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Abstract— The Sport Utility Vehicle (SUV) has become one 

of the popular vehicles to be chosen, since it was first 

introduced. However, the higher Centre of Gravity (C.G) and 

the bigger sizing at the side area have led to the stability and 

the handling issues that degrade the vehicle’s performances, 

especially during the confrontation with external disturbances. 

This paper presents an analysis of an optimal control that 

enhances the handling and stability of the SUV. The Direct 

Yaw Control (DYC) method was used to control the vehicle’s 

accuracy and robustness towards environmental parameters 

during the critical manoeuvre. The Linear Quadratic 

Regulator (LQR) and Linear Quadratic Integral (LQI) were 

compared to obtain the optimal performances during the 

control of the vehicle’s handling and stability. With the 

interference of an external disturbance during the critical 

manoeuvre, the results indicate that the LQI produce 

significant improvement in the vehicle’s handling and stability 

control. 

 

Index Terms—Optimal Control; Direct Yaw Moment; SUV; 

LQI. 

 

I. INTRODUCTION 

 

Vehicle dynamics play an important role in safety and 

stability during severe cornering and critical situation, 

especially for yaw rate and sideslip angle in a lateral motion. 

A report in [1] claimed that the usage of the Sport Utility 

Vehicle (SUV) has been increasing and become popular 

every year compared with passenger cars since the 1990s. 

However, the SUV vehicle leads to more accidents due to its 

higher Centre of Gravity (CG) and heavier than a normal 

sedan car as discussed in [2, 3]. Another drawback of SUV 

is the bigger size of side area where it can affect the stability 

of the vehicle when an external disturbance struck the 

vehicle such as sidewind as reported in [2]. The structural 

characteristic of the SUV may lead to unstable and 

undesirable vehicle movement, such as excessive understeer 

and oversteer in lateral motion during severe cornering or 

under critical situation.  

To overcome these problems, researchers and engineers 

have proposed active-based system such as autonomous 

vehicle steering using Global Position System (GPS) in [4]. 

The study in [5], implemented Advance Driver Assistance 

System (ADAS) using warning system based on steering 

intervention strategy and another active system is Active 

Chassis System (ACS), also called as Electronic Stability 

Control (ESC), where the system directly controls the 

motion of the vehicle using available sensor and actively 

regulates the brake actuator. The ESC system can be divided 

into several active chassis controls, namely Active Steering, 

Steer-By-Wire, Torque Vectoring System (TVC), Four 

Wheel Independent Drive (4WID) and Direct Yaw Control 

(DYC). 

The DYC has been widely used for current ESC system, 

where the Anti-lock Braking System (ABS) is fully utilized 

by applying the differential braking at the left or right and 

front or rear wheel to control the yaw moment of the 

vehicle. The main benefit of using DYC is due to its control 

method that are strongly robust to the environment 

parameters and highly accurate during the control of the 

vehicle at the critical situation [6]. Since the introduction of 

the ESC system, numerous researchers have proposed 

various control techniques to improve the vehicle handling 

and safety of SUV. For example, [7] applied a nonlinear 

controller using Sliding Mode Controller (SMC) to enhance 

the differential braking of SUV and improve the interaction 

of the driver with controller. Studies in [8], proposed Model 

Predictive Control (MPC) with SMC controller to enhance 

the SUV handling by improving the slip ratio of four-wheel 

and overcome the nonlinearity with uncertainty of tire-road 

contact condition. An Artificial intelligent (A.I) controller is 

implemented in [9] using Fuzzy Logic Control (FLC) by 

integrating active roll control (ARC) with DYC to improve 

the handling of the SUV and in [10], a Self-Tuning Fuzzy 

Proportional-Integral-Proportional-Derivative (STFPI-PD) 

controller has been proposed to overcome the derivative 

kick problem.  

