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Abstract 

This paper presents a method to improve the raw 
disparity maps in the disparity refinement stage 
for stereo matching algorithm. The proposed 
algorithm will use the disparity depth map 
from the stereo matching algorithm as initial 
disparity depth output with a basic similarity 
metric of SAD. The similarity metric finds the 
pixel points between the left and right under 
the fixed window (FW) searching process. With 
this approach, the raw disparity depth map 
obtained is not smooth and contained errors 
particularly with the depth discontinuities 
and unable to detect the uniform areas and 
repetitive patterns. The initial disparity depth 
will be used to identify the layers of disparity 
depth map by adapting the Depth Image Layers 
Separation (DILS) algorithm that separate the 
layers of depth based on disparity range. Each 
particular disparity depth map distributed 
along the disparity range and can be divided 
into several layers. The layer will be mapped 
to segmented reference image to refine the 
disparity depth map. This method will be 
known as the Depth Layer Refinement (DLR) 
that using the disparity depth layers to refine 
the disparity map.

Keywords: Depth map, stereo matching 
algorithm, disparity refinement stage, 
similarity metric, layered depth map.

I.	 INTRODUCTION

Binocular stereo is one of the most 
significant and active areas in the field of 
computer vision. Recently, the number of 
publications on stereo is increasing due 
to the Middlebury Stereo Vision Page by 
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Scharstein and Szelinski [1] with their 
taxonomy of stereo matching algorithms 
development. The Middlebury page 
provides some common benchmark 
datasets and evaluation systems that 
all researchers can utilize to examine 
their proposed methods objectively and 
universally. Based on the rank given by 
the website, the common techniques 
can be found and adopted in many 
sophisticated algorithms. According to 
Scharstein [1] that build the foundation 
of the page, stereo algorithms generally 
consist of four steps including matching 
cost computation, cost aggregation, 
disparity computation optimization 
and disparity refinement. However, 
not all stereo algorithms take all the 
four steps depending on the individual 
implementation.

The post-processing step for the stereo 
matching algorithm is the disparity 
refinement has received a lot of 
attention in recent years. Most pixel-
based matching algorithms compute 
disparities as integer values and need 
to be refined. In this step, raw disparity 
maps computed by correspondence 
algorithms contain outliers that must 
be identified and corrected. Several 
approaches aimed at improving the 
raw disparity maps computed by stereo 
correspondence algorithms such as sub-
pixel interpolation [2], image filtering 
techniques, Bidirectional Matching [3] 
and Single Matching Phase [4]. Even 
though the proposed algorithm provides 



ISSN: 2180 - 1843     Vol. 4     No. 1     January - June 2012

Journal of Telecommunication, Electronic and Computer Engineering

52

exceptional accurate disparity depth 
map, it suffered with complexity for the 
implementation particularly for real-time 
application. 

In this paper, the main aim of this 
research is to improve the raw disparity 
maps in the disparity refinement stage. 
The algorithm will use a simple stereo 
matching correspondence with a basic 
similarity metric of SAD. The similarity 
metric finds the pixel points between the 
left and right under the fixed window 
(FW) searching process. With this 
approach, the raw disparity depth map 
obtained is not smooth and contained 
errors particularly with the depth 
discontinuities and unable to detect the 
uniform areas and repetitive patterns. The 
proposed algorithm will use the disparity 
depth map from the stereo matching 
algorithm as initial disparity depth 
output. The initial disparity depth will 
be used to identify the layers of disparity 
depth map since the depth consists of 
range of disparity. This approach is 
adapted from the Depth Image Layers 
Separation (DILS) algorithm that separate 
the layers of depth based on disparity 
range. In general, each particular 
disparity depth map distributed along 
the disparity range and can be divided 
into several segments, which is known 
as layers. Instead of using each layer to 
synthesize inter-view images in the DILS, 
the layer will be mapped to segmented 
reference image to refine the disparity 
depth map. This method will be known 
as the Depth Layer Refinement (DLR) that 
using the disparity depth layers to refine 
the disparity map. 

This paper is organized in six sections. 
Section 2 provides an overview of the 
system design and also outlines the main 
features of the model that consist two 
main modules: stereo matching algorithm 
and disparity refinement module. Section 
3 covers the proposed algorithm for the 
disparity refinement by adapting the 
Depth Image Layers Separation (DILS) 
algorithm. In section 4, performance 
evaluation used for the disparity depth 

map is presented. The results and 
performance are discussed in Section 5, 
which comparing the proposed algorithm 
with the state-of-the-art stereo matching 
algorithm in the Middlebury Ranking 
Stereo Page. And finally in Section 6 
concluding remarks are provided.

II.	SYS TEM DESIGN

The proposed system design of DLR 
is shown in Fig. 1 that consists of two 
stages: stereo matching engine and 
disparity refinement module. The first 
stage of DLR system is basically adapted 
from the stereo matching algorithm 
according to Scharstein [1] that contained 
three main components: matching cost 
computation, cost aggregation and 
disparity computation/optimization. In 
the matching cost computation step, it 
can be divided into two main categories 
that are pixel-based matching costs 
and area-based matching costs. Some 
similarity metric used in the matching 
are the Sum of Absolute Differences 
(SAD), Sum of Squared Differences 
(SSD) and Normalized Cross Correlation 
(NCC). The classification and evaluation 
of cost aggregation strategies for stereo 
correspondences [5] depends on the 
position, shape, position and weights. 

matching algorithm and disparity refinement module. Section 
3 covers the proposed algorithm for the disparity refinement 
by adapting the Depth Image Layers Separation (DILS) 
algorithm. In section 4, performance evaluation used for the 
disparity depth map is presented. The results and performance 
are discussed in Section 5, which comparing the proposed 
algorithm with the state-of-the-art stereo matching algorithm 
in the Middlebury Ranking Stereo Page. And finally in 
Section 6 concluding remarks are provided. 

II. SYSTEM DESIGN

The proposed system design of DLR is shown in Fig. 1 that 
consists of two stages: stereo matching engine and disparity 
refinement module. The first stage of DLR system is basically 
adapted from the stereo matching algorithm according to 
Scharstein [1] that contained three main components: 
matching cost computation, cost aggregation and disparity 
computation/optimization. In the matching cost computation 
step, it can be divided into two main categories that are pixel-
based matching costs and area-based matching costs. Some 
similarity metric used in the matching are the Sum of Absolute 
Differences (SAD), Sum of Squared Differences (SSD) and 
Normalized Cross Correlation (NCC). The classification and 
evaluation of cost aggregation strategies for stereo 
correspondences [5] depends on the position, shape, position 
and weights.  

Fig. 1. Overview of DLR system

In this stage, raw disparity depth map obtained from the 
stereo matching based on left-to-right matching by using 
block-based fixed window similarity metric. In this case we 
are using the SAD that has been proven to be trade-off 
between reliability and computational cost [6]. However, other 
similarity metric can be used as well. Window-based methods 
implicitly make the assumption of continuity by assuming 
constant disparity for all pixels inside the matching window. 
This assumption is broken at depth boundaries where occluded 
regions lead to erroneous matches, resulting in the familiar 
foreground flattening effect. Generally, the choice of an 
appropriate window size is a crucial decision. Small windows 
do not capture enough intensity variation to give correct 
results in less-textured regions. On the other hand, large 
windows tend to blur the depth boundaries and do not capture 
well small details and thin objects. This motivates the use of 

adaptive windows [7], shiftable window [8],  multiple window 
[9], variable windows [10], bilateral filtering [11] and adaptive 
weights [12]. The newly algorithms adopted some of these 
approaches to improve the disparity depth map. In spite of its 
limitation, SAD with FW is the most frequently used 
algorithm for real time applications due to easy 
implementation, fast and has limited memory requirements. 
Therefore, the fixed window similarity stereo matching 
technique is adequate to obtain the estimated depth map. This 
configuration can be adapted for computation optimization in 
real-time hardware implementation [4].  

