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Abstract 

Fuzzy logic systems have many applications 
in every field of moderate science. Most of the 
fuzzy logic systems are rule based reasoning, 
which are not easy to generate since the conflict 
between rules always arise in acquiring new 
knowledge. In recent years, there has been 
increasing interest in clustering-based fuzzy 
systems, which are easier to generate rules since 
they built from input-output training data. 
Clustering training data make the fuzzy system 
easier to maintain and more flexible in acquire 
real world knowledge. In this paper, we present 
taxonomy of clustering methods used in fuzzy 
logic systems. In particular, the exposition 
includes a discussion of strength and weakness 
of these methods and how they can be improved.

Keywords: Fuzzy logic systems, clustering 
methods, fuzzy inference system, Sugeno-type 
fuzzy system.

I. INTRODUCTION

AS a general rule, a good engineering 
approach should be able to make effective 
use of all the available information. If 
the mathematical model of a system 
is too hard to obtain (this is true for 
many practical systems), then the most 
important information comes from 
human experts who provide linguistic 
descriptions about the system and control 
instructions. Conventional mathematical-
based systems cannot incorporate the 
linguistic fuzzy information into their 
designs. If in some situations the most 
important information comes from 
human experts, then the fuzzy logic 
systems (FLS) is the best choice.
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Many design methods for the FLS have 
been developed during the last decade. 
For most of these design methods it 
was implicitly assumed that expert 
information is available. This information 
included a number of the IF ... THEN 
rules in the knowledge base, and rough 
estimates of the parameters defining the 
antecedent and consequent templates. 
In this paper, we discuss an alternative 
and more user-friendly approach to rule 
generation based upon a clustering of the 
input-output data [1]. 

Data Clustering is an effective knowledge 
acquisition methodology. It has been 
employed to build a clustering-based 
fuzzy inference system that best models 
the data behavior using a minimum 
number of rules. The success of this model 
has been proved through the routine of 
using it in literature with high accuracy. Its 
knowledge base is organized as a binary 
tree; each node of a tree contains a rule and 
a cluster center that invoke the creation 
of the rule in this node. It can provide 
only one conclusion for a data case. It 
has been conceived as a methodology to 
use all these experts’ behavioral features 
when they are maintaining a knowledge 
base. In particular, it focuses on adding 
a refinement to capture the identified 
difference instead of attempting to 
modify the existing knowledge base. The 
resulting structure of the knowledge base 
can be viewed as a binary tree where 
every node is an "if ..then" rule containing 
only conjunctions that remember the data 
which was mis-classified and resulted 
in the rule being added. These data are 
termed "cluster center". 
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In this paper we present a survey on 
various clustering algorithms used in 
fuzzy logic systems. We outline the 
main steps that have been used by every 
clustering method and discuss some 
drawbacks of these methods and possible 
solutions. 

The remainder of this paper is structured 
as follows: we present a review of current 
research efforts classified as supervised 
clustering algorithms and unsupervised 
clustering algorithms. Later sections 
discuss the related works and the paper’s 
conclusion with further researches 
possibilities.

II. TaxONOmy Of 
ClUsTeRINg meThODs 
UseD IN fUzzy lOgIC 
sysTems

Clustering of numerical data forms the 
basis of many classification and system 
modeling algorithms.  The purpose of 
clustering is to distill natural groupings 
of data from a large data set, producing 
a concise representation of a system's 

behavior.  

The traditional principle of grouping 
objects into clusters utilizes some 
measure of object similarity, usually the 
reciprocal of a distance measure. The 
objective of clustering is to group a set of 
objects into clusters such that the objects 
within a cluster have a high degree of 
similarity, while elements belonging to 
different clusters have a high degree 
of dissimilarity. In contrast to methods 
of clustering that exactly assign each 
object to one cluster (this is called hard 
clustering), fuzzy-clustering allows of 
vagueness of the data [2]. In spite of the 
simplicity of hard clustering algorithms, 
they have two major problems: 

a) Each of the neighbors is considered 
equally important in determining 
the classification of the input data.  
A far neighbor is given the same 
weight as a close neighbor of the 
input. 

b) The algorithm only assigns a 
class to the input data; it does 
not determine the "strength" of 
membership in the class.

Figure 1: Taxonomy of clustering algorithms used in fuzzy logic systems. 

Figure 1 show various clustering algorithms used in fuzzy 
logic systems. We classify them as supervised and 
unsupervised algorithms that depend on previous 
determination of the number of clusters that the algorithms 
will generate. 

III. SUPERVISED CLUSTERING ALGORITHMS

In supervised algorithms the number of clusters C should be 
known before applying the algorithm. The classification of 
this type will be discussed in the following. 

A. Hard and fuzzy c-nearest neighbor algorithms 
The hard c-nearest neighbor (c-NN) algorithm rule assigns 

an input sample vector, which is of unknown classification, to 
the cluster of its neighbor. This algorithm is widely used with 
fuzzy logic systems for its simplicity [3-5]. 

While the fuzzy c-nearest neighbor (FCNN) algorithm [6] is 
also a clustering algorithm the form of its results differs from 
the crisp c-nearest neighbor. The FCNN algorithm assigns 
cluster membership to a sample vector rather than assigning 
the vector to a particular cluster. The advantage is that the 
algorithm makes no arbitrary assignments. In addition, the 
vector's membership values should provide a level of 

assurance to accompany the resultant classification. For 
example, if a vector is assigned 0.9 membership in one cluster 
and 0.05 membership in other cluster we can be reasonably 
sure the cluster of 0.9 membership is the cluster to which the 
vector belongs [5-6]. 

B. Hard and fuzzy nearest prototype algorithms 
These clustering algorithms bear a marked resemblance to 

the one nearest neighbor algorithm. Actually, the only 
difference is that for the nearest prototype algorithm the 
labeled samples are a set of cluster prototypes, whereas in the 
nearest neighbor algorithm we use a set of labeled samples 
that are not necessarily prototypical. Of course, the nearest 
prototype algorithm could be extended to multiple prototypes 
representing each cluster, similar to the c-nearest neighbor 
routine. The prototypes may be used as the cluster means of 
the labeled sample set [6]. The major problem of these two 
algorithms is they produce a large error rate. 

C. Hard and fuzzy c-means algorithms 
The hard c-means (HCM) algorithm tries to locate clusters 

in the multi-dimensional feature space. The goal is to assign 
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Figure 1: Taxonomy of clustering algorithms used in fuzzy logic systems.
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Figure 1 show various clustering 
algorithms used in fuzzy logic systems. 
We classify them as supervised and 
unsupervised algorithms that depend on 
previous determination of the number of 
clusters that the algorithms will generate.

III. sUPeRVIseD ClUsTeRINg 
algORIThms

In supervised algorithms the number 
of clusters C should be known before 
applying the algorithm. The classification 
of this type will be discussed in the 
following.

a. hard and fuzzy c-nearest neighbor 
algorithms

The hard c-nearest neighbor (c-NN) 
algorithm rule assigns an input sample 
vector, which is of unknown classification, 
to the cluster of its neighbor. This 
algorithm is widely used with fuzzy logic 
systems for its simplicity [3-5].

While the fuzzy c-nearest neighbor 
(FCNN) algorithm [6] is also a 
clustering algorithm the form of its 
results differs from the crisp c-nearest 
neighbor. The FCNN algorithm assigns 
cluster membership to a sample vector 
rather than assigning the vector to a 
particular cluster. The advantage is 
that the algorithm makes no arbitrary 
assignments. In addition, the vector's 
membership values should provide a 
level of assurance to accompany the 
resultant classification. For example, if 
a vector is assigned 0.9 membership in 
one cluster and 0.05 membership in other 
cluster we can be reasonably sure the 
cluster of 0.9 membership is the cluster to 
which the vector belongs [5-6].

B. hard and fuzzy nearest prototype 
algorithms

These clustering algorithms bear a 
marked resemblance to the one nearest 
neighbor algorithm. Actually, the only 
difference is that for the nearest prototype 
algorithm the labeled samples are a set 

of cluster prototypes, whereas in the 
nearest neighbor algorithm we use a set 
of labeled samples that are not necessarily 
prototypical. Of course, the nearest 
prototype algorithm could be extended 
to multiple prototypes representing each 
cluster, similar to the c-nearest neighbor 
routine. The prototypes may be used as 
the cluster means of the labeled sample 
set [6]. The major problem of these two 
algorithms is they produce a large error 
rate.

C. hard and fuzzy c-means algorithms

The hard c-means (HCM) algorithm tries 
to locate clusters in the multi-dimensional 
feature space. The goal is to assign each 
point in the feature space to a particular 
cluster. The fuzzified c-means algorithm 
allows each data point to belong to 
a cluster to a degree specified by a 
membership grade, and thus each point 
may belong to several clusters.

