
ISSN: 2180 - 1843 Vol. 7 No. 1 January - June 2015

Optimization of the Running Speed of Ant Colony Algorithm with Address-based Hardware Method

1

Optimization of the Running Speed of Ant
Colony Algorithm with Address-based Hardware

Method

ElnazShafighFard, Khalil Monfaredi

Engineering Faculty, Department of Electrical and Electronic Engineering, Azarbaijan Shahid Madani University,
Tabriz, Iran

shafighfard@azaruniv.edu

Abstract-Ant colony algorithm is an algorithm inspired by the
Nature. It has been used a lot for solving complex issues and
finding optimum answers. However, this algorithm is
problematic due to its huge calculations, resulting in the
decrease of its running speed. Such a decrease is considered a
weak point for the much used algorithm. This paper presents
an optimized core design purely based on hardware
technology. By presenting a special algorithm which runs on a
programmable chip based on nodes' address in memory, the
repetition of the same function is avoided. Assessments done on
ISE Xilinx area have optimized the speed of the suggested Ant
colony algorithm running time compared to the hardware
method based on the population for 27 times, method based on
ID 17.74 times, and the compound hardware-software method
up to 15.71 times.

Index Terms-ant colony, hardware technology, speed of
process, address, speed

I. INTRODUCTION

Getting inspiration from the Nature and imitating it is one of
the common and prevalent methods in artificial intelligence.
Despite its wide application, this method encounters a
serious problem due to its low running speed. Evolutional
Algorithm and calculations that offer solutions to problems
are made of a cluster of methods, which are inspired by the
evolution of animals, plants and insects from the Nature.
These algorithms, which are used for obtaining optimum
answers, have the disadvantage of complex and time
consuming calculations. The problem of running speed was
not addressed until the beginning of 1990s when the running
speed of ant colony algorithm was optimized by parallel
software methods [1][2]. Until the year 2002, all procedures
were based on software, and they mostly used parallel
processing methods [3][4]. In some cases, these algorithms
were run in parallel on a graphic processor made of several
cores [5]. During the 2000s, some methods for the
implementation of hardware on a reconfigurable chip were
offered by Dr. Sherman et al [6], and then a work on the
implementation with the CMOS technology was presented
[7]. Meanwhile, two projects were offered based on
reconfigurable chip, using all available IPs and cores in it
[8][9]. Finally, in 2012, a project which used a combination
of software and hardware methods enhanced the hardware
running speed and the software flexibility [10]. In this paper,
the first part will introduce the evolutional algorithms,
particularly the ant colony algorithms. In the second part,

the method will be delineated. In the third part, evaluation
and simulation will be carried out, and a comparison will be
made with the previous methods. In the fourth and the last
part, the conclusion and future work will be presented.
Characteristics such as heterogeneity, autonomy, scalability,
adaptability and resources computation-data separation,
which make the load balancing problem more difficult, will
be highlighted in the paper as well.

II. ANT COLONY ALGORITHM

Ant Colony System (ACS) [6] is one of the most
successful algorithms used in combinatorial optimization
problems, such as the Traveling Salesman Problem (TSP).
The algorithm is inspired by the foraging behavior of a
colony of ants when they communicate with each other.

In a community, a group of members cooperates with
each other to reach a certain ultimate goal. This method of
cooperation is more beneficial than when the members act
individually. An ant colony can be defined as an
organization of agents that cooperates with each other using
pheromone, and exchanges information based on pheromone
update. The calculation of collective intelligence is inspired
by the behavior of some animals like ants, termites, bees,
fish and groups of birds. In such structures, each individual
carries out a very simple act; however, the cooperation
between these insects presents a complex behavior. The
collective behavior of a community is made of a
combination of its individuals' behaviors in a non-linear
fashion. In other words, there is a complex relation between
the individual behavior and collective behavior in a
community. The collective behavior is also subjected to the
relation between individuals since the cooperation is the
result of the accumulation of agents' experience, which is
also the result of the progress of the community. The
procedure of finding the shortest path by ant colony is
clearly shown in Figure 1, where in the standard mode,
every model of ant colony could be shown in this way:
G=(V,E) in which V stands for nodes and E stands for the
space between two nodes. V itself includes VS and Vd; S to
d is the Source to Destination path. These two are
commonly called the nest node and the food node,
respectively. Further, E includes e1 and e2 links, for each of
which the lengths of L1 and L2 are considered, where
L2>L1. The probability rules based on pheromone variable
are used to choose one of the roots of e1 or e2.

