cells.

e.	 Data retention faults (DF)

These faults occur in memory cells that
are unable to retain their value some time
after a write or read operation.

f.	A ddress decoder faults (AF)

These faults occur due to no cell can be
accessed with a certain address, multiple
cells are accessed simultaneously or a
certain cell can be accessed with multiple
addresses.

Some of the faults that may occur in SRAM
cell are pictured in Figure 2 below.

Figure 2: Possible faults in SRAM [3].

ISSN: 2180 - 1843 Vol. 1 No. 1 July - December 2009 79

Modeling and Simulation of Finite State Machine Memory Built-in Self Test Architecture for Embedded Memories

III. 	METHODOLOGY

The methodology used in accomplished
the simulation and modeling is presented
in this section. First, the concept of finite
sate machine (FSM)-based memory built-
in self test (MBIST) is presented. Next,
FSM test pattern based on March C-
algorithm is given. After that, the design
entry which uses VHDL is described, and
finally the behavioral simulation set up is
explained.

a.	F inite state machine (FSM)-based 	
	 MBIST

Figure 3 shows the block diagram of the
designed FSM-based MBIST architecture.
It consists of a pattern controller, address
generator, address limiter, data generator,
read/write generator and comparator.

Figure 3: Block diagram of FSM-based MBIST
controller

The pattern controller is an important
component of this MBIST architecture.
The controller interacts with other
components as a finite state machine
would. The state machine defines control
signals and determines when the system
proceeds from one stage (state) to the
next. Each state has its own sub states
detailing its particular operation.

The pattern controller interacts with the
read/write controller to allow the correct
series of “reads” and “writes” for each

unique pattern. It also interacts with the
data generator and address counter to
provide the correct data and address
stimuli to the memory.

The address counter interacts with the
address limiter and address comparator
for identifying the proper start and stop
address points. The address comparator
interacts with the pattern controller to
help identify when one pattern is finished.
The write/read controller determines
how many cycles a given address is
maintained before the address counter is
incremented.

The data generator interacts with the
address counter, the read/write controller
and the pattern controller. These
interactions allow the data generator to
provide the memory with the correct data
corresponding to the particular element
of the test pattern.

All the portions work together to provide
stimuli to the memory under test. Then the
memory under test provides the output
to the comparator at the memory output.
A pass or fail indication is determined by
comparator where the data from memory
output and data generator must be
equally same. The comparator also works
with the remainder of the BIST sections to
form a complete test cycle by cycle.

A test collar is designed to provide signal
channeling either from BIST controller or
from system. When BIST is turned on, data
from BIST controller will be write to and
read from memory. If BIST is turned off,
data from system such as microprocessor
will be sent to or retrieved from memory.

b.	 FSM test pattern

The key element for any state machine
MBIST component is a counter. For
example, an address generator that works
in up/down sequences can be designed
using counter. The counter determines
which address to be inserted with
appropriate data. The maximum address
control signal is generated to indicate that

ISSN: 2180 - 1843 Vol. 1 No. 1 July - December 2009

Journal of Telecommunication, Electronic and Computer Engineering

80

the entire memory addresses have been
tested and hence enabling the process to
proceed to next pattern.

In [4]-[5], the example of March C data
generation is implemented using state
machine sequence. The operation starts
upon receiving data generation control
signal from the controller. Each state will
be executed until maximum address is
reached. ‘Finish’ state indicates that all
March C elements have been applied to
entire memory.

A state diagram describing the first two
operations of read/write generator of
March C- ((w0), (r0, w1) are
illustrated in Figure 4 [2]. The operation
starts upon receiving read/write control
signal from controller. Note that when
the first element (write 0) has reached
maximum address, the next element
of read ‘0 and write ‘1’ is executed. The
execution will stop when ‘Finish’ state is
reached.

c.	 Design entry

The various components of MBIST
controller design entry is implemented
using Very High Speed Integrated Circuit
Hardware Description Language (VHDL)
code. This versatile design language
allows users to describe circuits in many
levels of abstraction. The design is written
in behavioral VHDL description for
compatibility reason (register transfer
level (RTL) modeling and synthesis). The
RTL abstraction produces detailed clock-
driven design at the level of registers,
memories, and latches. The synthesized
design is capable in meeting the functional
specifications when implemented in
FPGA.

Figure 4: First two March C- algorithm state
diagram [2]

Each of the components is combined using
structural description. Schematic design
entry can also be used for this purpose.
The different is structural description
is code-based (similar to behavioral
description) whilst schematic is graphical
symbol design technique. Although
schematic seems easier to deal with than
the code-based writing, schematic symbol
needs to be created for each components
before it can be used. Figure 5 shows the
Xilinx ISE Webpack design tools, which is
used to perform this step.

Figure 5: Xilinx ISE interface [7]

d.	 Behavioral Simulation

Several tools provide simulator to execute
this step in order to test the design prior
to the actual construction. This step is
done through the use of a testbench.
A testbench is a set of test stimuli with
timing corresponding to circuit design.
The response of the circuit under test is
then read out in term of waveform or set of
predetermined output dialog associated
with certain errors.