Furthermore, many researchers have proposed a Linear 

Quadratic Regulator (LQR) based on optimal control theory 

as their control technique because this approach has the 

advantage of achieving stability in certain bandwidth, and 

satisfying number of properties as well as possesses a 

number of desirable constraints as demanded by the 

designer in their system [11]. The work done in [12] utilized 

the LQR controller at upper-level controller to achieve an 

optimum brake distribution torque and maximize the 

regenerative brake torque for fuel economy as well as 

prevent the front tire from saturation. Study in [13] proposed 

the Linear Quadratic Static Output Feedback (LQSOF) to 

overcome the parameter sensitivity using heuristic search of 

Covariance Matrix Adaptation-Evolutionary Computation 

(CMA-EC) to find the optimal gain, K. The electro 

hydraulic brake based on LQR method is used in [14] for 

multi-objective to improve the yaw rate and roll stability for 

SUV, while in [15] and [16], an investigation of the driver-

in-the-loop real-simulations reconstructed by vehicle 

simulator using LQR controller has been done. But mostly, 
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the design based on LQR controller theory is not robust 

enough against uncertainties, external disturbance or un-

modelled dynamic. According to [17], the integral action is 

used to eliminate the offset in system parameters of LQR 

and make the system to be more robust against measurement 

noise, external disturbances and un-modelled dynamics. In 

this paper, a comparison of LQR and LQI based on optimal 

control theory to investigate the effectiveness of these two 

controllers towards SUV parameter and external 

disturbances is proposed. 

This paper is organized as follows. In Section II, the 

vehicle dynamic model is presented. The controllers design 

and structure are explained in Section III. In section IV, the 

computer simulation result with discussions is presented and 

finally, the final remark will be concluded in Section V. 

 

II. VEHICLE DYNAMIC MODEL 

 

Figure 1 shows the schematic diagram of 3 Degrees of 

Freedom (DOF) nonlinear models that represent the vehicle 

handling dynamics of an SUV in a yaw plane, including the 

longitudinal motion, lateral motion, yaw motion and sideslip 

angle.  

 
Figure 1: Nonlinear vehicle model 

 

The front wheel steer angle represents an input denoted 

by δf, while yaw rate, r and sideslip, β are the output 

variables need to be controlled. The vehicle parameters of a 

and b are the distance from the front and rear to the Centre 

of Gravity (C.G) respectively. The d is the vehicle width 

track and Mz is yaw moment. The vy and vx are lateral and 

longitudinal velocity respectively. Then, the longitudinal 

tires forces are donated as Fxfl for the front left tires, Fxfr for 

the front right tires, Fxrl for the rear left tires and the rear 

right tires is Fxrr. The lateral forces at the front left, front 

right, rear left and rear right tires are given by Fyfl, Fyfr, Fyrl 

and Fyrr, respectively. Other parameters that must be taken 

into account are cornering stiffness at the front and rear tire, 

Cf and Cr, vehicle mass m, and moment of inertia Iz  

The equation of longitudinal, lateral and yaw motions of 

vehicle body can be described as follows [18]: 
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The tires tend to turn at z-axis when the yaw moment is 

bigger than zero value. The yaw rate r and sideslip β can be 

determined by lateral acceleration, 
ya  in forward speed v as 

follows: 
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By using the two-track model as a reference, the equation 

from (3) can be expressed as follows: 

 

( )
( ) 









++−

+++
=

zz MFyrrFyrlb

fFxfrfFxflfFyfrfFyfla

I
r

 sinsincoscos1  (5) 

 

While the variable of sideslip β can be obtained as 

follows: 
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Slip angle or sideslip angle is the angle between the actual 

travel of wheel rolling direction and the direction where the 

wheel is pointing. The sideslip angle at the front and rear 

tires are defined by the following equation: 
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where, 

 

x  = Longitudinal velocity       = Yaw rate                 

y  = Lateral velocity                δ   = Steering angle 

 

 
 

Figure 2: Bicycle Model 

 

The 2 DOF or bicycle model in Figure 2 represents the 

desired model because it has the simplest form of planar 
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motion and it can only be used for analyzing the lateral and 

yaw motions. In the bicycle model, there are certain 

assumptions such as fixed/constants forward speed, tires 

forces that operate in the linear region, two front wheels that 

have the same steering angle, non shifted C.G as the vehicle 

mass is changing, small angle approximation and negligible 

self-alignment torque wheel. Further, the two wheels at the 

front and rear are combined and become one single unit and 

the width track is ignored. The configuration of the SUV is 

the front wheel drive and the wheel dynamics are negligible. 