The fuzzy c-means (FCM) algorithm 
partitions a collection of K data points 
specified by m-dimensional vectors uk 
(k=1, 2,…,K), into C fuzzy clusters, and 
finds a cluster center in each, minimizing 
an objective function. Fuzzy c-means 
is different from hard c-means, mainly 
because it employs fuzzy partitioning 
where a point can belong to several 
clusters with degrees of membership. 
To accommodate the fuzzy partitioning, 
the membership matrix M is allowed to 
have elements in the range [0, 1]. The 
membership matrix M must satisfy the 
following property:

The sum of each column is one              (1)

Formally, the c-means algorithm finds 
a center in each cluster, minimizing an 
objective function of a distance measure. 
The objective function depends on the 
distances between vectors uk and cluster 
centers ci, the expression for the objective 
function is:

each point in the feature space to a particular cluster. The 
fuzzified c-means algorithm allows each data point to belong 
to a cluster to a degree specified by a membership grade, and 
thus each point may belong to several clusters. 

The fuzzy c-means (FCM) algorithm partitions a collection 
of K data points specified by m-dimensional vectors uk (k=1,
2,…,K), into C fuzzy clusters, and finds a cluster center in 
each, minimizing an objective function. Fuzzy c-means is 
different from hard c-means, mainly because it employs fuzzy 
partitioning where a point can belong to several clusters with 
degrees of membership. To accommodate the fuzzy 
partitioning, the membership matrix M is allowed to have 
elements in the range [0, 1]. The membership matrix M must 
satisfy the following property: 

The sum of each column is one                  (1) 

Formally, the c-means algorithm finds a center in each 
cluster, minimizing an objective function of a distance 
measure. The objective function depends on the distances 
between vectors uk and cluster centers ci, the expression for 
the objective function is: 

 (2) 

where Ji is the objective function within cluster i, K is the 
number of data points, C is the number of clusters, mik is a 
membership between 0 and 1, ci is the center of fuzzy cluster i,
dik = || uk – ci || is the Euclidean distance between the ith cluster 
center and kth data point, and q ∈ [1, ∞) is a weighting 
exponent (typically q = 2 [7]).  There are two necessary 
conditions for J to reach a minimum,  

                                      (3) 

and

                                     (4) 

Algorithm: The fuzzy c-means algorithm determines the 
cluster centers ci and the membership matrix M using the 
following steps [8]: 

1. Initialize the membership matrix M with random values 
between 0 and 1 within the constraints of (1). 

2. Calculate C cluster centers, using (3). 
3. Compute the objective function according to (2). Stop if 

either it is below a certain threshold level or its 
improvement over the previous iteration is below a 
certain tolerance. 

4. Compute a new M using (4) 
5. Go to step 2. 

The cluster centers can alternatively be initialized first, 
before carrying out the iterative procedure. The algorithm may 
not converge to an optimum solution and the performance 
depends on the initial cluster centers. Although of this 
problem a lot of authors use this algorithm in their fuzzy 
systems [2], [5], [7-10]. 

D. Hard and fuzzy ISODATA algorithms 
The ISODATA algorithm can be considered to be an 

enhancement of the approach taken by c-NN algorithm and c-
means algorithm. Like those algorithms, it tries to minimize 
the squared error by assigning objects (samples) to the nearest 
center. Unlike those algorithms, it does not deal with fixed 
number of clusters but rather it deals with C clusters where C 
is allowed to vary over an interval that includes the number of 
clusters requested by the user. It discards clusters with few 
elements. Clusters are merged if the number of clusters grows 
too large or if clusters are too close together. A cluster is split 
if the number of clusters is too few or if the cluster contains 
very dissimilar objects [11]. Some of the work that used hard 
and fuzzy ISODATA algorithms in their fuzzy systems are 
[12-14]. 

E. Unsupervised fuzzy partition-optimal number of classes 
(UFP-ONC) algorithm 

Gath and Geva [15] derive new algorithm from a 
combination of the fuzzy c-means algorithm and the fuzzy 
maximum likelihood estimation, called unsupervised fuzzy 
partition-optimal number of classes (UFP-ONC). This 
algorithm performs well in situations of large variability of 
clusters shapes, densities, and number of data points in each 
cluster. The algorithm use unsupervised tracking of 
classification prototypes but maximum number of clusters that 
the algorithm generates must be determined. 

IV. UNSUPERVISED CLUSTERING ALGORITHMS

The major problem of supervised algorithms that it is 
necessary to tell the algorithm how many clusters C to look 
for. If C is not known beforehand, it is necessary to apply an 
unsupervised algorithm. 

A. Mountain clustering method 
Yager and Filev [16] proposed a simple and effective 

algorithm called the Mountain Method, for estimating the 
number and initial location of cluster centers.  Their method is 
based on griding the data space and computing a potential 
value for each grid point based on its distances to the actual 
data points; a grid point with many data points nearby will 
have a high potential value.  The grid point with the highest 
potential value is chosen as the first cluster center.  The key 
idea in their method is that once the first cluster center is 
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where Ji is the objective function within 
cluster i, K is the number of data points, 
C is the number of clusters, mik is a 
membership between 0 and 1, ci is the 
center of fuzzy cluster i, dik = || uk – ci || 
is the Euclidean distance between the ith 
cluster center and kth data point, and q є[1, 
∞) is a weighting exponent (typically q = 
2 [7]).  There are two necessary conditions 
for J to reach a minimum,
 

each point in the feature space to a particular cluster. The 
fuzzified c-means algorithm allows each data point to belong 
to a cluster to a degree specified by a membership grade, and 
thus each point may belong to several clusters. 

The fuzzy c-means (FCM) algorithm partitions a collection 
of K data points specified by m-dimensional vectors uk (k=1,
2,…,K), into C fuzzy clusters, and finds a cluster center in 
each, minimizing an objective function. Fuzzy c-means is 
different from hard c-means, mainly because it employs fuzzy 
partitioning where a point can belong to several clusters with 
degrees of membership. To accommodate the fuzzy 
partitioning, the membership matrix M is allowed to have 
elements in the range [0, 1]. The membership matrix M must 
satisfy the following property: 

The sum of each column is one                  (1) 

Formally, the c-means algorithm finds a center in each 
cluster, minimizing an objective function of a distance 
measure. The objective function depends on the distances 
between vectors uk and cluster centers ci, the expression for 
the objective function is: 

 (2) 

where Ji is the objective function within cluster i, K is the 
number of data points, C is the number of clusters, mik is a 
membership between 0 and 1, ci is the center of fuzzy cluster i,
dik = || uk – ci || is the Euclidean distance between the ith cluster 
center and kth data point, and q ∈ [1, ∞) is a weighting 
exponent (typically q = 2 [7]).  There are two necessary 
conditions for J to reach a minimum,  

                                      (3) 

and

                                     (4) 

Algorithm: The fuzzy c-means algorithm determines the 
cluster centers ci and the membership matrix M using the 
following steps [8]: 

1. Initialize the membership matrix M with random values 
between 0 and 1 within the constraints of (1). 

2. Calculate C cluster centers, using (3). 
3. Compute the objective function according to (2). Stop if 

either it is below a certain threshold level or its 
improvement over the previous iteration is below a 
certain tolerance. 

4. Compute a new M using (4) 
5. Go to step 2. 

The cluster centers can alternatively be initialized first, 
before carrying out the iterative procedure. The algorithm may 
not converge to an optimum solution and the performance 
depends on the initial cluster centers. Although of this 
problem a lot of authors use this algorithm in their fuzzy 
systems [2], [5], [7-10]. 

D. Hard and fuzzy ISODATA algorithms 
The ISODATA algorithm can be considered to be an 

enhancement of the approach taken by c-NN algorithm and c-
means algorithm. Like those algorithms, it tries to minimize 
the squared error by assigning objects (samples) to the nearest 
center. Unlike those algorithms, it does not deal with fixed 
number of clusters but rather it deals with C clusters where C 
is allowed to vary over an interval that includes the number of 
clusters requested by the user. It discards clusters with few 
elements. Clusters are merged if the number of clusters grows 
too large or if clusters are too close together. A cluster is split 
if the number of clusters is too few or if the cluster contains 
very dissimilar objects [11]. Some of the work that used hard 
and fuzzy ISODATA algorithms in their fuzzy systems are 
[12-14]. 