ISSN: 2180 - 1843 Vol. 7 No. 1 January - June 2015

Journal of Telecommunication, Electronic and Computer Engineering

2

Figure 1: The procedure of finding the shortest path by the ants

When an ant is in the city i and wants to go to the next
city, for example city j, it uses distributional probability to
choose the next city [11]:

 pij = [τi,j]α[ηi,j]β
∑[τi,j]α[ηi,j]β (1)

However, for distributional probability in Eq.1, there
should be a link between i and j, so that i can be a neighbor
of j. As it is evident in the above formula, the js should
belong to the assembly of N which includes the nodes that
have not been selected before since the already selected pijs
are considered zero. After the calculation of the pijs, q0,
which is in the span of (0, 1], is considered as a variable. It
is then compared with q, which is one of the parameters of
ant colony algorithm. Thus, the following Eq.2 is for the
movement from node r to node s through the route u, if
q0>q:

 𝑃𝑃𝑘𝑘(𝑟𝑟, 𝑠𝑠) = {
[𝑃𝑃ℎ(𝑟𝑟,𝑠𝑠)].[𝐷𝐷(𝑟𝑟,𝑠𝑠)]𝛽𝛽

∑ [𝑃𝑃ℎ(𝑟𝑟,𝑢𝑢)].[𝐷𝐷(𝑟𝑟,𝑢𝑢)]𝑢𝑢𝑢𝑢𝑗𝑗𝑘𝑘(𝑡𝑡)

0
 (2)

In this case, the city s will not be chosen.

If q0<q, then:

𝑠𝑠 = {𝐴𝐴𝑟𝑟𝐴𝐴 max{[𝑃𝑃ℎ(𝑟𝑟, 𝑠𝑠)]. [𝐷𝐷(𝑟𝑟, 𝑠𝑠)]𝛽𝛽}
𝑠𝑠

 (3)

Once the ant has searched for one route and finished one
repetition, the final update, which is sometimes called the
general update, is carried out. In this episode, every ant that
has built the shortest route is allowed to increase the
pheromone of the manes in his route. The increase in the
pheromone is delineated in the following formula:

 (τij new) = (1 ρ)τij old + (ρΔ τij) (4)

In this update, only the shortest route of the pheromone of
the manes is modified, and more pheromone is allocated to
the manes with shorter lengths.

III. METHOD

In this section, a framework is offered for ant colony
algorithm modeling which uses a hardware design based on
a system on programmable chip that broadly covers various
applications. A software result on a desktop processor was
compared with the architectural modeling results based on a
system on programmable chip, which was also address-
based. The purpose of the present method is to decrease the
processing time of the algorithm. The proposed architecture
is concerned completely with hardware, and it is address-
based.

The efficiency of the proposed architecture is evaluated by
several criteria. Operations are done by various tools like
Xilinx, ISE, MaxPlus II and Hardware Description
Language (VHDL). A complete software model has been
simulated in Matlab.

A. Ant Colony Parallel Algorithm on Hardware
In this section, we will describe the function of ants on the

reconfigurable chip's bed consistent with the proposed idea.
Figure 2 shows the manner of ant1, in which its cost
function is compared to other cost function of ants.

Figure 2: Proposed flowchart for one ant (ant 1) in hardware bed

As shown in the flowchart, first, two ram blocks are given
values. One of these blocks is for storing the pheromone's
information between two nodes, and the other one, which is
in the rom despite its placement in ram, is used for storing
the heuristic coefficients. By taking this action, no
modification is made between the two nodes during the run
time of the program. More importantly, the Result memory
that controls which nodes should be chosen, has one byte
home for each node. These homes are set to zero at the
beginning of the process, implying that no node is chosen.
When a node is chosen, the related field is set to one. In all
ant colony algorithms, which run on the hardware bed, the

1. The two routers of e1 and e2 by
the length of l1 and l2 lack
pheromone, and l2>l1.

2. Based on probability rules, 50%
of ants enter route e1 and the
other 50% enter the route e2
where pheromone is gradually
poured.