The lateral and yaw motions can be described based on the 

following equations: 

 

rFyrFyfrmv −+=+ )()(  (9) 

 

FyrbFyfarI z )( −=  (10) 

 

The bicycle model indicated a linear characteristic. 

Therefore, by using the equations of (6) and (7), the 

cornering stiffness for the front and rear tires can be 

obtained by the following equations: 
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By using the linear state space model, the differential 

equation of variable yaw rate and sideslip can be obtained 

by rearranging and simplified the equation (7) to (12) as 

follows: 
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where, 
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By implementing the Laplace Transform, the following 

equation will be obtained: 

 

(s - a11). β (s) – a12 . r (s) = b11 . δ(s) (14) 

 

-a21 . β(s) + (s – a22).r(s) = b22.M(s) + b21.δ(s) (15) 

 

Then, the sideslip angle β(s) and yaw rate r(s) can be 

derived further [22] as below: 
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The design of feedforward compensation is to control the 

sideslip angle to become a zero value. Therefore, the 

relationship between the two control input, direct yaw 

moment, M(s) and front steering angle δf(s) is assumed as 

below: 
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where Pff is the proportional gain feedforward controller. By 

solving the equation (17) and (18), the result of the 

feedforward gain can be obtained as: 
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Further, by substituting the equation (19) and (18) into 

equation (17), the transfer function of yaw rate with respect 

to front steering angle will be obtained as follows: 
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As a desired vehicle model (2 DOF), the reference of yaw 

rate is modelled on the 1st order delay system by setting the 

  0= 
 and solving the γ in (13) and for sideslip angle, the 

desired model is designed with a zero value at a steady state. 
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where, 

ssg
= Steady state yaw rate gain 

r = Delay time constant
 

 

The steady state yaw rate gain can be obtained by 

comparing the equation (20) and (21), as follows: 
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and the ideal vehicle model can be expressed in (23), as the 

following expression: 

 

fdddd EXAX .. +=  (23) 

 

III. CONTROLLER DESIGN 

 

In this work, the yaw rate and sideslip angle of SUV 

affect the handling and stability of the vehicle during critical 

manoeuvre and situation. By using DYC technique, the yaw 

rate and sideslip angles can be controlled to stabilize and 

ensure a proper response for SUV during the critical 

dynamic behaviour of the vehicle. The objective of the 

control system is to make the actual vehicle model follows 

the desired vehicle model by calculating the value of yaw 

rate, γ and follows the desired value of yaw rate, γd. The 
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purpose of controlling the sideslip angle is to prevent the 

vehicle from spinning or the wheel from being out of control 

from the pointed direction of the wheel. This condition can 

be achieved by limiting the sideslip angle, β. By using DYC 

technique, the yaw moment is generated by regulating the 

slip ratio of the wheel between the difference of the left and 

right tire longitudinal forces. 

To design the feedback controller, the state equation (13) 

needs to be transformed into the expression below: 
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Therefore, the new state equation is, 
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By assuming the difference between the ideal model and 

the actual model as an error, e and by differentiating this 

error in (26), the expression becomes as (27): 
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then the equations (23) and (25) are replaced into the 

equation (27) to derive equation (28). By simplifying 

equation (28), the following results will be obtained: 

 

fdfdddd EEMBXAXAXAXAe  ....... −++−+−=
 (28) 

 

fddd EEXAAMBeAe ).().(.. −+−++=
 (29) 

 

The third part, (A – Ad).Xd and the fourth part (E – Ed).δf in 

equation (29) can be treated as disturbance, W by the  front 

wheel steering and the final equation becomes: 
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A. Design of Linear Quadratic Regulator 

Based on the optimal control theory in [19], an optimal 

control criterion can be archived by following this theory to 

any given system of control law. Using the optimal control 

theory, the desired value of sideslip angle is set to zero to 

avoid the SUV from spinning (as discussed in Section I). In 

this case, the desired value of yaw rate in equation (22) is 

taken into account. The DYC is implemented in a form of 

feedback compensator by using Linear Quadratic Regulator 

(LQR) controller. 