E. Unsupervised fuzzy partition-optimal number of classes 
(UFP-ONC) algorithm 

Gath and Geva [15] derive new algorithm from a 
combination of the fuzzy c-means algorithm and the fuzzy 
maximum likelihood estimation, called unsupervised fuzzy 
partition-optimal number of classes (UFP-ONC). This 
algorithm performs well in situations of large variability of 
clusters shapes, densities, and number of data points in each 
cluster. The algorithm use unsupervised tracking of 
classification prototypes but maximum number of clusters that 
the algorithm generates must be determined. 

IV. UNSUPERVISED CLUSTERING ALGORITHMS

The major problem of supervised algorithms that it is 
necessary to tell the algorithm how many clusters C to look 
for. If C is not known beforehand, it is necessary to apply an 
unsupervised algorithm. 

A. Mountain clustering method 
Yager and Filev [16] proposed a simple and effective 

algorithm called the Mountain Method, for estimating the 
number and initial location of cluster centers.  Their method is 
based on griding the data space and computing a potential 
value for each grid point based on its distances to the actual 
data points; a grid point with many data points nearby will 
have a high potential value.  The grid point with the highest 
potential value is chosen as the first cluster center.  The key 
idea in their method is that once the first cluster center is 
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and

each point in the feature space to a particular cluster. The 
fuzzified c-means algorithm allows each data point to belong 
to a cluster to a degree specified by a membership grade, and 
thus each point may belong to several clusters. 

The fuzzy c-means (FCM) algorithm partitions a collection 
of K data points specified by m-dimensional vectors uk (k=1,
2,…,K), into C fuzzy clusters, and finds a cluster center in 
each, minimizing an objective function. Fuzzy c-means is 
different from hard c-means, mainly because it employs fuzzy 
partitioning where a point can belong to several clusters with 
degrees of membership. To accommodate the fuzzy 
partitioning, the membership matrix M is allowed to have 
elements in the range [0, 1]. The membership matrix M must 
satisfy the following property: 

The sum of each column is one                  (1) 

Formally, the c-means algorithm finds a center in each 
cluster, minimizing an objective function of a distance 
measure. The objective function depends on the distances 
between vectors uk and cluster centers ci, the expression for 
the objective function is: 

 (2) 

where Ji is the objective function within cluster i, K is the 
number of data points, C is the number of clusters, mik is a 
membership between 0 and 1, ci is the center of fuzzy cluster i,
dik = || uk – ci || is the Euclidean distance between the ith cluster 
center and kth data point, and q ∈ [1, ∞) is a weighting 
exponent (typically q = 2 [7]).  There are two necessary 
conditions for J to reach a minimum,  

                                      (3) 

and

                                     (4) 

Algorithm: The fuzzy c-means algorithm determines the 
cluster centers ci and the membership matrix M using the 
following steps [8]: 

1. Initialize the membership matrix M with random values 
between 0 and 1 within the constraints of (1). 

2. Calculate C cluster centers, using (3). 
3. Compute the objective function according to (2). Stop if 

either it is below a certain threshold level or its 
improvement over the previous iteration is below a 
certain tolerance. 

4. Compute a new M using (4) 
5. Go to step 2. 

The cluster centers can alternatively be initialized first, 
before carrying out the iterative procedure. The algorithm may 
not converge to an optimum solution and the performance 
depends on the initial cluster centers. Although of this 
problem a lot of authors use this algorithm in their fuzzy 
systems [2], [5], [7-10]. 

D. Hard and fuzzy ISODATA algorithms 
The ISODATA algorithm can be considered to be an 

enhancement of the approach taken by c-NN algorithm and c-
means algorithm. Like those algorithms, it tries to minimize 
the squared error by assigning objects (samples) to the nearest 
center. Unlike those algorithms, it does not deal with fixed 
number of clusters but rather it deals with C clusters where C 
is allowed to vary over an interval that includes the number of 
clusters requested by the user. It discards clusters with few 
elements. Clusters are merged if the number of clusters grows 
too large or if clusters are too close together. A cluster is split 
if the number of clusters is too few or if the cluster contains 
very dissimilar objects [11]. Some of the work that used hard 
and fuzzy ISODATA algorithms in their fuzzy systems are 
[12-14]. 

E. Unsupervised fuzzy partition-optimal number of classes 
(UFP-ONC) algorithm 

Gath and Geva [15] derive new algorithm from a 
combination of the fuzzy c-means algorithm and the fuzzy 
maximum likelihood estimation, called unsupervised fuzzy 
partition-optimal number of classes (UFP-ONC). This 
algorithm performs well in situations of large variability of 
clusters shapes, densities, and number of data points in each 
cluster. The algorithm use unsupervised tracking of 
classification prototypes but maximum number of clusters that 
the algorithm generates must be determined. 

IV. UNSUPERVISED CLUSTERING ALGORITHMS

The major problem of supervised algorithms that it is 
necessary to tell the algorithm how many clusters C to look 
for. If C is not known beforehand, it is necessary to apply an 
unsupervised algorithm. 

A. Mountain clustering method 
Yager and Filev [16] proposed a simple and effective 

algorithm called the Mountain Method, for estimating the 
number and initial location of cluster centers.  Their method is 
based on griding the data space and computing a potential 
value for each grid point based on its distances to the actual 
data points; a grid point with many data points nearby will 
have a high potential value.  The grid point with the highest 
potential value is chosen as the first cluster center.  The key 
idea in their method is that once the first cluster center is 
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algorithm: The fuzzy c-means algorithm 
determines the cluster centers ci and 
the membership matrix M using the 
following steps [8]:

1. Initialize the membership matrix 
M with random values between 0 
and 1 within the constraints of (1).

2. Calculate C cluster centers, using 
(3).

3. Compute the objective function 
according to (2). Stop if either it is 
below a certain threshold level or 
its improvement over the previous 
iteration is below a certain 
tolerance.

4. Compute a new M using (4)
5. Go to step 2.

The cluster centers can alternatively be 
initialized first, before carrying out the 
iterative procedure. The algorithm may 
not converge to an optimum solution and 
the performance depends on the initial 
cluster centers. Although of this problem 
a lot of authors use this algorithm in their 
fuzzy systems [2], [5], [7-10].

D. hard and fuzzy IsODaTa 
algorithms

The ISODATA algorithm can be 
considered to be an enhancement of the 
approach taken by c-NN algorithm and 
c-means algorithm. Like those algorithms, 
it tries to minimize the squared error by 
assigning objects (samples) to the nearest 
center. Unlike those algorithms, it does 
not deal with fixed number of clusters 
but rather it deals with C clusters where 
C is allowed to vary over an interval that 
includes the number of clusters requested 
by the user. It discards clusters with few 
elements. Clusters are merged if the 
number of clusters grows too large or if 
clusters are too close together. A cluster is 
split if the number of clusters is too few 
or if the cluster contains very dissimilar 
objects [11]. Some of the work that used 
hard and fuzzy ISODATA algorithms in 
their fuzzy systems are [12-14].

e. Unsupervised fuzzy partition-
optimal number of classes (UfP-
ONC) algorithm

Gath and Geva [15] derive new algorithm 
from a combination of the fuzzy c-means 
algorithm and the fuzzy maximum 
likelihood estimation, called unsupervised 
fuzzy partition-optimal number of classes 
(UFP-ONC). This algorithm performs 
well in situations of large variability of 
clusters shapes, densities, and number 
of data points in each cluster. The 
algorithm use unsupervised tracking of 
classification prototypes but maximum 
number of clusters that the algorithm 
generates must be determined.

IV. UNsUPeRVIseD 
ClUsTeRINg algORIThms

The major problem of supervised 
algorithms that it is necessary to tell 
the algorithm how many clusters C to 
look for. If C is not known beforehand, 
it is necessary to apply an unsupervised 
algorithm.
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a. mountain clustering method

Yager and Filev [16] proposed a simple and 
effective algorithm called the Mountain 
Method, for estimating the number and 
initial location of cluster centers.  Their 
method is based on griding the data 
space and computing a potential value 
for each grid point based on its distances 
to the actual data points; a grid point with 
many data points nearby will have a high 
potential value.  The grid point with the 
highest potential value is chosen as the 
first cluster center.  The key idea in their 
method is that once the first cluster center 
is chosen, the potential of all grid points 
are reduced according to their distance 
from the cluster center.  Grid points near 
the first cluster center will have greatly 
reduced potential.  The next cluster center 
is then placed at the grid point with the 
highest remaining potential value. This 
procedure of acquiring new cluster center 
and reducing the potential of surrounding 
grid points repeats until the potential of 
all grid points fall below a threshold [5], 
[7].  

Although this method is simple and 
effective, the computation grows 
exponentially with the dimension of 
the problem.  For example, a clustering 
problem with 4 variables and each 
dimension having a resolution of 10 grid 
lines would result in 104 grid points that 
must be evaluated [7].