The disparity computation or optimization step aims at 
finding the best disparity assignment that minimizes a cost 
function over the whole stereo pair. The relevant approaches 
are with the Graph Cuts [13-14], Belief Propagation [15] and 
Dynamic Programming [16-18]. The most common and 
effective method is a simple winner-takes-all (WTA) 
minimum or maximum search over all possible disparity 
levels. The matching can be done from right to left and vice 
versa (bidirectional matching), so occlusions and uncertain 
matches can be filtered with a left right consistency check 
(LRCC). This means only disparities with the same value 
(within a certain range) for both directions are accepted. In 
this case, only a single matching is needed for the DLR 
algorithm. The main reason of this is to use the depth layer 
and edge maps to remove the uncertain matches. 

In the second stage, the disparity depth map will be 
separated into a number of layers based on the disparity range 
of the stereo pair. The disparity depth map can be improved 
with the same techniques such as sub-pixel interpolation  [2], 
image filtering techniques, Bidirectional Matching [3] and 
Single Matching Phase [4]. Even though these algorithms 
provide exceptional accurate disparity depth map, it also 
required extra iterations to compute the mismatch between the 
uncertain pixels in the Bidirectional Matching and 
computational complexity within some of the proposed 
technique for real-time and practical implementation. The 
proposed disparity refinement developed through the layer 
extraction and separation process implemented using DILS 
algorithm. A new approach to refine the disparity image map 
is presented in this stage with boundaries identification, 
morphological and composition process, which are the DLR 
components. The layers mapped and adaptively fused with a 
reference image to identify the edge, border, depth 
discontinuities, uniform areas and repetitive patterns. The 
description on the disparity refinement module will be 
described in the next section. 

III. DISPARITY LAYER REFINEMENT ALGORITHM

This section described the proposed algorithm of disparity 
layer refinement module. The overall algorithm for disparity 
refinement of DLR based on DILS algorithm can be divided 
into several major steps that are summarized in Fig. 2, which 
are the stereo matching and layers extraction (Part 1), 
boundaries and edges identification (Part 2), morphological 
process (Part 3) and lastly the layer composition stage (Part 4). 
The inputs to the matching engine are two stereo images in 

Fig. 1. Overview of DLR system

In this stage, raw disparity depth map 
obtained from the stereo matching based 
on left-to-right matching by using block-
based fixed window similarity metric. 
In this case we are using the SAD that 
has been proven to be trade-off between 
reliability and computational cost [6]. 
However, other similarity metric can be 
used as well. Window-based methods 



ISSN: 2180 - 1843     Vol. 4     No. 1     January - June 2012

Disparity Refinement Based on Depth Image Layers Separation for Stereo Matching Algorithms

53

implicitly make the assumption of 
continuity by assuming constant disparity 
for all pixels inside the matching window. 
This assumption is broken at depth 
boundaries where occluded regions lead 
to erroneous matches, resulting in the 
familiar foreground flattening effect. 
Generally, the choice of an appropriate 
window size is a crucial decision. Small 
windows do not capture enough intensity 
variation to give correct results in less-
textured regions. On the other hand, 
large windows tend to blur the depth 
boundaries and do not capture well small 
details and thin objects. This motivates 
the use of adaptive windows [7], shiftable 
window [8],  multiple window [9], 
variable windows [10], bilateral filtering 
[11] and adaptive weights [12]. The 
newly algorithms adopted some of these 
approaches to improve the disparity 
depth map. In spite of its limitation, 
SAD with FW is the most frequently 
used algorithm for real time applications 
due to easy implementation, fast and 
has limited memory requirements. 
Therefore, the fixed window similarity 
stereo matching technique is adequate 
to obtain the estimated depth map. 
This configuration can be adapted for 
computation optimization in real-time 
hardware implementation [4]. 

The disparity computation or 
optimization step aims at finding the best 
disparity assignment that minimizes a 
cost function over the whole stereo pair. 
The relevant approaches are with the 
Graph Cuts [13-14], Belief Propagation 
[15] and Dynamic Programming [16-18]. 
The most common and effective method 
is a simple winner-takes-all (WTA) 
minimum or maximum search over all 
possible disparity levels. The matching 
can be done from right to left and 
vice versa (bidirectional matching), so 
occlusions and uncertain matches can be 
filtered with a left right consistency check 
(LRCC). This means only disparities with 
the same value (within a certain range) for 
both directions are accepted. In this case, 
only a single matching is needed for the 
DLR algorithm. The main reason of this is 

to use the depth layer and edge maps to 
remove the uncertain matches.

In the second stage, the disparity depth 
map will be separated into a number of 
layers based on the disparity range of the 
stereo pair. The disparity depth map can 
be improved with the same techniques 
such as sub-pixel interpolation  [2], 
image filtering techniques, Bidirectional 
Matching [3] and Single Matching Phase 
[4]. Even though these algorithms provide 
exceptional accurate disparity depth map, 
it also required extra iterations to compute 
the mismatch between the uncertain 
pixels in the Bidirectional Matching and 
computational complexity within some of 
the proposed technique for real-time and 
practical implementation. The proposed 
disparity refinement developed through 
the layer extraction and separation process 
implemented using DILS algorithm. A 
new approach to refine the disparity 
image map is presented in this stage with 
boundaries identification, morphological 
and composition process, which are the 
DLR components. The layers mapped 
and adaptively fused with a reference 
image to identify the edge, border, 
depth discontinuities, uniform areas and 
repetitive patterns. The description on 
the disparity refinement module will be 
described in the next section.

III.	 DISPARITY LAYER 
REFINEMENT ALGORITHM

This section described the proposed 
algorithm of disparity layer refinement 
module. The overall algorithm for 
disparity refinement of DLR based on 
DILS algorithm can be divided into 
several major steps that are summarized 
in Fig. 2, which are the stereo matching 
and layers extraction (Part 1), boundaries 
and edges identification (Part 2), 
morphological process (Part 3) and lastly 
the layer composition stage (Part 4). The 
inputs to the matching engine are two 
stereo images in epipolar geometry.  
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The first processing step is the stereo 
matching and layer extraction as 
described in Section III.A. We calculate 
an initial disparity map using a fixed 
window-based correlation technique. 
The DILS algorithms will separate the 
disparity depth map into several numbers 
of layers depending on the complexity 
of the image pairs. The disparity levels 
and layers can be determined with the 
histogram distribution, which has been 
described in the DILS algorithm. The 
number of layers symbolized with i, from 
1 to maximum D. 

epipolar geometry.   
The first processing step is the stereo matching and layer 

extraction as described in Section III.A. We calculate an initial 
disparity map using a fixed window-based correlation 
technique. The DILS algorithms will separate the disparity 
depth map into several numbers of layers depending on the 
complexity of the image pairs. The disparity levels and layers 
can be determined with the histogram distribution, which has 
been described in the DILS algorithm. The number of layers 
symbolized with i, from 1 to maximum D.