The LQR algorithm is used to get an optimal feedback 

control gain of Kbk by minimizing the cost function of J as 

shown in the following equation: 
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An e, represents an error or different value of the state 

variable between the measured and desired value. Q is the 

weighting factor of state, while R is the control variable. The 

quadratic form (eT.Q.e) represents the deviation of the state 

e from the initial state and the term of (uT.R.u) represents the 

“cost” of control. For the fast convergence of the error, the 

value of Q should be bigger than the value of R. The 

solution of solving the Riccati equation can be found in 

detailed in [20], the feedback gain of Kbk can be achieved 

and the corresponding yaw moment feedback is: 
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B.   Design of Linear Quadratic Integral 

The Linear Quadratic Integral (LQI) controller is a 

variation of LQR controller where the control law is derived 

from solving the Riccati Equation in the LQR framework 

with added integral regulation of output variable. To design 

the Linear Quadratic Integrator, firstly equation (30) is 

differentiated to derive the following equation: 
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Then the equation is expended to (34) and the subsequent 

result is simplified into equation (35) as follows: 
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The disturbance of Z in equation (35) is equal to zero and 

based on the optimal control theory, the new state feedback 

is: 
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The Gfb is the feedback gain where it is used to minimize 



Optimal Control for Sport Utility Vehicle System Using Linear Quadratic Integral Control Approach 

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 10 No. 4   October – December 2018 147 

the quadratic cost function J as represented by the following 

equation: 

 

dtMRMXQXJ T
r

T
r )....(
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The matrix Q represents the weight of the state and the R 

is the control vectors represented as the following: 
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And for fast convergence of the error, the value of Q 

should be bigger than the value of R. 

 

 
Figure 3: Block diagram of SUV system 

 

IV. ANALYSIS AND RESULT 

 

A computer simulation using MATLAB/Simulink has 

been conducted to study and evaluate the performance of the 

proposed controller. Figure 3 illustrates the full MATLAB 

/Simulink block model diagram system for the SUV and 

Table 1 shows the parameters of the SUV employed for the 

computer simulation analysis where the parameter was taken 

from [16]. 

 

 
Figure 4: External disturbance crosswind [21] 

 

For simulation analysis, the step steering manoeuvre was 

implemented to show how the reaction of SUV in two 

different conditions. The first condition was tested during 

dry road, which is the friction coefficient is 1.0 and the 

second condition was a wet road, where the friction 

coefficient is 0.5. As discussed in Section I, the design of 

the SUV has a drawback, in which the side area of the 

vehicle is bigger than the conventional vehicle, resulting in 

the vehicle to become more vulnerable to the crosswind 

effect. This subsequently leads to vehicle to be unstable and 

loss control during this event. The external crosswind 

disturbances as shown in Figure 4 is added for both 

manoeuvres for the analysis of the performance of the 

controller. 

 
Table 1 

Parameters of the SUV [16] 

 

Symbol Parameter (Unit) Value 

m Mass (kg) 1592 

Cf Front Cornering Stiffness (N/rad) -68420 
Cr Rear Cornering Stiffness(N/rad) -68420 

H C.G Height (m) 0.72 
Izz Yaw Inertia (kg.m2) 2488 

lf Distance from C.G to front axle (m) 1.18 

lr Distance from C.G to rear axle (m) 1.77 
v Vehicle Speed / Velocities (km/h) 100 

 

 
Figure 5: Step steering for yaw rate performance in 1.0μ 

 

 
Figure 6: Step steering for yaw rate performance in 0.5μ 

 

Figure 5 and 6 show the comparison of the road surface 

friction coefficient for μ = 1.0 (dry road) and 0.5 (wet road) 

for yaw rate, while Figure 7 and 8 is the comparison of 

sideslip angle. The step change started at t = 1s and the 

crosswind disturbance was added in a fixed time at t = 4s 

and ended at t = 6s with a wind speed of 100km/h. The 

simulation was carried out with an initial velocity of 

100km/h.  