B. subtractive clustering method

Subtractive clustering, developed by 
Stephen Chiu [7] is based on a measure 
of the density of data points in the 
feature space (subtractive clustering is an 
extension of Yager and Filev's Mountain 
Method). The idea is to find regions in 
the feature space with high densities of 
data points. The point with the highest 
number of neighbors is selected as center 
for a cluster. The data points within a 
prespecified, radius are then removed 
(subtracted), and the algorithm looks for 
a new point with the highest number of 
neighbors. This continues until all data 
points are examined [8], [17].

Consider a collection of K data points 
specified by m-dimensional vectors uk 
(k=1, 2,…, K). Without loss of generality, 
the data points are assumed normalized. 
Since each data point is a candidate for a 
cluster center, a density measure at data 
point uk is defined as:

chosen, the potential of all grid points are reduced according 
to their distance from the cluster center.  Grid points near the 
first cluster center will have greatly reduced potential.  The 
next cluster center is then placed at the grid point with the 
highest remaining potential value. This procedure of acquiring 
new cluster center and reducing the potential of surrounding 
grid points repeats until the potential of all grid points fall 
below a threshold [5], [7].   

Although this method is simple and effective, the 
computation grows exponentially with the dimension of the 
problem.  For example, a clustering problem with 4 variables 
and each dimension having a resolution of 10 grid lines would 
result in 104 grid points that must be evaluated [7]. 

B. Subtractive clustering method 
Subtractive clustering, developed by Stephen Chiu [7] is 

based on a measure of the density of data points in the feature 
space (subtractive clustering is an extension of Yager and 
Filev's Mountain Method). The idea is to find regions in the 
feature space with high densities of data points. The point with 
the highest number of neighbors is selected as center for a 
cluster. The data points within a prespecified, radius are then 
removed (subtracted), and the algorithm looks for a new point 
with the highest number of neighbors. This continues until all 
data points are examined [8], [17]. 

Consider a collection of K data points specified by m-
dimensional vectors uk (k=1, 2,…, K). Without loss of 
generality, the data points are assumed normalized. Since each 
data point is a candidate for a cluster center, a density measure 
at data point uk is defined as: 

        (5) 

where ra is a positive constant. Thus, the measure of density 
for a data point is a function of its distances to all other data 
points.  A data point with many neighboring data points will 
have a high-density value.  The constant ra is effectively the 
radius defining a neighborhood; data points outside this radius 
have little influence on the density measure. 

After calculating the density measure for each data point, 
the point with the highest density is selected as the first cluster 
center. Let uC1 be the point selected and DC1 its density 
measure. Next, the density measure for each data point uk is 
revised by the formula: 

      (6) 

where rb is a positive constant. Thus, we subtract an amount of 
density from each data point as a function of its distance from 
the first cluster center.  The data points near the first cluster 
center uC1 will have greatly reduced density, and therefore will 
unlikely be selected as the next cluster center. The constant rb
is effectively the radius defining the neighborhood which will 
have measurable reductions in density.  To avoid obtaining 
closely spaced cluster centers, we set rb to be somewhat 

greater than ra ; a good choice is rb  = 1.5 ra . 

Chiu [7] proposes the following procedure for 
accepting/rejecting cluster centers: 

If Dk'  >⎯ε DC1
Accept uk' as a cluster center and continue. 

Else if Dk'  <⎯ε DC1
Reject uk' and end the clustering process. 

Else
Let dmin = shortest of the distances between 
     uk' and all previously found cluster centers. 

If 

Accept uk' as a cluster center and continue. 
Else

Reject uk' and set the density at uk' to 0. 
Select the data point with the next highest  
density as the new uk' and re-test. 
End if 

End if 

Here⎯ε specifies a threshold for the density above which the 
procedure will definitely accept the data point as a cluster 
center;⎯ε specifies a threshold below which the procedure will 
definitely reject the data point. Chiu uses⎯ε = 0.5 and⎯ε = 
0.15. If the density falls in the gray region, the procedure 
check if the data point provides a good trade-off between 
having a sufficient density and being sufficiently far from 
existing cluster centers. 

Although the number of clusters is automatically 
determined by this method, we should note that the user 
specified parameter ra (i.e., the radius of influence of a cluster 
center) strongly affects the number of clusters that will be 
generated.  A large ra generally results in fewer clusters and 
hence a coarser model, while a small ra can produce excessive 
number of clusters and a model that does not generalize well 
(i.e., by over-fitting the training data) [8]. To illustrate this 
principle, Chiu [7] applied this algorithm with different values 
of ra ranging from 0.15 to 0.5 for the Mackey-Glass time 
series problem as benchmark. This produced models of 
varying size, ranging from 69 clusters to 9 clusters. 

V. RELATED WORKS

Baldwin [13] proposes a new approach for clustering 
namely the semantic unification method. This approach has 
many applications for fuzzy logic systems in the guise of case 
base reasoning. 

All methods for designing neural networks used for 
clustering and used to design fuzzy logic systems, related 
works are [13], [18]. Anan [4] proposes simple taxonomy of 
these methods. 
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where ra is a positive constant. Thus, 
the measure of density for a data point 
is a function of its distances to all other 
data points.  A data point with many 
neighboring data points will have 
a high-density value.  The constant 
ra   is effectively the radius defining a 
neighborhood; data points outside this 
radius have little influence on the density 
measure.

After calculating the density measure for 
each data point, the point with the highest 
density is selected as the first cluster 
center. Let uC1 be the point selected and 
DC1 its density measure. Next, the density 
measure for each data point uk is revised 
by the formula:

chosen, the potential of all grid points are reduced according 
to their distance from the cluster center.  Grid points near the 
first cluster center will have greatly reduced potential.  The 
next cluster center is then placed at the grid point with the 
highest remaining potential value. This procedure of acquiring 
new cluster center and reducing the potential of surrounding 
grid points repeats until the potential of all grid points fall 
below a threshold [5], [7].   

Although this method is simple and effective, the 
computation grows exponentially with the dimension of the 
problem.  For example, a clustering problem with 4 variables 
and each dimension having a resolution of 10 grid lines would 
result in 104 grid points that must be evaluated [7]. 

B. Subtractive clustering method 
Subtractive clustering, developed by Stephen Chiu [7] is 

based on a measure of the density of data points in the feature 
space (subtractive clustering is an extension of Yager and 
Filev's Mountain Method). The idea is to find regions in the 
feature space with high densities of data points. The point with 
the highest number of neighbors is selected as center for a 
cluster. The data points within a prespecified, radius are then 
removed (subtracted), and the algorithm looks for a new point 
with the highest number of neighbors. This continues until all 
data points are examined [8], [17]. 

Consider a collection of K data points specified by m-
dimensional vectors uk (k=1, 2,…, K). Without loss of 
generality, the data points are assumed normalized. Since each 
data point is a candidate for a cluster center, a density measure 
at data point uk is defined as: 

        (5) 

where ra is a positive constant. Thus, the measure of density 
for a data point is a function of its distances to all other data 
points.  A data point with many neighboring data points will 
have a high-density value.  The constant ra is effectively the 
radius defining a neighborhood; data points outside this radius 
have little influence on the density measure. 

After calculating the density measure for each data point, 
the point with the highest density is selected as the first cluster 
center. Let uC1 be the point selected and DC1 its density 
measure. Next, the density measure for each data point uk is 
revised by the formula: 

      (6) 

where rb is a positive constant. Thus, we subtract an amount of 
density from each data point as a function of its distance from 
the first cluster center.  The data points near the first cluster 
center uC1 will have greatly reduced density, and therefore will 
unlikely be selected as the next cluster center. The constant rb
is effectively the radius defining the neighborhood which will 
have measurable reductions in density.  To avoid obtaining 
closely spaced cluster centers, we set rb to be somewhat 

greater than ra ; a good choice is rb  = 1.5 ra . 

Chiu [7] proposes the following procedure for 
accepting/rejecting cluster centers: 

If Dk'  >⎯ε DC1
Accept uk' as a cluster center and continue. 

Else if Dk'  <⎯ε DC1
Reject uk' and end the clustering process. 

Else
Let dmin = shortest of the distances between 
     uk' and all previously found cluster centers. 

If 

Accept uk' as a cluster center and continue. 
Else

Reject uk' and set the density at uk' to 0. 
Select the data point with the next highest  
density as the new uk' and re-test. 
End if 

End if 

Here⎯ε specifies a threshold for the density above which the 
procedure will definitely accept the data point as a cluster 
center;⎯ε specifies a threshold below which the procedure will 
definitely reject the data point. Chiu uses⎯ε = 0.5 and⎯ε = 
0.15. If the density falls in the gray region, the procedure 
check if the data point provides a good trade-off between 
having a sufficient density and being sufficiently far from 
existing cluster centers. 