Fig. 2: Block diagram of the proposed algorithm on disparity refinement 
based on DIL 

Since the discontinuities in the disparity map are usually 
reflected by discontinuities in the edge and color information, 
the borders of the segmented regions can be considered as a 
set of candidates for the boundaries of the disparity layers that 
we aim to compute and refine. With the layers has been 
identified, the left image is selected as the reference image. 
This image will undergo the edge detection and color 
segmentation process to obtain the edge and borders in the 
reference image. From this stage, the new edge map obtained 
as the reference image mask to create the edge boundaries of 
the layers. This process is explained in more detail in Section 
III.B through boundaries and edge detection stage.  

In the next step (Section III.C), we create an initial 
representation for each extracted layer by separating the 
disparity depth obtained from the DILS in Part 1. The 
computed layer in the Part 3 obtained by fusing the disparity 
layer and edge map from Part 1 and 2 respectively. The 
mapping process of the layer and edge map created a new 
binary image mask layer that will be processed with the 
morphological operation. Each disparity depth map refined 
individually through layers separation and mapping process. 
As described in the previous section, the disparity depth map 
obtained based on left-to-right matching. The raw disparity 
depth map consists with the false matches and is not address 
any occlusion presence. Through individual layer refinement 
process, the noise, false matches can be removed without 
degrading the discontinuities in the edge map. 

The last block in the DLR module is the layer composition, 
which explained in Section III.D. During this stage, the final 
disparity map composed by the extracted refined layers from 
the Part 2 and 3. The top layer is the object that closest to the 
camera view. It next layer under is the layer identified by the 
disparity range in the DILS algorithm. All the layers combined 
as a single disparity depth map. The cracks and holes 
corrected with the hole filling techniques. 

A. Stereo Matching and Layers Extraction 
The stereo matching and layers extraction are based on the 

left-to-right image matching. For this implementation, the 
matching cost computation use the basic similarity metric, 
SAD as conventional approach for many stereo matching 
algorithms. As described earlier, any similarity metric and 
approaches can be selected to enhance the accuracy and 
reliability of the disparity map obtained from this process. The 
main idea for this implementation is to show that by using a 
basic similarity metric, the disparity map can be improved 
significantly by using DLR algorithm. The matching process 
calculated by the Eq. (1) in the following, 
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The cost aggregation is done by summing matching cost 
over fixed square windows searching with constant disparity. 
The accuracy of the depth map can be increased with bigger 
window size. However, there is the trade-off between the 
accuracy and the depth discontinuities of the objects. Many 
methods have been proposed to improve the disparity map 
with efficient and robust approach within the cost aggregation. 
As observed by Kanade and Okutomi [7], the correlation 
window covers a region with non-constant disparity is not 
performed well and the error in the depth discontinuities 
grows with the window size. Reducing the window size makes 
the computed disparity more noise-sensitive. To overcome this 
problem, Kanade proposed an adaptive window, which can 
statistically select at each pixel that minimizes the uncertainty 
in the disparity estimation. This approach has been improved 
by Fusiello [19] with the symmetric multi-window to provide 
efficient and robust disparity estimation in the present of 
occlusions. Although the presented cost aggregation by [7, 19-
20] performed very well by improving the disparity map, the 
fixed square window sufficient for basic area-based stereo 
matching. This will provide faster implementation and low 
complexity. Furthermore, the configuration of the fixed square 
window can be adapted for computation optimization in the 
hardware parallel implementation that has been proposed by 
Stefano [4].   

The raw disparity map can be visualized by selecting the 
minimal aggregated value at each pixel. For applications such 
as robotic navigation or people tracking, the disparity map 
obtained from this stage may be perfectly adequate. However 
for image-based rendering, the raw disparity maps lead to 
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Since the discontinuities in the 
disparity map are usually reflected 
by discontinuities in the edge and 
color information, the borders of the 
segmented regions can be considered as a 
set of candidates for the boundaries of the 
disparity layers that we aim to compute 
and refine. With the layers has been 
identified, the left image is selected as the 
reference image. This image will undergo 
the edge detection and color segmentation 
process to obtain the edge and borders in 
the reference image. From this stage, the 
new edge map obtained as the reference 
image mask to create the edge boundaries 
of the layers. This process is explained 
in more detail in Section III.B through 
boundaries and edge detection stage. 

In the next step (Section III.C), we create 
an initial representation for each extracted 
layer by separating the disparity depth 
obtained from the DILS in Part 1. The 
computed layer in the Part 3 obtained 
by fusing the disparity layer and edge 
map from Part 1 and 2 respectively. The 
mapping process of the layer and edge 
map created a new binary image mask 
layer that will be processed with the 

morphological operation. Each disparity 
depth map refined individually through 
layers separation and mapping process. 
As described in the previous section, the 
disparity depth map obtained based on 
left-to-right matching. The raw disparity 
depth map consists with the false matches 
and is not address any occlusion presence. 
Through individual layer refinement 
process, the noise, false matches can 
be removed without degrading the 
discontinuities in the edge map.

The last block in the DLR module is the 
layer composition, which explained in 
Section III.D. During this stage, the final 
disparity map composed by the extracted 
refined layers from the Part 2 and 3. The 
top layer is the object that closest to the 
camera view. It next layer under is the 
layer identified by the disparity range 
in the DILS algorithm. All the layers 
combined as a single disparity depth 
map. The cracks and holes corrected with 
the hole filling techniques.
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similarity metric and approaches can 
be selected to enhance the accuracy and 
reliability of the disparity map obtained 
from this process. The main idea for this 
implementation is to show that by using a 
basic similarity metric, the disparity map 
can be improved significantly by using 
DLR algorithm. The matching process 
calculated by the Eq. (1) in the following,
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disparity map using a fixed window-based correlation 
technique. The DILS algorithms will separate the disparity 
depth map into several numbers of layers depending on the 
complexity of the image pairs. The disparity levels and layers 
can be determined with the histogram distribution, which has 
been described in the DILS algorithm. The number of layers 
symbolized with i, from 1 to maximum D.
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Since the discontinuities in the disparity map are usually 
reflected by discontinuities in the edge and color information, 
the borders of the segmented regions can be considered as a 
set of candidates for the boundaries of the disparity layers that 
we aim to compute and refine. With the layers has been 
identified, the left image is selected as the reference image. 
This image will undergo the edge detection and color 
segmentation process to obtain the edge and borders in the 
reference image. From this stage, the new edge map obtained 
as the reference image mask to create the edge boundaries of 
the layers. This process is explained in more detail in Section 
III.B through boundaries and edge detection stage.  

In the next step (Section III.C), we create an initial 
representation for each extracted layer by separating the 
disparity depth obtained from the DILS in Part 1. The 
computed layer in the Part 3 obtained by fusing the disparity 
layer and edge map from Part 1 and 2 respectively. The 
mapping process of the layer and edge map created a new 
binary image mask layer that will be processed with the 
morphological operation. Each disparity depth map refined 
individually through layers separation and mapping process. 
As described in the previous section, the disparity depth map 
obtained based on left-to-right matching. The raw disparity 
depth map consists with the false matches and is not address 
any occlusion presence. Through individual layer refinement 
process, the noise, false matches can be removed without 
degrading the discontinuities in the edge map. 

The last block in the DLR module is the layer composition, 
which explained in Section III.D. During this stage, the final 
disparity map composed by the extracted refined layers from 
the Part 2 and 3. The top layer is the object that closest to the 
camera view. It next layer under is the layer identified by the 
disparity range in the DILS algorithm. All the layers combined 
as a single disparity depth map. The cracks and holes 
corrected with the hole filling techniques. 