3. The ants which were on the route
e1, with lesser length, found
food, also the volume of
pheromone in the route e1 is
more than that of the route e2

4. Ant was returning from e1, and
the quantity of injected
pheromone in the route e1 was
far more than that of the route e2,
so the probability of choosing
route e1 in future is a lot since
more pheromone has been
produce there.

if the best configuration is selected

if the next configuration is selected

ISSN: 2180 - 1843 Vol. 7 No. 1 January - June 2015

Optimization of the Running Speed of Ant Colony Algorithm with Address-based Hardware Method

3

value of stored Pheromone in the memory is consider as n*n
matrix, as it is shown in Figure 3.

Figure 3: The movements of ants in pheromone matrix

Here, the values of column and line i, j refer to the
pheromone matrix in which a line is allocated to each ant. In
the related flowchart, ant No.1 is first allocated to the
columns and line zero. It then starts its search, and reads the
values related to the pheromone and heuristic coefficient for
i, j cell from the related memory. The ant acts according to
the flowchart and, by choosing each node, the value of M
which has been set to zero at the starting point is increased
by one. The address for each selected node is stored in a
memory called Result, and the ant finds its next line from
the currently found node. Thus, during a function of shift to
the left, which is a substitute for multiplication function in
order to decrease the consumption potency, the ant moves
from one line to another during every move. But if a node is
not qualified as being greater than the random value created
by LFSR method [15], the ant will just change its column
and move to the next one and stay there until the a node is
selected. When a node is selected, the ant checks to see if
M=n, showing whether all nodes have been selected or not.
If M equals to n, the phase of finding a solution for that
repetition will be closed, then the local update phase, and the
phase for evaluation of the efficiency of ants will follow. By
comparing the cost function of all the ants, the function with
the least cost will be selected, hence the pheromone memory
will be updated. After updating, as it was explained in the
introduction to ant colony algorithm section, this algorithm
can be repeated infinitely. Once all phases are finished, the
requirements for repetition are checked. On the other hand,
if the requirement for terminating the operation is met, the
process of running the program will be closed.

B. Ant Colony Optimizing Algorithm's Architectural
Framework based on System on Programmable Chip
An improvement is made in algorithm in order to decrease

the hardware cost. As it was shown in the first section, the
direct operation has been deleted in this algorithm. Further,
an attempt has been made to use the shift register operation
instead of the multiplication operation. To ensure that the
program would not be defunct, a set of simple modifications
has been made in updating the part so that the values would
not be a decimal.

C. Structure of the Architecture
The designed framework for the algorithm is made of a

reconfigurable chip. As a result, the definitions of the colony
parameters are stored in a two-block memory on a
reconfigurable chip, and all algorithm calculation operations
are modeled on FPGA logics based on the hardware. Figure
4 shows the proposed frameworks, and the connections
between different blocks. The figure shows the following:

two independent memories, city selection unit which has
some sub-blocks, evaluation unit, and updating unit. These
parts will be discussed at length in the following section.

Figure 4: The structure of ant colony algorithm architecture based on a

system on programmable chip

The memories have been selected from inside the chip,
and the hardware core of the ant colony optimizing
algorithm has been modeled on FPGA logics.

IV. EVALUATION OF THE PROPOSED METHOD

As shown in the Figure 5, when ants repeat the process of
searching and finding an optimum solution for 20 times, a
time of 20777.5 ns is spent.

Figure 5: The result of the simulation

This simulation was also run in the same manner in
MATLAB software with 16 nodes and 3 ants, as shown in
Figure 6. In order to increase the precision, the experiment
was repeated for 8 times.

ISSN: 2180 - 1843 Vol. 7 No. 1 January - June 2015

Journal of Telecommunication, Electronic and Computer Engineering

4

Figure 6: The simulation in MATLAB

The average time for one repetition in 8 software
simulation experiments was 0.0002301 seconds. Thus, in
order to compare the running time of simulation of
algorithm in software and hardware methods in a frequency
of 50 MHz, the running speed of software method is divided
by the running speed of hardware method and the result is
agglomerated. The result shows that the running speed of
hardware methods is 110 times more than that of the
software method. Besides the suitable architecture, the
reason for such a result is the inherent efficiency of the
parallel processing of algorithm.

The method and the result are agglomerated. The result in
Table 1 shows that the running speed of hardware methods
is 110 times more than that of the software method. Besides
the suitable architecture, the reason for such a result is the
inherent efficiency of the parallel processing of algorithm.