Although the number of clusters is automatically 
determined by this method, we should note that the user 
specified parameter ra (i.e., the radius of influence of a cluster 
center) strongly affects the number of clusters that will be 
generated.  A large ra generally results in fewer clusters and 
hence a coarser model, while a small ra can produce excessive 
number of clusters and a model that does not generalize well 
(i.e., by over-fitting the training data) [8]. To illustrate this 
principle, Chiu [7] applied this algorithm with different values 
of ra ranging from 0.15 to 0.5 for the Mackey-Glass time 
series problem as benchmark. This produced models of 
varying size, ranging from 69 clusters to 9 clusters. 

V. RELATED WORKS

Baldwin [13] proposes a new approach for clustering 
namely the semantic unification method. This approach has 
many applications for fuzzy logic systems in the guise of case 
base reasoning. 

All methods for designing neural networks used for 
clustering and used to design fuzzy logic systems, related 
works are [13], [18]. Anan [4] proposes simple taxonomy of 
these methods. 

( )
,

2/

||||
exp

1
2∑

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

K

j a

jk
k r

uu
D

1'

1

min ≥+
C

k

a u
u

r
d

( )
,

2/
||||exp 2

1
1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−=′

b

Ck
Ckk r

uuDDD
      (6)

where rb is a positive constant. Thus, we 
subtract an amount of density from each 
data point as a function of its distance 
from the first cluster center.  The data 
points near the first cluster center uC1 
will have greatly reduced density, and 
therefore will unlikely be selected as 
the next cluster center. The constant 
rb is effectively the radius defining 
the neighborhood which will have 
measurable reductions in density.  To 
avoid obtaining closely spaced cluster 
centers, we set rb to be somewhat greater 
than ra ; a good choice is rb  = 1.5 ra .

Chiu [7] proposes the following procedure 
for accepting/rejecting cluster centers:
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chosen, the potential of all grid points are reduced according 
to their distance from the cluster center.  Grid points near the 
first cluster center will have greatly reduced potential.  The 
next cluster center is then placed at the grid point with the 
highest remaining potential value. This procedure of acquiring 
new cluster center and reducing the potential of surrounding 
grid points repeats until the potential of all grid points fall 
below a threshold [5], [7].   

Although this method is simple and effective, the 
computation grows exponentially with the dimension of the 
problem.  For example, a clustering problem with 4 variables 
and each dimension having a resolution of 10 grid lines would 
result in 104 grid points that must be evaluated [7]. 

B. Subtractive clustering method 
Subtractive clustering, developed by Stephen Chiu [7] is 

based on a measure of the density of data points in the feature 
space (subtractive clustering is an extension of Yager and 
Filev's Mountain Method). The idea is to find regions in the 
feature space with high densities of data points. The point with 
the highest number of neighbors is selected as center for a 
cluster. The data points within a prespecified, radius are then 
removed (subtracted), and the algorithm looks for a new point 
with the highest number of neighbors. This continues until all 
data points are examined [8], [17]. 

Consider a collection of K data points specified by m-
dimensional vectors uk (k=1, 2,…, K). Without loss of 
generality, the data points are assumed normalized. Since each 
data point is a candidate for a cluster center, a density measure 
at data point uk is defined as: 

        (5) 

where ra is a positive constant. Thus, the measure of density 
for a data point is a function of its distances to all other data 
points.  A data point with many neighboring data points will 
have a high-density value.  The constant ra is effectively the 
radius defining a neighborhood; data points outside this radius 
have little influence on the density measure. 

After calculating the density measure for each data point, 
the point with the highest density is selected as the first cluster 
center. Let uC1 be the point selected and DC1 its density 
measure. Next, the density measure for each data point uk is 
revised by the formula: 

      (6) 

where rb is a positive constant. Thus, we subtract an amount of 
density from each data point as a function of its distance from 
the first cluster center.  The data points near the first cluster 
center uC1 will have greatly reduced density, and therefore will 
unlikely be selected as the next cluster center. The constant rb
is effectively the radius defining the neighborhood which will 
have measurable reductions in density.  To avoid obtaining 
closely spaced cluster centers, we set rb to be somewhat 

greater than ra ; a good choice is rb  = 1.5 ra . 

Chiu [7] proposes the following procedure for 
accepting/rejecting cluster centers: 

If Dk'  >⎯ε DC1
Accept uk' as a cluster center and continue. 

Else if Dk'  <⎯ε DC1
Reject uk' and end the clustering process. 

Else
Let dmin = shortest of the distances between 
     uk' and all previously found cluster centers. 

If 

Accept uk' as a cluster center and continue. 
Else

Reject uk' and set the density at uk' to 0. 
Select the data point with the next highest  
density as the new uk' and re-test. 
End if 

End if 

Here⎯ε specifies a threshold for the density above which the 
procedure will definitely accept the data point as a cluster 
center;⎯ε specifies a threshold below which the procedure will 
definitely reject the data point. Chiu uses⎯ε = 0.5 and⎯ε = 
0.15. If the density falls in the gray region, the procedure 
check if the data point provides a good trade-off between 
having a sufficient density and being sufficiently far from 
existing cluster centers. 

Although the number of clusters is automatically 
determined by this method, we should note that the user 
specified parameter ra (i.e., the radius of influence of a cluster 
center) strongly affects the number of clusters that will be 
generated.  A large ra generally results in fewer clusters and 
hence a coarser model, while a small ra can produce excessive 
number of clusters and a model that does not generalize well 
(i.e., by over-fitting the training data) [8]. To illustrate this 
principle, Chiu [7] applied this algorithm with different values 
of ra ranging from 0.15 to 0.5 for the Mackey-Glass time 
series problem as benchmark. This produced models of 
varying size, ranging from 69 clusters to 9 clusters. 

V. RELATED WORKS

Baldwin [13] proposes a new approach for clustering 
namely the semantic unification method. This approach has 
many applications for fuzzy logic systems in the guise of case 
base reasoning. 

All methods for designing neural networks used for 
clustering and used to design fuzzy logic systems, related 
works are [13], [18]. Anan [4] proposes simple taxonomy of 
these methods. 
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Accept uk' as a cluster center and 
continue.

chosen, the potential of all grid points are reduced according 
to their distance from the cluster center.  Grid points near the 
first cluster center will have greatly reduced potential.  The 
next cluster center is then placed at the grid point with the 
highest remaining potential value. This procedure of acquiring 
new cluster center and reducing the potential of surrounding 
grid points repeats until the potential of all grid points fall 
below a threshold [5], [7].   

Although this method is simple and effective, the 
computation grows exponentially with the dimension of the 
problem.  For example, a clustering problem with 4 variables 
and each dimension having a resolution of 10 grid lines would 
result in 104 grid points that must be evaluated [7]. 

B. Subtractive clustering method 
Subtractive clustering, developed by Stephen Chiu [7] is 

based on a measure of the density of data points in the feature 
space (subtractive clustering is an extension of Yager and 
Filev's Mountain Method). The idea is to find regions in the 
feature space with high densities of data points. The point with 
the highest number of neighbors is selected as center for a 
cluster. The data points within a prespecified, radius are then 
removed (subtracted), and the algorithm looks for a new point 
with the highest number of neighbors. This continues until all 
data points are examined [8], [17]. 

Consider a collection of K data points specified by m-
dimensional vectors uk (k=1, 2,…, K). Without loss of 
generality, the data points are assumed normalized. Since each 
data point is a candidate for a cluster center, a density measure 
at data point uk is defined as: 

        (5) 

where ra is a positive constant. Thus, the measure of density 
for a data point is a function of its distances to all other data 
points.  A data point with many neighboring data points will 
have a high-density value.  The constant ra is effectively the 
radius defining a neighborhood; data points outside this radius 
have little influence on the density measure. 

After calculating the density measure for each data point, 
the point with the highest density is selected as the first cluster 
center. Let uC1 be the point selected and DC1 its density 
measure. Next, the density measure for each data point uk is 
revised by the formula: 

      (6) 

where rb is a positive constant. Thus, we subtract an amount of 
density from each data point as a function of its distance from 
the first cluster center.  The data points near the first cluster 
center uC1 will have greatly reduced density, and therefore will 
unlikely be selected as the next cluster center. The constant rb
is effectively the radius defining the neighborhood which will 
have measurable reductions in density.  To avoid obtaining 
closely spaced cluster centers, we set rb to be somewhat 

greater than ra ; a good choice is rb  = 1.5 ra . 