A. Stereo Matching and Layers Extraction 
The stereo matching and layers extraction are based on the 

left-to-right image matching. For this implementation, the 
matching cost computation use the basic similarity metric, 
SAD as conventional approach for many stereo matching 
algorithms. As described earlier, any similarity metric and 
approaches can be selected to enhance the accuracy and 
reliability of the disparity map obtained from this process. The 
main idea for this implementation is to show that by using a 
basic similarity metric, the disparity map can be improved 
significantly by using DLR algorithm. The matching process 
calculated by the Eq. (1) in the following, 
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where IR(x,y) and IT(x,y) are the gray-level intensities of the 
reference (left) and target (right) image respectively, window 
size of nxn, and d is the disparity. The disparity value at (x,y),
d(x,y) is the point where the correlation value of SAD is the 
smallest. Therefore, the disparity value is as follows, 
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The cost aggregation is done by summing matching cost 
over fixed square windows searching with constant disparity. 
The accuracy of the depth map can be increased with bigger 
window size. However, there is the trade-off between the 
accuracy and the depth discontinuities of the objects. Many 
methods have been proposed to improve the disparity map 
with efficient and robust approach within the cost aggregation. 
As observed by Kanade and Okutomi [7], the correlation 
window covers a region with non-constant disparity is not 
performed well and the error in the depth discontinuities 
grows with the window size. Reducing the window size makes 
the computed disparity more noise-sensitive. To overcome this 
problem, Kanade proposed an adaptive window, which can 
statistically select at each pixel that minimizes the uncertainty 
in the disparity estimation. This approach has been improved 
by Fusiello [19] with the symmetric multi-window to provide 
efficient and robust disparity estimation in the present of 
occlusions. Although the presented cost aggregation by [7, 19-
20] performed very well by improving the disparity map, the 
fixed square window sufficient for basic area-based stereo 
matching. This will provide faster implementation and low 
complexity. Furthermore, the configuration of the fixed square 
window can be adapted for computation optimization in the 
hardware parallel implementation that has been proposed by 
Stefano [4].   

The raw disparity map can be visualized by selecting the 
minimal aggregated value at each pixel. For applications such 
as robotic navigation or people tracking, the disparity map 
obtained from this stage may be perfectly adequate. However 
for image-based rendering, the raw disparity maps lead to 

    (1)

where IR(x,y) and IT(x,y) are the gray-
level intensities of the reference (left) and 
target (right) image respectively, window 
size of nxn, and d is the disparity. The 
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disparity value at (x,y), d(x,y) is the point 
where the correlation value of SAD is the 
smallest. Therefore, the disparity value is 
as follows,

epipolar geometry.   
The first processing step is the stereo matching and layer 

extraction as described in Section III.A. We calculate an initial 
disparity map using a fixed window-based correlation 
technique. The DILS algorithms will separate the disparity 
depth map into several numbers of layers depending on the 
complexity of the image pairs. The disparity levels and layers 
can be determined with the histogram distribution, which has 
been described in the DILS algorithm. The number of layers 
symbolized with i, from 1 to maximum D.

Fig. 2: Block diagram of the proposed algorithm on disparity refinement 
based on DIL 

Since the discontinuities in the disparity map are usually 
reflected by discontinuities in the edge and color information, 
the borders of the segmented regions can be considered as a 
set of candidates for the boundaries of the disparity layers that 
we aim to compute and refine. With the layers has been 
identified, the left image is selected as the reference image. 
This image will undergo the edge detection and color 
segmentation process to obtain the edge and borders in the 
reference image. From this stage, the new edge map obtained 
as the reference image mask to create the edge boundaries of 
the layers. This process is explained in more detail in Section 
III.B through boundaries and edge detection stage.  

In the next step (Section III.C), we create an initial 
representation for each extracted layer by separating the 
disparity depth obtained from the DILS in Part 1. The 
computed layer in the Part 3 obtained by fusing the disparity 
layer and edge map from Part 1 and 2 respectively. The 
mapping process of the layer and edge map created a new 
binary image mask layer that will be processed with the 
morphological operation. Each disparity depth map refined 
individually through layers separation and mapping process. 
As described in the previous section, the disparity depth map 
obtained based on left-to-right matching. The raw disparity 
depth map consists with the false matches and is not address 
any occlusion presence. Through individual layer refinement 
process, the noise, false matches can be removed without 
degrading the discontinuities in the edge map. 

The last block in the DLR module is the layer composition, 
which explained in Section III.D. During this stage, the final 
disparity map composed by the extracted refined layers from 
the Part 2 and 3. The top layer is the object that closest to the 
camera view. It next layer under is the layer identified by the 
disparity range in the DILS algorithm. All the layers combined 
as a single disparity depth map. The cracks and holes 
corrected with the hole filling techniques. 

A. Stereo Matching and Layers Extraction 
The stereo matching and layers extraction are based on the 

left-to-right image matching. For this implementation, the 
matching cost computation use the basic similarity metric, 
SAD as conventional approach for many stereo matching 
algorithms. As described earlier, any similarity metric and 
approaches can be selected to enhance the accuracy and 
reliability of the disparity map obtained from this process. The 
main idea for this implementation is to show that by using a 
basic similarity metric, the disparity map can be improved 
significantly by using DLR algorithm. The matching process 
calculated by the Eq. (1) in the following, 
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where IR(x,y) and IT(x,y) are the gray-level intensities of the 
reference (left) and target (right) image respectively, window 
size of nxn, and d is the disparity. The disparity value at (x,y),
d(x,y) is the point where the correlation value of SAD is the 
smallest. Therefore, the disparity value is as follows, 
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The cost aggregation is done by summing matching cost 
over fixed square windows searching with constant disparity. 
The accuracy of the depth map can be increased with bigger 
window size. However, there is the trade-off between the 
accuracy and the depth discontinuities of the objects. Many 
methods have been proposed to improve the disparity map 
with efficient and robust approach within the cost aggregation. 
As observed by Kanade and Okutomi [7], the correlation 
window covers a region with non-constant disparity is not 
performed well and the error in the depth discontinuities 
grows with the window size. Reducing the window size makes 
the computed disparity more noise-sensitive. To overcome this 
problem, Kanade proposed an adaptive window, which can 
statistically select at each pixel that minimizes the uncertainty 
in the disparity estimation. This approach has been improved 
by Fusiello [19] with the symmetric multi-window to provide 
efficient and robust disparity estimation in the present of 
occlusions. Although the presented cost aggregation by [7, 19-
20] performed very well by improving the disparity map, the 
fixed square window sufficient for basic area-based stereo 
matching. This will provide faster implementation and low 
complexity. Furthermore, the configuration of the fixed square 
window can be adapted for computation optimization in the 
hardware parallel implementation that has been proposed by 
Stefano [4].   