ISSN: 2180 - 1843 Vol. 1 No. 1 July - December 2009 81

Modeling and Simulation of Finite State Machine Memory Built-in Self Test Architecture for Embedded Memories

The testbench file is responsible to
provide input stimuli to the memory
under test (MUT) such as clock and
various test control signals. Then the
MUT will produce a response in term of
the detected failure signals that will be
displayed as waveform. Others internal
signals can also be displayed by selecting
the simulator option. A part of waveform,
output dialogues that are predetermined
with expected errors can also be set. This
project uses Modelsim XE III simulator
provided in Xilinx ISE 8.2i design tool
package from website [7].

IV. EXPERIMENTAL RESULTS

The simulation waveform on a fault-free
SRAM is a reference for a website [8]
is depicted in Figure 6. There are four
groups of waveform namely; global clock,
system signals, bist signals and memory
signal. Global clock is the clock used by
the architecture operated at 20 MHz.

Figure 6: Fault-free memory

System signals consist of signals operated
in normal cycle that is during start_test
signal is deactivated. At this period,
system signals are selected by test
collar and passed to memory. Upon the
activation of start_test signal, bist_on is
also active which marks the start of test
cycle. BIST signals are multiplexed and
pass to the memory until the completion
of testing phase. This can be observed
when bist_end or test_end transits to
logic high. Testing time is taken at this
point by moving the cursor and time is
automatically displayed at the bottom of

the cursor.

The SRAM model is also amended to
be in defective state by inserting stuck
at 1 fault failure. In Figure 7, fail_detect
signal indicates the failures detected by
microcode MBIST. When tested data
are dissimilar with the expected data
generated by data generator, comparator
will invoke this signal.

There are four fail_detect pulses displayed
in Figure 7 but the failure is actually
detected only at address 3 and 10. The
stuck at fault failures set in the SRAM
model can be easily detected by March C-
elements. Each rw (read, write) element
in up or down direction is able to detect
these faults. For an example, bit 0 in
memory address 3 and bit 15 in memory
address 10 are stucked at logic 0 and logic
1 respectively. The testing starts by writing
sixteen bits of zeroes into memory. When
second element takes place, the read data
is compared with expected all zeroes data.
The conflicting data in address 10 activates
the fault signal. The third element writes
sixteen bits of ones into memory. Then,
the read data is compared with expected
all zeroes data again. At this point, data in
memory 3 invokes fault signal.

Figure7: Faulty memory

V. CONCLUSION

The simulated waveforms have shown
that FSM-based MBIST architecture is an
effective testing method to test embedded
memories as it offers good fault coverage
and low cost of testing method. Redesign

ISSN: 2180 - 1843 Vol. 1 No. 1 July - December 2009

Journal of Telecommunication, Electronic and Computer Engineering

82

work needs to be performed only on
pattern controller when new testing
pattern algorithm is applied to the
controller. Therefore design time and
verification process can be reduced. Both
two testing algorithms implemented are
able to detect stuck at fault set in the
SRAM under test.

This BIST circuitry can be embedded
in SRAM where automatic testing can
be done after manufacturing (or even
by the users). By doing this, memory
manufacturer can alleviate to use
automatic testing equipments (test
machines) which are very expensive
and time consuming to test all of their
products (memories). Further works will
concentrate on the improvement of area
overhead and testing time

VI.	 REFERENCES

R. Rajsuman. 2001. Design and Test of
Large Embedded Memories:
An Overview, in Proceedings
of IEEE Design and Testing of
Computers, , pp. 16-27.

R. D. Adams, 2003. High Memory
Performance Memory Testing:
Design Principles, Fault
Modeling and Self-Test. Kluwer
Academic Publishers.

C. H. Tsai and C. W. Wu. 2001. Processor-
Programmable Memory BIST
for Bus-Connected Embedded
Memories, in Proceedings of
Asia and South Pacific Design
Automation Conference, pp.
325-330.

M.H. Tehranipour, Z. Navabi, and S.M.
Fakhraie. 2001. An Efficient BIST
Method for Testing of Embedded
SRAMs, in Proceedings of
International Symposium on
Circuits and Systems, pp. 73-76.

S, Y. Huang and D. M. Kwai. 1998. A High-
Speed Built-In-Self-Test Design

for DRAMs, in Proceedings of
IEEE/ACM Design Automation
Conference, pp. 632-637.

K. Zarrineh and S.J Upadhyaya. 1999.
On programmable memory
built-in self test architectures,
in Proceedings of Design,
Automation and Test in Europe
Conference and Exhibition, , pp.
708- 713.

Xilinx Inc., Xilinx ISE Webpack v8.21.
http://download.xilinx.com.

A. Klindworth, “A generic VHDL
entity for a typical SRAM with
complete timing parameters”.
http://tech-www.informatik.
unihamburg.de/vhdl /models/
sram/sram .vhd.