Table 1

Comparison of Optimization of Software Speed with System on Chip
Architecture

V. CONCLUSION AND FUTURE WORKS

In this paper, an addressed-based modeling of ant colony
optimizing algorithm based on system on chip was
presented. This design has the utility as an optimizer. The
architecture of the proposed design utilizes a series of
pipeline and parallel structures which enable it to optimize
various applications by ant colony algorithm. The presented
work that used hardware method increased the running
speed of ant colony algorithm to 15.71 times more than that
of the last reported work (A combination of software-
hardware).

Another interesting work is to present a hardware-
software combinational method with the proposed hardware
core to increase the flexibility of algorithm.
One of the future works that can be done in this field is to
make the proposed work scalable. The job can be executed
by a network on chip technology.

REFERENCES

[1] M. Dorigo, “Optimization, Learning and Natural Algorithms,” PhD

thesis, Politecbico di Milano, Italy, 1992.
[2] M. Dorigo, “Parallel Ant System: An Experimental

Study,” Unpubished Manuscript, cited by M. Dorigo, 1993.
[3] M. Pedemonte, S. Nesmachnow, H. Cancela, “Survey on Parallel Ant

Colony Optimization,” Applied Soft Computing Journal, 2011.
[4] P. Delisle, M. Gravel, M. Krajecki, C. Gagné, W. Price, Comparing

Parallelization of an ACO: Message Passing vs. Shared Memory,
Proceedings of the 2nd International Workshop on Hybrid
Metaheuristics, Lecture Notes in Computer Science vol. 3636, 2005.

[5] J. Fu,L. LEI,G. Zhou, “A Parallel Ant Colony Optimization
Algorithm with GPU Acceleration based on All-in-roulette
Selection,” Proceedings of the 3rd International Workshop on
Advanced Computational Intelligence , 2010, pp 260-264.

[6] B. Scheuermann, S. Janson, M. Middendorf, “Hardware-oriented Ant
Colony Optimization,” Journal of Systems Architecture 53 (7) (2007)
386–402.

[7] K. Gheysari, Khoei. A, Mashoufi .B, “High Speed Ant Colony
Optimization CMOS Chip”, Expert Systems with Applications pp
3632-3639 (2011).

[8] M. Yoshikawa and H. Terai, “Architecture for High Speed Ant
Colony Optimization,” Proceedings of IEEE International
Conference on Information Reuse and Integration, Las Vegas, NV, 1-
5 .

[9] M. Yoshikawa and H. Terai, “Hardware-oriented Ant Colony
Optimization Considering Intensification and Diversification,”
Advances in Greedy Algorithms, I-Tech, 359-68.

[10] Li. S, Hao Yang. M ,Wei WENG. CH,Hong Chen. Y, “Ant Colony
Optimization Design and Its FPGA Implementation,” IEEE
International Symposium on Intelligent Signal Processing and
Communication System, PP 262-265, November 4-7, 2012.

[11] M. Dorigo, G. Di Caro, L. Gambardella, “Ant Algorithms for Discrete
Optimization,” Artificial Life 5 (2) (1999) 137–172

[12] D. Merkle, M. Middendorf, “Fast Ant Colony Optimization on
Runtime Reconfigurable Processor Arrays,” Genetic Programming
and Evolvable Machines 3 (4) (2002) 345–361

[13] H. Bai, D. OuYang, X. Li, L. He, H. Yu, “Max-min Ant System on
GPU with CUDA,” Proceedings of the 2009 Fourth International
Conference on Innovative Computing, Information and Control, IEEE
Computer Society, 2009, pp. 801–804. .

[14] H. Duan, Yaxiang. Yu, Jie .Zou and Xing. Feng, “Ant Colony
Optimization-based Bio-inspired Hardware.

[15] P. Martin, “An Analysis of Random Number Generators for A
Hardware Implementation of Genetic Programming using FPGA and
Handek-C,” Proc. Genetic and Evolutionary Computation.

The name of the
method

Software
speed

Hardware
speed

The amount of
optimization

Architecture for high
speed ant colony

optimization
334.0 s 53.7 s 6.2 times

A combination of
software-hardware 0.7380 s 0.01440 s 7 times

Population-based ant
colony optimization

on FPGA

2-4 times based
on the change

of ants
Proposed method 0.0002301s 20777.5 ns 110 times