The raw disparity map can be visualized by selecting the 
minimal aggregated value at each pixel. For applications such 
as robotic navigation or people tracking, the disparity map 
obtained from this stage may be perfectly adequate. However 
for image-based rendering, the raw disparity maps lead to 
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searching with constant disparity. 
The accuracy of the depth map can be 
increased with bigger window size. 
However, there is the trade-off between 
the accuracy and the depth discontinuities 
of the objects. Many methods have 
been proposed to improve the disparity 
map with efficient and robust approach 
within the cost aggregation. As 
observed by Kanade and Okutomi [7], 
the correlation window covers a region 
with non-constant disparity is not 
performed well and the error in the depth 
discontinuities grows with the window 
size. Reducing the window size makes 
the computed disparity more noise-
sensitive. To overcome this problem, 
Kanade proposed an adaptive window, 
which can statistically select at each 
pixel that minimizes the uncertainty in 
the disparity estimation. This approach 
has been improved by Fusiello [19] with 
the symmetric multi-window to provide 
efficient and robust disparity estimation 
in the present of occlusions. Although 
the presented cost aggregation by [7, 19-
20] performed very well by improving 
the disparity map, the fixed square 
window sufficient for basic area-based 
stereo matching. This will provide faster 
implementation and low complexity. 
Furthermore, the configuration of the 
fixed square window can be adapted 
for computation optimization in the 
hardware parallel implementation that 
has been proposed by Stefano [4].  

The raw disparity map can be visualized 
by selecting the minimal aggregated value 
at each pixel. For applications such as 
robotic navigation or people tracking, the 
disparity map obtained from this stage 
may be perfectly adequate. However for 

image-based rendering, the raw disparity 
maps lead to errors and unappealing 
view synthesis results. To enhance the 
performance for DILS algorithm, the raw 
disparity map filtered with a median filter, 
which can clean up mismatches, holes 
and noises. In our implementation, we are 
not performing bidirectional matching 
to calculate the occlusion since we want 
to measure the performance of the DILS 
and DLR algorithm components. Within 
this stage, we obtained two main results 
that are the raw disparity depth map and 
the layers of the disparity depth (from 
the DILS algorithm). The layer of depth 
can be easily identified with the number 
of matched pixels, p quantized as the 
following equation, 
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where T is the threshold to set the minimum number of pixels 
to be selected as the matched corresponding points for the 
stereo pair. 

B. Boundaries and Edge Detection 
In the second part, the boundaries and edges of the 

reference (left) image will be identified. By assuming that for 
regions of homogeneous colour, the disparity varies smoothly 
and the depth discontinuities coincide with the boundaries of 
those regions, which hold true for most natural scene as 
described by Bleyer [21]. This assumption is incorporated by 
applying colour segmentation to the reference image and by 
using a disparity layer to represent the disparity inside the new 
layer segments. In addition to the colour segmentation, the 
reference image derived the edge boundaries based on the 
edge detection algorithms. In theory, any algorithm that able 
to identify sharp edges and discontinuities in the edge 
detection can be used for the proposed boundaries and edge 
identification stage. Also, any algorithm that divides the 
reference image into regions of homogeneous colour can be 
used for this stage. In our implementation, we used mean-shift 
segmentation algorithm proposed by Comaniciu [22] and 
incorporates edge information by using Canny edge detection 
algorithm.  

Edge detection refers to the process of identifying and 
locating sharp discontinuities in an image. The discontinuities 
are abrupt changes in pixel intensity, which characterize 
boundaries of objects in a scene. Classical methods of edge 
detection involve convolving the image with an operator of 2-
D filter, which is constructed, to be sensitive to large gradients 
in the image while returning values of zero in uniform regions. 
There are an extremely large number of edge detection 
operators available, each designed to be sensitive to certain 
types of edges. Variables involved in the selection of an edge 
detection operator include orientation, noise environment and 
structure. In edge orientation, the geometry of the operator 
determines a characteristic direction in which it is most 
sensitive to edges. Operators can be optimized to look for 
horizontal, vertical, or diagonal edges. 

Edge detection is difficult in noisy images, since both the 
noise and the edges contain high-frequency content. Attempts 

to reduce the noise result in blurred and distorted edges. 
Operators used on noisy images are typically larger in scope, 
so they can average enough data to discount localized noisy 
pixels. This resulted less accurate localization of the detected 
edges. In the edge structure, not all edges involve a step 
change in intensity. Effects such as refraction or poor focus 
can result in objects with boundaries defined by a gradual 
change in intensity. The operator needs to be chosen to be 
responsive to such a gradual change in those cases.  

The Canny edge detection algorithm is known as the 
optimal edge detector. It is important that edges occurring in 
images should not be missed and that there be no responses to 
non-edges. The second criterion is that the edge points be well 
localized. In other words, the distance between the edge pixels 
as found by the detector and the actual edge is to be at a 
minimum. A third criterion is to have only one response to a 
single edge. This was implemented because the first 2 were 
not substantial enough to completely eliminate the possibility 
of multiple responses to an edge.  

Based on these criteria, the canny edge detector first 
smoothes the image to eliminate and noise. It then finds the 
image gradient to highlight regions with high spatial 
derivatives. The algorithm then tracks along these regions and 
suppresses any pixel that is not at the maximum (non-
maximum suppression). The gradient array is now further 
reduced by hysteresis. Hysteresis is used to track along the 
remaining pixels that have not been suppressed. Hysteresis 
uses two thresholds and if the magnitude is below the first 
threshold, it is set to zero (made a non-edge). If the magnitude 
is above the high threshold, it is made an edge. And if the 
magnitude is between the 2 thresholds, then it is set to zero 
unless there is a path from this pixel to a pixel with a gradient 
above threshold. Therefore, the Canny edge detection is used 
along with the colour mean-shift segmentation. 

The algorithm outline for Part 1 and 2 can be summarized in 
Fig. 3, where the results of stereo matching and layer 
extraction in Part 1 and the edge map image obtained in Part 2 
used in the next in Part 3, which is the morphological process. 
The new segmented and edge map image defined as IS. The 
segmented image IS will be mapped and fused together with 
the layer i. The fusion process of the disparity depth layer and 
edge map image is described in the next section. 
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 In the second part, the boundaries and 
edges of the reference (left) image will be 
identified. By assuming that for regions of 
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smoothly and the depth discontinuities 
coincide with the boundaries of those 
regions, which hold true for most natural 
scene as described by Bleyer [21]. This 
assumption is incorporated by applying 
colour segmentation to the reference 
image and by using a disparity layer 
to represent the disparity inside the 
new layer segments. In addition to the 
colour segmentation, the reference image 
derived the edge boundaries based on the 
edge detection algorithms. In theory, any 
algorithm that able to identify sharp edges 
and discontinuities in the edge detection 
can be used for the proposed boundaries 
and edge identification stage. Also, any 
algorithm that divides the reference 
image into regions of homogeneous 
colour can be used for this stage. In 
our implementation, we used mean-
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shift segmentation algorithm proposed 
by Comaniciu [22] and incorporates 
edge information by using Canny edge 
detection algorithm. 

Edge detection refers to the process 
of identifying and locating sharp 
discontinuities in an image. The 
discontinuities are abrupt changes in pixel 
intensity, which characterize boundaries 
of objects in a scene. Classical methods 
of edge detection involve convolving the 
image with an operator of 2-D filter, which 
is constructed, to be sensitive to large 
gradients in the image while returning 
values of zero in uniform regions. 
There are an extremely large number 
of edge detection operators available, 
each designed to be sensitive to certain 
types of edges. Variables involved in the 
selection of an edge detection operator 
include orientation, noise environment 
and structure. In edge orientation, the 
geometry of the operator determines 
a characteristic direction in which it is 
most sensitive to edges. Operators can be 
optimized to look for horizontal, vertical, 
or diagonal edges.

Edge detection is difficult in noisy images, 
since both the noise and the edges contain 
high-frequency content. Attempts to 
reduce the noise result in blurred and 
distorted edges. Operators used on noisy 
images are typically larger in scope, so 
they can average enough data to discount 
localized noisy pixels. This resulted less 
accurate localization of the detected 
edges. In the edge structure, not all edges 
involve a step change in intensity. Effects 
such as refraction or poor focus can result 
in objects with boundaries defined by a 
gradual change in intensity. The operator 
needs to be chosen to be responsive to 
such a gradual change in those cases. 