In Figure 5, the result shows that the LQI has better 

tracking performance on the step steering test at t = 1s, 

where the LQI controller has minimum overshoot of 5.9% 

from the reference as compared with LQR, which has 6.1% 

overshot. On the other hand, a vehicle without a controller 

has a maximum overshot of 46.8% from the reference for 

yaw rate test. In this situation, the LQI and LQR controller 

can track the reference, except without the controller that 

has bigger overshoot and causes the SUV’s stability loss. 

As for the low friction coefficient (μ = 0.5) in Figure 6, 

the overshot for LQI controller increased slightly to 7.3% 

and LQR controller also increased slightly to 7.9%, and 
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without a controller, it was 48.6% at t = 1s step steering. 

Since the friction is low, the LQI and LQR controller still 

can handle the manoeuvre without failing. As a system 

without a controller, obviously the SUV lost its 

controllability. Based on these results, both controllers can 

handle the step steering manoeuvre perfectly. 

 
Table 2 

Response Index of Yaw Rate for Crosswind Disturbance 

 

 

As for the response index for crosswind disturbance in 

Table 2, the LQI controller can overcome the disturbance 

much better than the LQR controller where the maximum 

peak is 12% compared to the LQR controller, which has 

18.2% maximum peak from the reference. In the case of 

without controller, the maximum peak is 192% from a 

reference in the dry road. In this simulation, the settling time 

is ±5% from the reference. The LQI controller is 79% 

respond faster for settling time compared to LQR controller. 

As for without controller, the settling time exceeded from 

the limit, as shown in Figure 5. 

For the wet road, the LQI controller still can overcome 

the crosswind disturbance with 19% maximum peak from 

the reference compared with the LQR controller, which is 

29% maximum peak from the reference. However, for the 

settling time, the LQR controller has exceeded from the 

acceptable limit, where the LQI controller still can track the 

desired yaw rate. As for without the controller, the vehicle 

motion cannot track the transient phase for a desired yaw 

rate as shown in Figure 6. The result demonstrates the 

superior effectiveness of the LQI controller in tracking 

performance compared with the LQR controller, when the 

external disturbance is injected into the system. 

 
Figure 7: Step steering for sideslip performance for 1.0μ 

 

Figure 7 and Figure 8 show the result of sideslip angle for 

dry road and wet road respectively, and the response index 

for both simulations is shown in Table 3. The acceptable 

limit for sideslip angle is 10° or 0.175 rad. In Table 3, the 

LQI controller can restrain the vehicle sideslip angle in a 

narrow scope around 0.42% compared to LQR controller, 

which is 10.21%, although it is still in satisfactorily result. 

As for without the controller, the vehicle is spinning out of 

control or loss of stability because the vehicle has already 

exceeded the acceptable limit of sideslip angle at 94.4% of 

the dry road, as shown in Figure 7 

 
Figure 8: Step steering for sideslip performance for 0.5μ 

 
 Table 3 

Response Index of Sideslip Angle 

 

 

In the wet road condition, the LQI controller still can 

restrain the vehicle sideslip angle in the minimum peak of 

0.48% compared with the LQR controller, which is 13.58%, 

although the LQR controller is still in acceptable limit. As 

for without the controller, the maximum peak, has increased 

to 122.7% and obviously, the vehicle is lost its stability, as 

shown in Figure 8. Considering these results, the LQI 

controller has a superior tracking performance compared 

with the LQR controller in the sideslip angle test. 

 

V. CONCLUSION 

 

In this paper, an optimal yaw stability control for SUV is 

proposed and a validation method for DYC using 

Simulink/MATLAB simulation is presented. The crosswind 

disturbance is really affecting the stability and handling of  

SUV and the simulation result shows that the LQI controller 

is capable to overcome the disturbance much better than the 

LQR controller. As for system without the controller, the 

SUV obviously lost its controllability, especially when the 

disturbance is injected into the system in step steering 

manoeuvre test, as shown in this study. 
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