Chiu [7] proposes the following procedure for 
accepting/rejecting cluster centers: 

If Dk'  >⎯ε DC1
Accept uk' as a cluster center and continue. 

Else if Dk'  <⎯ε DC1
Reject uk' and end the clustering process. 

Else
Let dmin = shortest of the distances between 
     uk' and all previously found cluster centers. 

If 

Accept uk' as a cluster center and continue. 
Else

Reject uk' and set the density at uk' to 0. 
Select the data point with the next highest  
density as the new uk' and re-test. 
End if 

End if 

Here⎯ε specifies a threshold for the density above which the 
procedure will definitely accept the data point as a cluster 
center;⎯ε specifies a threshold below which the procedure will 
definitely reject the data point. Chiu uses⎯ε = 0.5 and⎯ε = 
0.15. If the density falls in the gray region, the procedure 
check if the data point provides a good trade-off between 
having a sufficient density and being sufficiently far from 
existing cluster centers. 

Although the number of clusters is automatically 
determined by this method, we should note that the user 
specified parameter ra (i.e., the radius of influence of a cluster 
center) strongly affects the number of clusters that will be 
generated.  A large ra generally results in fewer clusters and 
hence a coarser model, while a small ra can produce excessive 
number of clusters and a model that does not generalize well 
(i.e., by over-fitting the training data) [8]. To illustrate this 
principle, Chiu [7] applied this algorithm with different values 
of ra ranging from 0.15 to 0.5 for the Mackey-Glass time 
series problem as benchmark. This produced models of 
varying size, ranging from 69 clusters to 9 clusters. 

V. RELATED WORKS

Baldwin [13] proposes a new approach for clustering 
namely the semantic unification method. This approach has 
many applications for fuzzy logic systems in the guise of case 
base reasoning. 

All methods for designing neural networks used for 
clustering and used to design fuzzy logic systems, related 
works are [13], [18]. Anan [4] proposes simple taxonomy of 
these methods. 

( )
,

2/

||||
exp

1
2∑

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

K

j a

jk
k r

uu
D

1'

1

min ≥+
C

k

a u
u

r
d

( )
,

2/
||||exp 2

1
1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−=′

b

Ck
Ckk r

uuDDD

Reject uk' and end the clustering process.

Else

Let dmin = shortest of the distances between
 uk' and all previously found  
 cluster centers.

chosen, the potential of all grid points are reduced according 
to their distance from the cluster center.  Grid points near the 
first cluster center will have greatly reduced potential.  The 
next cluster center is then placed at the grid point with the 
highest remaining potential value. This procedure of acquiring 
new cluster center and reducing the potential of surrounding 
grid points repeats until the potential of all grid points fall 
below a threshold [5], [7].   

Although this method is simple and effective, the 
computation grows exponentially with the dimension of the 
problem.  For example, a clustering problem with 4 variables 
and each dimension having a resolution of 10 grid lines would 
result in 104 grid points that must be evaluated [7]. 

B. Subtractive clustering method 
Subtractive clustering, developed by Stephen Chiu [7] is 

based on a measure of the density of data points in the feature 
space (subtractive clustering is an extension of Yager and 
Filev's Mountain Method). The idea is to find regions in the 
feature space with high densities of data points. The point with 
the highest number of neighbors is selected as center for a 
cluster. The data points within a prespecified, radius are then 
removed (subtracted), and the algorithm looks for a new point 
with the highest number of neighbors. This continues until all 
data points are examined [8], [17]. 

Consider a collection of K data points specified by m-
dimensional vectors uk (k=1, 2,…, K). Without loss of 
generality, the data points are assumed normalized. Since each 
data point is a candidate for a cluster center, a density measure 
at data point uk is defined as: 

        (5) 

where ra is a positive constant. Thus, the measure of density 
for a data point is a function of its distances to all other data 
points.  A data point with many neighboring data points will 
have a high-density value.  The constant ra is effectively the 
radius defining a neighborhood; data points outside this radius 
have little influence on the density measure. 

After calculating the density measure for each data point, 
the point with the highest density is selected as the first cluster 
center. Let uC1 be the point selected and DC1 its density 
measure. Next, the density measure for each data point uk is 
revised by the formula: 

      (6) 

where rb is a positive constant. Thus, we subtract an amount of 
density from each data point as a function of its distance from 
the first cluster center.  The data points near the first cluster 
center uC1 will have greatly reduced density, and therefore will 
unlikely be selected as the next cluster center. The constant rb
is effectively the radius defining the neighborhood which will 
have measurable reductions in density.  To avoid obtaining 
closely spaced cluster centers, we set rb to be somewhat 

greater than ra ; a good choice is rb  = 1.5 ra . 

Chiu [7] proposes the following procedure for 
accepting/rejecting cluster centers: 

If Dk'  >⎯ε DC1
Accept uk' as a cluster center and continue. 

Else if Dk'  <⎯ε DC1
Reject uk' and end the clustering process. 

Else
Let dmin = shortest of the distances between 
     uk' and all previously found cluster centers. 

If 

Accept uk' as a cluster center and continue. 
Else

Reject uk' and set the density at uk' to 0. 
Select the data point with the next highest  
density as the new uk' and re-test. 
End if 

End if 

Here⎯ε specifies a threshold for the density above which the 
procedure will definitely accept the data point as a cluster 
center;⎯ε specifies a threshold below which the procedure will 
definitely reject the data point. Chiu uses⎯ε = 0.5 and⎯ε = 
0.15. If the density falls in the gray region, the procedure 
check if the data point provides a good trade-off between 
having a sufficient density and being sufficiently far from 
existing cluster centers. 

Although the number of clusters is automatically 
determined by this method, we should note that the user 
specified parameter ra (i.e., the radius of influence of a cluster 
center) strongly affects the number of clusters that will be 
generated.  A large ra generally results in fewer clusters and 
hence a coarser model, while a small ra can produce excessive 
number of clusters and a model that does not generalize well 
(i.e., by over-fitting the training data) [8]. To illustrate this 
principle, Chiu [7] applied this algorithm with different values 
of ra ranging from 0.15 to 0.5 for the Mackey-Glass time 
series problem as benchmark. This produced models of 
varying size, ranging from 69 clusters to 9 clusters. 

V. RELATED WORKS

Baldwin [13] proposes a new approach for clustering 
namely the semantic unification method. This approach has 
many applications for fuzzy logic systems in the guise of case 
base reasoning. 

All methods for designing neural networks used for 
clustering and used to design fuzzy logic systems, related 
works are [13], [18]. Anan [4] proposes simple taxonomy of 
these methods. 
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If

Accept uk' as a cluster center and continue.

Else

Reject uk' and set the density at uk' to 0.
Select the data point with the next   

highest 
density as the new uk' and re-test.
End if

End if

Here 

chosen, the potential of all grid points are reduced according 
to their distance from the cluster center.  Grid points near the 
first cluster center will have greatly reduced potential.  The 
next cluster center is then placed at the grid point with the 
highest remaining potential value. This procedure of acquiring 
new cluster center and reducing the potential of surrounding 
grid points repeats until the potential of all grid points fall 
below a threshold [5], [7].   

Although this method is simple and effective, the 
computation grows exponentially with the dimension of the 
problem.  For example, a clustering problem with 4 variables 
and each dimension having a resolution of 10 grid lines would 
result in 104 grid points that must be evaluated [7]. 

B. Subtractive clustering method 
Subtractive clustering, developed by Stephen Chiu [7] is 

based on a measure of the density of data points in the feature 
space (subtractive clustering is an extension of Yager and 
Filev's Mountain Method). The idea is to find regions in the 
feature space with high densities of data points. The point with 
the highest number of neighbors is selected as center for a 
cluster. The data points within a prespecified, radius are then 
removed (subtracted), and the algorithm looks for a new point 
with the highest number of neighbors. This continues until all 
data points are examined [8], [17]. 

Consider a collection of K data points specified by m-
dimensional vectors uk (k=1, 2,…, K). Without loss of 
generality, the data points are assumed normalized. Since each 
data point is a candidate for a cluster center, a density measure 
at data point uk is defined as: 

        (5) 

where ra is a positive constant. Thus, the measure of density 
for a data point is a function of its distances to all other data 
points.  A data point with many neighboring data points will 
have a high-density value.  The constant ra is effectively the 
radius defining a neighborhood; data points outside this radius 
have little influence on the density measure. 