The Canny edge detection algorithm is 
known as the optimal edge detector. It is 
important that edges occurring in images 
should not be missed and that there be 
no responses to non-edges. The second 
criterion is that the edge points be well 
localized. In other words, the distance 

between the edge pixels as found by the 
detector and the actual edge is to be at 
a minimum. A third criterion is to have 
only one response to a single edge. This 
was implemented because the first 2 were 
not substantial enough to completely 
eliminate the possibility of multiple 
responses to an edge. 

Based on these criteria, the canny edge 
detector first smoothes the image to 
eliminate and noise. It then finds the 
image gradient to highlight regions with 
high spatial derivatives. The algorithm 
then tracks along these regions and 
suppresses any pixel that is not at the 
maximum (non-maximum suppression). 
The gradient array is now further 
reduced by hysteresis. Hysteresis is used 
to track along the remaining pixels that 
have not been suppressed. Hysteresis 
uses two thresholds and if the magnitude 
is below the first threshold, it is set to zero 
(made a non-edge). If the magnitude is 
above the high threshold, it is made an 
edge. And if the magnitude is between 
the 2 thresholds, then it is set to zero 
unless there is a path from this pixel to 
a pixel with a gradient above threshold. 
Therefore, the Canny edge detection is 
used along with the colour mean-shift 
segmentation.

The algorithm outline for Part 1 and 2 can 
be summarized in Fig. 3, where the results 
of stereo matching and layer extraction in 
Part 1 and the edge map image obtained 
in Part 2 used in the next in Part 3, which 
is the morphological process. The new 
segmented and edge map image defined 
as IS. The segmented image IS will be 
mapped and fused together with the layer 
i. The fusion process of the disparity depth 
layer and edge map image is described in 
the next section.
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Fig. 3: Part 1 and 2 blocks for the DLR that consist: a) stereo matching and 
layers extraction, and b) boundaries and edges identification. 

C. Morphological Process 
The disparity depth map can be refined by median filter 

approach, where the outliers and noise can be removed. 
However, some of the noise unable to be removed 
automatically without affecting the whole portion of the 
disparity depth map obtained from the stereo matching 
algorithms. With disparity layer separation, particular noise 
can be easily removed while maintaining the quality some of 
the disparity layers. The accuracy of the disparity depth map 
can be enhanced with each layers processed with 
morphological process.  

Fig. 4: Part 3 block of the DLR algorithm, morphological process 

Fig. 4 shows the block diagram of the DLR algorithm in the 
Part 3 which taking the input of edge map image and layer i
(separated by DILS algorithm). The combination of the input 
created the binary object map that holds the boundary of the 
edge layers. Each layers will be mapped on the same 
segmented edge map image IS. Any edges and borders of the 
objects mapped and crossed with the same region on the layer 
i remained in the image, while the remaining will be removed. 
The new-segmented image now fused with the same region of 
layer i. The edge on the segmented image will now create a 
cross path along the layer i. The cross path is defined the new 
boundary notated as br and illustrated in Fig. 5(a), with the 
disparity depth map in Fig. 5(b). 

(a) Cross path defined by the 
boundary 

(b) Sample of disparity depth map 

Fig. 5: Sample of boundary path for layer I and the disparity depth map 

The pixels in the object map will be corrected by removing 
unwanted pixels. The technique used in this block is based on 
erosion process combined with the algorithm proposed by 
Fergusson [23]. After that, the object map pixel of the layer 
connected with convex hull, which creates the closed-loop 
boundary region. The boundary region will be filled to 
produce the binary object map image. 

During this stage, two regions of the disparity layer i can be 
distinguished based on the boundary created, which are the 
inner region and outer region. The inner region is the disparity 
depth map that contained inside the boundary. Any zero pixels 
on this region will be filled with the same value of layer i. The 
inner region is dilated till the boundary that sets as the 
threshold.  Meanwhile, the outer region is for the disparity 
depth map that beyond the boundary edge of the segmented 
image. Any outer region of the disparity map will be 
eliminated. With this, the new disparity layer i created 
adaptively based on the boundary of object from the 
segmented reference image. This approach addresses the 
disparity depth discontinuities problems and able to detects the 
uniform areas and repetitive patterns on the stereo pairs. The 
process can be illustrated in Fig. 6. The sample of output from 
the layer i and edge map image combination is shown in Fig. 
7(a). The object mask layer i processed in the morphological 
stage that finally produced the new binary object mask layer I
(Fig. 7(b)). This process iterated for all the layers of the 
disparity depth map before the layers can be composed as a 
single refined disparity depth map. 

Fig. 6: Mapping and diffusing for layer i with the border set by the 
segmented reference image. 

(a) Object mask layer i (b) New object mask layer i

Fig. 3: Part 1 and 2 blocks for the DLR 
that consist: a) stereo matching and layers 
extraction, and b) boundaries and edges 

identification.

C.	M orphological Process

The disparity depth map can be refined 
by median filter approach, where the 
outliers and noise can be removed. 
However, some of the noise unable to be 
removed automatically without affecting 
the whole portion of the disparity 
depth map obtained from the stereo 
matching algorithms. With disparity 
layer separation, particular noise can be 
easily removed while maintaining the 
quality some of the disparity layers. The 
accuracy of the disparity depth map can 
be enhanced with each layers processed 
with morphological process. 
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automatically without affecting the whole portion of the 
disparity depth map obtained from the stereo matching 
algorithms. With disparity layer separation, particular noise 
can be easily removed while maintaining the quality some of 
the disparity layers. The accuracy of the disparity depth map 
can be enhanced with each layers processed with 
morphological process.  

Fig. 4: Part 3 block of the DLR algorithm, morphological process 

Fig. 4 shows the block diagram of the DLR algorithm in the 
Part 3 which taking the input of edge map image and layer i
(separated by DILS algorithm). The combination of the input 
created the binary object map that holds the boundary of the 
edge layers. Each layers will be mapped on the same 
segmented edge map image IS. Any edges and borders of the 
objects mapped and crossed with the same region on the layer 
i remained in the image, while the remaining will be removed. 
The new-segmented image now fused with the same region of 
layer i. The edge on the segmented image will now create a 
cross path along the layer i. The cross path is defined the new 
boundary notated as br and illustrated in Fig. 5(a), with the 
disparity depth map in Fig. 5(b). 
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Fig. 5: Sample of boundary path for layer I and the disparity depth map 

The pixels in the object map will be corrected by removing 
unwanted pixels. The technique used in this block is based on 
erosion process combined with the algorithm proposed by 
Fergusson [23]. After that, the object map pixel of the layer 
connected with convex hull, which creates the closed-loop 
boundary region. The boundary region will be filled to 
produce the binary object map image. 

During this stage, two regions of the disparity layer i can be 
distinguished based on the boundary created, which are the 
inner region and outer region. The inner region is the disparity 
depth map that contained inside the boundary. Any zero pixels 
on this region will be filled with the same value of layer i. The 
inner region is dilated till the boundary that sets as the 
threshold.  Meanwhile, the outer region is for the disparity 
depth map that beyond the boundary edge of the segmented 
image. Any outer region of the disparity map will be 
eliminated. With this, the new disparity layer i created 
adaptively based on the boundary of object from the 
segmented reference image. This approach addresses the 
disparity depth discontinuities problems and able to detects the 
uniform areas and repetitive patterns on the stereo pairs. The 
process can be illustrated in Fig. 6. The sample of output from 
the layer i and edge map image combination is shown in Fig. 
7(a). The object mask layer i processed in the morphological 
stage that finally produced the new binary object mask layer I
(Fig. 7(b)). This process iterated for all the layers of the 
disparity depth map before the layers can be composed as a 
single refined disparity depth map. 

Fig. 6: Mapping and diffusing for layer i with the border set by the 
segmented reference image. 

(a) Object mask layer i (b) New object mask layer i

Fig. 4: Part 3 block of the DLR algorithm, 
morphological process

Fig. 4 shows the block diagram of the 
DLR algorithm in the Part 3 which taking 
the input of edge map image and layer 
i (separated by DILS algorithm). The 
combination of the input created the 
binary object map that holds the boundary 
of the edge layers. Each layers will be 
mapped on the same segmented edge 

map image IS. Any edges and borders 
of the objects mapped and crossed with 
the same region on the layer i remained 
in the image, while the remaining will be 
removed. The new-segmented image now 
fused with the same region of layer i. The 
edge on the segmented image will now 
create a cross path along the layer i. The 
cross path is defined the new boundary 
notated as br and illustrated in Fig. 5(a), 
with the disparity depth map in Fig. 5(b).

Fig. 3: Part 1 and 2 blocks for the DLR that consist: a) stereo matching and 
layers extraction, and b) boundaries and edges identification. 

C. Morphological Process 
The disparity depth map can be refined by median filter 

approach, where the outliers and noise can be removed. 
However, some of the noise unable to be removed 
automatically without affecting the whole portion of the 
disparity depth map obtained from the stereo matching 
algorithms. With disparity layer separation, particular noise 
can be easily removed while maintaining the quality some of 
the disparity layers. The accuracy of the disparity depth map 
can be enhanced with each layers processed with 
morphological process.  
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Fig. 4 shows the block diagram of the DLR algorithm in the 
Part 3 which taking the input of edge map image and layer i
(separated by DILS algorithm). The combination of the input 
created the binary object map that holds the boundary of the 
edge layers. Each layers will be mapped on the same 
segmented edge map image IS. Any edges and borders of the 
objects mapped and crossed with the same region on the layer 
i remained in the image, while the remaining will be removed. 
The new-segmented image now fused with the same region of 
layer i. The edge on the segmented image will now create a 
cross path along the layer i. The cross path is defined the new 
boundary notated as br and illustrated in Fig. 5(a), with the 
disparity depth map in Fig. 5(b). 

(a) Cross path defined by the 
boundary 
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Fig. 5: Sample of boundary path for layer I and the disparity depth map 

The pixels in the object map will be corrected by removing 
unwanted pixels. The technique used in this block is based on 
erosion process combined with the algorithm proposed by 
Fergusson [23]. After that, the object map pixel of the layer 
connected with convex hull, which creates the closed-loop 
boundary region. The boundary region will be filled to 
produce the binary object map image. 

During this stage, two regions of the disparity layer i can be 
distinguished based on the boundary created, which are the 
inner region and outer region. The inner region is the disparity 
depth map that contained inside the boundary. Any zero pixels 
on this region will be filled with the same value of layer i. The 
inner region is dilated till the boundary that sets as the 
threshold.  Meanwhile, the outer region is for the disparity 
depth map that beyond the boundary edge of the segmented 
image. Any outer region of the disparity map will be 
eliminated. With this, the new disparity layer i created 
adaptively based on the boundary of object from the 
segmented reference image. This approach addresses the 
disparity depth discontinuities problems and able to detects the 
uniform areas and repetitive patterns on the stereo pairs. The 
process can be illustrated in Fig. 6. The sample of output from 
the layer i and edge map image combination is shown in Fig. 
7(a). The object mask layer i processed in the morphological 
stage that finally produced the new binary object mask layer I
(Fig. 7(b)). This process iterated for all the layers of the 
disparity depth map before the layers can be composed as a 
single refined disparity depth map. 

Fig. 6: Mapping and diffusing for layer i with the border set by the 
segmented reference image. 

(a) Object mask layer i (b) New object mask layer i

Fig. 5: Sample of boundary path for layer I 
and the disparity depth map

The pixels in the object map will be 
corrected by removing unwanted pixels. 
The technique used in this block is based 
on erosion process combined with the 
algorithm proposed by Fergusson [23]. 
After that, the object map pixel of the 
layer connected with convex hull, which 
creates the closed-loop boundary region. 
The boundary region will be filled to 
produce the binary object map image.

During this stage, two regions of the 
disparity layer i can be distinguished 
based on the boundary created, which 
are the inner region and outer region. 
The inner region is the disparity depth 
map that contained inside the boundary. 
Any zero pixels on this region will be 
filled with the same value of layer i. The 
inner region is dilated till the boundary 
that sets as the threshold.  Meanwhile, 
the outer region is for the disparity depth 
map that beyond the boundary edge of 
the segmented image. Any outer region 
of the disparity map will be eliminated. 
With this, the new disparity layer i 
created adaptively based on the boundary 
of object from the segmented reference 
image. This approach addresses the 
disparity depth discontinuities problems 
and able to detects the uniform areas and 
repetitive patterns on the stereo pairs. 
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The process can be illustrated in Fig. 6. 
The sample of output from the layer i and 
edge map image combination is shown in 
Fig. 7(a). The object mask layer i processed 
in the morphological stage that finally 
produced the new binary object mask 
layer I (Fig. 7(b)). This process iterated for 
all the layers of the disparity depth map 
before the layers can be composed as a 
single refined disparity depth map.

Fig. 3: Part 1 and 2 blocks for the DLR that consist: a) stereo matching and 
layers extraction, and b) boundaries and edges identification. 

C. Morphological Process 
The disparity depth map can be refined by median filter 

approach, where the outliers and noise can be removed. 
However, some of the noise unable to be removed 
automatically without affecting the whole portion of the 
disparity depth map obtained from the stereo matching 
algorithms. With disparity layer separation, particular noise 
can be easily removed while maintaining the quality some of 
the disparity layers. The accuracy of the disparity depth map 
can be enhanced with each layers processed with 
morphological process.  

Fig. 4: Part 3 block of the DLR algorithm, morphological process 

Fig. 4 shows the block diagram of the DLR algorithm in the 
Part 3 which taking the input of edge map image and layer i
(separated by DILS algorithm). The combination of the input 
created the binary object map that holds the boundary of the 
edge layers. Each layers will be mapped on the same 
segmented edge map image IS. Any edges and borders of the 
objects mapped and crossed with the same region on the layer 
i remained in the image, while the remaining will be removed. 
The new-segmented image now fused with the same region of 
layer i. The edge on the segmented image will now create a 
cross path along the layer i. The cross path is defined the new 
boundary notated as br and illustrated in Fig. 5(a), with the 
disparity depth map in Fig. 5(b). 

(a) Cross path defined by the 
boundary 

(b) Sample of disparity depth map 

Fig. 5: Sample of boundary path for layer I and the disparity depth map 

The pixels in the object map will be corrected by removing 
unwanted pixels. The technique used in this block is based on 
erosion process combined with the algorithm proposed by 
Fergusson [23]. After that, the object map pixel of the layer 
connected with convex hull, which creates the closed-loop 
boundary region. The boundary region will be filled to 
produce the binary object map image. 