After calculating the density measure for each data point, 
the point with the highest density is selected as the first cluster 
center. Let uC1 be the point selected and DC1 its density 
measure. Next, the density measure for each data point uk is 
revised by the formula: 

      (6) 

where rb is a positive constant. Thus, we subtract an amount of 
density from each data point as a function of its distance from 
the first cluster center.  The data points near the first cluster 
center uC1 will have greatly reduced density, and therefore will 
unlikely be selected as the next cluster center. The constant rb
is effectively the radius defining the neighborhood which will 
have measurable reductions in density.  To avoid obtaining 
closely spaced cluster centers, we set rb to be somewhat 

greater than ra ; a good choice is rb  = 1.5 ra . 

Chiu [7] proposes the following procedure for 
accepting/rejecting cluster centers: 

If Dk'  >⎯ε DC1
Accept uk' as a cluster center and continue. 

Else if Dk'  <⎯ε DC1
Reject uk' and end the clustering process. 

Else
Let dmin = shortest of the distances between 
     uk' and all previously found cluster centers. 

If 

Accept uk' as a cluster center and continue. 
Else

Reject uk' and set the density at uk' to 0. 
Select the data point with the next highest  
density as the new uk' and re-test. 
End if 

End if 

Here⎯ε specifies a threshold for the density above which the 
procedure will definitely accept the data point as a cluster 
center;⎯ε specifies a threshold below which the procedure will 
definitely reject the data point. Chiu uses⎯ε = 0.5 and⎯ε = 
0.15. If the density falls in the gray region, the procedure 
check if the data point provides a good trade-off between 
having a sufficient density and being sufficiently far from 
existing cluster centers. 

Although the number of clusters is automatically 
determined by this method, we should note that the user 
specified parameter ra (i.e., the radius of influence of a cluster 
center) strongly affects the number of clusters that will be 
generated.  A large ra generally results in fewer clusters and 
hence a coarser model, while a small ra can produce excessive 
number of clusters and a model that does not generalize well 
(i.e., by over-fitting the training data) [8]. To illustrate this 
principle, Chiu [7] applied this algorithm with different values 
of ra ranging from 0.15 to 0.5 for the Mackey-Glass time 
series problem as benchmark. This produced models of 
varying size, ranging from 69 clusters to 9 clusters. 

V. RELATED WORKS

Baldwin [13] proposes a new approach for clustering 
namely the semantic unification method. This approach has 
many applications for fuzzy logic systems in the guise of case 
base reasoning. 

All methods for designing neural networks used for 
clustering and used to design fuzzy logic systems, related 
works are [13], [18]. Anan [4] proposes simple taxonomy of 
these methods. 
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 specifies a threshold for the 
density above which the procedure will 
definitely accept the data point as a cluster 
center; 

chosen, the potential of all grid points are reduced according 
to their distance from the cluster center.  Grid points near the 
first cluster center will have greatly reduced potential.  The 
next cluster center is then placed at the grid point with the 
highest remaining potential value. This procedure of acquiring 
new cluster center and reducing the potential of surrounding 
grid points repeats until the potential of all grid points fall 
below a threshold [5], [7].   

Although this method is simple and effective, the 
computation grows exponentially with the dimension of the 
problem.  For example, a clustering problem with 4 variables 
and each dimension having a resolution of 10 grid lines would 
result in 104 grid points that must be evaluated [7]. 

B. Subtractive clustering method 
Subtractive clustering, developed by Stephen Chiu [7] is 

based on a measure of the density of data points in the feature 
space (subtractive clustering is an extension of Yager and 
Filev's Mountain Method). The idea is to find regions in the 
feature space with high densities of data points. The point with 
the highest number of neighbors is selected as center for a 
cluster. The data points within a prespecified, radius are then 
removed (subtracted), and the algorithm looks for a new point 
with the highest number of neighbors. This continues until all 
data points are examined [8], [17]. 

Consider a collection of K data points specified by m-
dimensional vectors uk (k=1, 2,…, K). Without loss of 
generality, the data points are assumed normalized. Since each 
data point is a candidate for a cluster center, a density measure 
at data point uk is defined as: 

        (5) 

where ra is a positive constant. Thus, the measure of density 
for a data point is a function of its distances to all other data 
points.  A data point with many neighboring data points will 
have a high-density value.  The constant ra is effectively the 
radius defining a neighborhood; data points outside this radius 
have little influence on the density measure. 

After calculating the density measure for each data point, 
the point with the highest density is selected as the first cluster 
center. Let uC1 be the point selected and DC1 its density 
measure. Next, the density measure for each data point uk is 
revised by the formula: 

      (6) 

where rb is a positive constant. Thus, we subtract an amount of 
density from each data point as a function of its distance from 
the first cluster center.  The data points near the first cluster 
center uC1 will have greatly reduced density, and therefore will 
unlikely be selected as the next cluster center. The constant rb
is effectively the radius defining the neighborhood which will 
have measurable reductions in density.  To avoid obtaining 
closely spaced cluster centers, we set rb to be somewhat 

greater than ra ; a good choice is rb  = 1.5 ra . 

Chiu [7] proposes the following procedure for 
accepting/rejecting cluster centers: 

If Dk'  >⎯ε DC1
Accept uk' as a cluster center and continue. 

Else if Dk'  <⎯ε DC1
Reject uk' and end the clustering process. 

Else
Let dmin = shortest of the distances between 
     uk' and all previously found cluster centers. 

If 

Accept uk' as a cluster center and continue. 
Else

Reject uk' and set the density at uk' to 0. 
Select the data point with the next highest  
density as the new uk' and re-test. 
End if 

End if 

Here⎯ε specifies a threshold for the density above which the 
procedure will definitely accept the data point as a cluster 
center;⎯ε specifies a threshold below which the procedure will 
definitely reject the data point. Chiu uses⎯ε = 0.5 and⎯ε = 
0.15. If the density falls in the gray region, the procedure 
check if the data point provides a good trade-off between 
having a sufficient density and being sufficiently far from 
existing cluster centers. 

Although the number of clusters is automatically 
determined by this method, we should note that the user 
specified parameter ra (i.e., the radius of influence of a cluster 
center) strongly affects the number of clusters that will be 
generated.  A large ra generally results in fewer clusters and 
hence a coarser model, while a small ra can produce excessive 
number of clusters and a model that does not generalize well 
(i.e., by over-fitting the training data) [8]. To illustrate this 
principle, Chiu [7] applied this algorithm with different values 
of ra ranging from 0.15 to 0.5 for the Mackey-Glass time 
series problem as benchmark. This produced models of 
varying size, ranging from 69 clusters to 9 clusters. 

V. RELATED WORKS

Baldwin [13] proposes a new approach for clustering 
namely the semantic unification method. This approach has 
many applications for fuzzy logic systems in the guise of case 
base reasoning. 

All methods for designing neural networks used for 
clustering and used to design fuzzy logic systems, related 
works are [13], [18]. Anan [4] proposes simple taxonomy of 
these methods. 
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 specifies a threshold below 
which the procedure will definitely reject 
the data point. Chiu uses 

chosen, the potential of all grid points are reduced according 
to their distance from the cluster center.  Grid points near the 
first cluster center will have greatly reduced potential.  The 
next cluster center is then placed at the grid point with the 
highest remaining potential value. This procedure of acquiring 
new cluster center and reducing the potential of surrounding 
grid points repeats until the potential of all grid points fall 
below a threshold [5], [7].   

Although this method is simple and effective, the 
computation grows exponentially with the dimension of the 
problem.  For example, a clustering problem with 4 variables 
and each dimension having a resolution of 10 grid lines would 
result in 104 grid points that must be evaluated [7]. 

B. Subtractive clustering method 
Subtractive clustering, developed by Stephen Chiu [7] is 

based on a measure of the density of data points in the feature 
space (subtractive clustering is an extension of Yager and 
Filev's Mountain Method). The idea is to find regions in the 
feature space with high densities of data points. The point with 
the highest number of neighbors is selected as center for a 
cluster. The data points within a prespecified, radius are then 
removed (subtracted), and the algorithm looks for a new point 
with the highest number of neighbors. This continues until all 
data points are examined [8], [17]. 

Consider a collection of K data points specified by m-
dimensional vectors uk (k=1, 2,…, K). Without loss of 
generality, the data points are assumed normalized. Since each 
data point is a candidate for a cluster center, a density measure 
at data point uk is defined as: 

        (5) 

where ra is a positive constant. Thus, the measure of density 
for a data point is a function of its distances to all other data 
points.  A data point with many neighboring data points will 
have a high-density value.  The constant ra is effectively the 
radius defining a neighborhood; data points outside this radius 
have little influence on the density measure. 

After calculating the density measure for each data point, 
the point with the highest density is selected as the first cluster 
center. Let uC1 be the point selected and DC1 its density 
measure. Next, the density measure for each data point uk is 
revised by the formula: 

      (6) 

where rb is a positive constant. Thus, we subtract an amount of 
density from each data point as a function of its distance from 
the first cluster center.  The data points near the first cluster 
center uC1 will have greatly reduced density, and therefore will 
unlikely be selected as the next cluster center. The constant rb
is effectively the radius defining the neighborhood which will 
have measurable reductions in density.  To avoid obtaining 
closely spaced cluster centers, we set rb to be somewhat 

greater than ra ; a good choice is rb  = 1.5 ra . 

Chiu [7] proposes the following procedure for 
accepting/rejecting cluster centers: 

If Dk'  >⎯ε DC1
Accept uk' as a cluster center and continue. 

Else if Dk'  <⎯ε DC1
Reject uk' and end the clustering process. 

Else
Let dmin = shortest of the distances between 
     uk' and all previously found cluster centers. 

If 

Accept uk' as a cluster center and continue. 
Else

Reject uk' and set the density at uk' to 0. 
Select the data point with the next highest  
density as the new uk' and re-test. 
End if 

End if 

Here⎯ε specifies a threshold for the density above which the 
procedure will definitely accept the data point as a cluster 
center;⎯ε specifies a threshold below which the procedure will 
definitely reject the data point. Chiu uses⎯ε = 0.5 and⎯ε = 
0.15. If the density falls in the gray region, the procedure 
check if the data point provides a good trade-off between 
having a sufficient density and being sufficiently far from 
existing cluster centers. 

Although the number of clusters is automatically 
determined by this method, we should note that the user 
specified parameter ra (i.e., the radius of influence of a cluster 
center) strongly affects the number of clusters that will be 
generated.  A large ra generally results in fewer clusters and 
hence a coarser model, while a small ra can produce excessive 
number of clusters and a model that does not generalize well 
(i.e., by over-fitting the training data) [8]. To illustrate this 
principle, Chiu [7] applied this algorithm with different values 
of ra ranging from 0.15 to 0.5 for the Mackey-Glass time 
series problem as benchmark. This produced models of 
varying size, ranging from 69 clusters to 9 clusters. 

V. RELATED WORKS

Baldwin [13] proposes a new approach for clustering 
namely the semantic unification method. This approach has 
many applications for fuzzy logic systems in the guise of case 
base reasoning. 

All methods for designing neural networks used for 
clustering and used to design fuzzy logic systems, related 
works are [13], [18]. Anan [4] proposes simple taxonomy of 
these methods. 
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 = 0.5 and

chosen, the potential of all grid points are reduced according 
to their distance from the cluster center.  Grid points near the 
first cluster center will have greatly reduced potential.  The 
next cluster center is then placed at the grid point with the 
highest remaining potential value. This procedure of acquiring 
new cluster center and reducing the potential of surrounding 
grid points repeats until the potential of all grid points fall 
below a threshold [5], [7].   

Although this method is simple and effective, the 
computation grows exponentially with the dimension of the 
problem.  For example, a clustering problem with 4 variables 
and each dimension having a resolution of 10 grid lines would 
result in 104 grid points that must be evaluated [7]. 

B. Subtractive clustering method 
Subtractive clustering, developed by Stephen Chiu [7] is 

based on a measure of the density of data points in the feature 
space (subtractive clustering is an extension of Yager and 
Filev's Mountain Method). The idea is to find regions in the 
feature space with high densities of data points. The point with 
the highest number of neighbors is selected as center for a 
cluster. The data points within a prespecified, radius are then 
removed (subtracted), and the algorithm looks for a new point 
with the highest number of neighbors. This continues until all 
data points are examined [8], [17]. 

Consider a collection of K data points specified by m-
dimensional vectors uk (k=1, 2,…, K). Without loss of 
generality, the data points are assumed normalized. Since each 
data point is a candidate for a cluster center, a density measure 
at data point uk is defined as: 

        (5) 

where ra is a positive constant. Thus, the measure of density 
for a data point is a function of its distances to all other data 
points.  A data point with many neighboring data points will 
have a high-density value.  The constant ra is effectively the 
radius defining a neighborhood; data points outside this radius 
have little influence on the density measure. 

After calculating the density measure for each data point, 
the point with the highest density is selected as the first cluster 
center. Let uC1 be the point selected and DC1 its density 
measure. Next, the density measure for each data point uk is 
revised by the formula: 

      (6) 

where rb is a positive constant. Thus, we subtract an amount of 
density from each data point as a function of its distance from 
the first cluster center.  The data points near the first cluster 
center uC1 will have greatly reduced density, and therefore will 
unlikely be selected as the next cluster center. The constant rb
is effectively the radius defining the neighborhood which will 
have measurable reductions in density.  To avoid obtaining 
closely spaced cluster centers, we set rb to be somewhat 

greater than ra ; a good choice is rb  = 1.5 ra . 

Chiu [7] proposes the following procedure for 
accepting/rejecting cluster centers: 

If Dk'  >⎯ε DC1
Accept uk' as a cluster center and continue. 

Else if Dk'  <⎯ε DC1
Reject uk' and end the clustering process. 

Else
Let dmin = shortest of the distances between 
     uk' and all previously found cluster centers. 

If 

Accept uk' as a cluster center and continue. 
Else

Reject uk' and set the density at uk' to 0. 
Select the data point with the next highest  
density as the new uk' and re-test. 
End if 

End if 

Here⎯ε specifies a threshold for the density above which the 
procedure will definitely accept the data point as a cluster 
center;⎯ε specifies a threshold below which the procedure will 
definitely reject the data point. Chiu uses⎯ε = 0.5 and⎯ε = 
0.15. If the density falls in the gray region, the procedure 
check if the data point provides a good trade-off between 
having a sufficient density and being sufficiently far from 
existing cluster centers. 

Although the number of clusters is automatically 
determined by this method, we should note that the user 
specified parameter ra (i.e., the radius of influence of a cluster 
center) strongly affects the number of clusters that will be 
generated.  A large ra generally results in fewer clusters and 
hence a coarser model, while a small ra can produce excessive 
number of clusters and a model that does not generalize well 
(i.e., by over-fitting the training data) [8]. To illustrate this 
principle, Chiu [7] applied this algorithm with different values 
of ra ranging from 0.15 to 0.5 for the Mackey-Glass time 
series problem as benchmark. This produced models of 
varying size, ranging from 69 clusters to 9 clusters. 

V. RELATED WORKS

Baldwin [13] proposes a new approach for clustering 
namely the semantic unification method. This approach has 
many applications for fuzzy logic systems in the guise of case 
base reasoning. 

All methods for designing neural networks used for 
clustering and used to design fuzzy logic systems, related 
works are [13], [18]. Anan [4] proposes simple taxonomy of 
these methods. 
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 = 
0.15. If the density falls in the gray region, 
the procedure check if the data point 
provides a good trade-off between having 
a sufficient density and being sufficiently 
far from existing cluster centers.

Although the number of clusters is 
automatically determined by this 
method, we should note that the user 
specified parameter ra (i.e., the radius 
of influence of a cluster center) strongly 
affects the number of clusters that will be 
generated.  A large ra generally results in 
fewer clusters and hence a coarser model, 

while a small ra can produce excessive 
number of clusters and a model that does 
not generalize well (i.e., by over-fitting 
the training data) [8]. To illustrate this 
principle, Chiu [7] applied this algorithm 
with different values of ra ranging from 
0.15 to 0.5 for the Mackey-Glass time 
series problem as benchmark. This 
produced models of varying size, ranging 
from 69 clusters to 9 clusters.

V. RelaTeD WORKs

Baldwin [13] proposes a new approach 
for clustering namely the semantic 
unification method. This approach has 
many applications for fuzzy logic systems 
in the guise of case base reasoning.

All methods for designing neural 
networks used for clustering and used to 
design fuzzy logic systems, related works 
are [13], [18]. Anan [4] proposes simple 
taxonomy of these methods.

VI. sUmmaRy

One of the powerful techniques to generate 
the rules of the fuzzy systems is using 
the clustering algorithms. Taxonomy of 
clustering algorithms used with fuzzy 
logic systems was reviewed in this 
paper. The main problem of supervised 
clustering algorithms is determination of 
the number of clusters that satisfactorily 
represent the system. Unsupervised 
clustering algorithms solve this problem. 
In spite of that, unsupervised algorithms 
have another problem. They require 
determination of some parameters that 
will affect on (increase/decrease) the 
number of generated clusters. In future 
work, we’ll propose two non-parametric 
clustering algorithms to overcome this 
problem. These algorithms will be used 
to extract the rule-base of the fuzzy logic 
systems.
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