During this stage, two regions of the disparity layer i can be 
distinguished based on the boundary created, which are the 
inner region and outer region. The inner region is the disparity 
depth map that contained inside the boundary. Any zero pixels 
on this region will be filled with the same value of layer i. The 
inner region is dilated till the boundary that sets as the 
threshold.  Meanwhile, the outer region is for the disparity 
depth map that beyond the boundary edge of the segmented 
image. Any outer region of the disparity map will be 
eliminated. With this, the new disparity layer i created 
adaptively based on the boundary of object from the 
segmented reference image. This approach addresses the 
disparity depth discontinuities problems and able to detects the 
uniform areas and repetitive patterns on the stereo pairs. The 
process can be illustrated in Fig. 6. The sample of output from 
the layer i and edge map image combination is shown in Fig. 
7(a). The object mask layer i processed in the morphological 
stage that finally produced the new binary object mask layer I
(Fig. 7(b)). This process iterated for all the layers of the 
disparity depth map before the layers can be composed as a 
single refined disparity depth map. 

Fig. 6: Mapping and diffusing for layer i with the border set by the 
segmented reference image. 

(a) Object mask layer i (b) New object mask layer i

Fig. 6: Mapping and diffusing for layer i with 
the border set by the segmented reference 

image.
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layers extraction, and b) boundaries and edges identification. 
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Fergusson [23]. After that, the object map pixel of the layer 
connected with convex hull, which creates the closed-loop 
boundary region. The boundary region will be filled to 
produce the binary object map image. 

During this stage, two regions of the disparity layer i can be 
distinguished based on the boundary created, which are the 
inner region and outer region. The inner region is the disparity 
depth map that contained inside the boundary. Any zero pixels 
on this region will be filled with the same value of layer i. The 
inner region is dilated till the boundary that sets as the 
threshold.  Meanwhile, the outer region is for the disparity 
depth map that beyond the boundary edge of the segmented 
image. Any outer region of the disparity map will be 
eliminated. With this, the new disparity layer i created 
adaptively based on the boundary of object from the 
segmented reference image. This approach addresses the 
disparity depth discontinuities problems and able to detects the 
uniform areas and repetitive patterns on the stereo pairs. The 
process can be illustrated in Fig. 6. The sample of output from 
the layer i and edge map image combination is shown in Fig. 
7(a). The object mask layer i processed in the morphological 
stage that finally produced the new binary object mask layer I
(Fig. 7(b)). This process iterated for all the layers of the 
disparity depth map before the layers can be composed as a 
single refined disparity depth map. 
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segmented reference image. 
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Fig. 7: Layer extraction with edge map image. 
(a) Raw object mask layer i; 

(b) Refined layer i through morphological 
process

D.	 Layers Composition

Each layers of disparity depth map 
undergo the same process of mapping 
and fusing (diffusion) with the same 
reference segmented image. After all 
of the layers have been processed, the 
collection of layered disparity depth 
images merges into a new single refined 
disparity depth image. The process of the 
layer composition of the DLR algorithm 
can be summarized in Fig. 8. 

IV.	PE RFORMANCE 
EVALUATION

In order to evaluate the performance of 
a stereo algorithm, a quantitative way 
is needed to estimate the quality of the 
computed correspondences. Two general 
approaches to this are to compute error 

statistics with respect to some ground 
truth data and to evaluate the synthetic 
images obtained by the disparity depth 
map. Two quality measures based on 
known ground truth data provided by the 
Middlebury Vision Page are RMS (root-
mean-squared) error and percentage of 
bad matching pixels. RMS error measured 
in disparity units between the computed 
disparity map dc(x,y) and the ground 
truth map dT(x,y),

Fig. 7: Layer extraction with edge map image. (a) Raw object mask layer i;
(b) Refined layer i through morphological process 

D. Layers Composition 
Each layers of disparity depth map undergo the same 

process of mapping and fusing (diffusion) with the same 
reference segmented image. After all of the layers have been 
processed, the collection of layered disparity depth images 
merges into a new single refined disparity depth image. The 
process of the layer composition of the DLR algorithm can be 
summarized in Fig. 8.  
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quantitative way is needed to estimate the quality of the 
computed correspondences. Two general approaches to this 
are to compute error statistics with respect to some ground 
truth data and to evaluate the synthetic images obtained by the 
disparity depth map. Two quality measures based on known 
ground truth data provided by the Middlebury Vision Page are 
RMS (root-mean-squared) error and percentage of bad 
matching pixels. RMS error measured in disparity units 
between the computed disparity map dc(x,y) and the ground 
truth map dT(x,y),
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where dδ  is a disparity error tolerance. For the experiments 
and evaluations, the disparity error tolerance, dδ   is set 1.0. In 
addition to compute these statistics over the whole image, two 
different kinds of regions are evaluated which are the non-
occluded and depth discontinuities regions. 

Fig. 8: Part 4 block of DLR algorithm, layers composition 

V. RESULTS AND DISCUSSION

The results for the depth refinement algorithms evaluated 
based on the performance evaluation with two approaches. 
The first performance is tested based on different similarity 
metric for the cost aggregation. Although the selected 
similarity metric is SAD, the comparison with different 
approaches will be shown. This includes the selection of 
window size for the correspondence matching. The second 
performance is based on the Middlebury Stereo Evaluation. 
The evaluation platform provides stereo image datasets 
consisting of the stereo image pair and the ground truth image. 
The proposed algorithm evaluated by using the Middlebury 
datasets and compared with results with many others through 
online. The performance evaluation based on this platform 
considered state-of-art for the reliability and constantly 
updated.  

A. Performance Evaluation Based on Different Similarity 
Metric
This section gives a detailed evaluation of the proposed 

algorithm in term of results, quality and processing time. The 
DLR algorithm can be used with any stereo matching 
algorithm since it was developed to refine the raw disparity 
map images (in the post-processing stage). For this case, the 
evaluation has been made with Map (284x216 pixels) and 
Tsukuba (384x288 pixels) image with different similarity 
metric including SAD, SSD, SHD and NCC. The parameter of 
the stereo pair images set to 9x9 window size with maximum 
disparity 30(Map) and 16 (Tsukuba). 

The results of stereo matching for Tsukuba image based on 
different similarity metric are shown in Fig. 9. The raw 
disparities based on the block-based window searching 
contained errors with unmatched pixels especially with the 
similarity metric in SHD. For this sample, the disparity depth 
map has been mapped with colour to show the hotter the 
colour, the closer of the object to the camera. In this case, the 
red colour (the lamp) is the closest object. The output of the 
disparity depth maps can be improved with the post-
processing stage by using a median filter to smooth the result. 
The bidirectional matching can be used to eliminate the 
unmatched pixels, which can produce accurate disparity depth 
map.   

(a) SAD (b) SSD (c) NCC (d) SHD 
Fig. 9: Results of stereo matching based on different similarity metric. 

The size of window for the block-based matching affecting 
the performance as indicated in Fig. 10(a), where the RMS 
errors reduced accordingly when the window size increased 
for the all-pixels evaluation. The non-occlusion pixels errors 
are not affected with different window size as shown in Fig. 
10(b). The errors reduced significantly when the disparity 
depth map filtered (in this case by using 11x11 median filter).  
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addition to compute these statistics over the whole image, two 
different kinds of regions are evaluated which are the non-
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window size for the correspondence matching. The second 
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online. The performance evaluation based on this platform 
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This section gives a detailed evaluation of the proposed 
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map images (in the post-processing stage). For this case, the 
evaluation has been made with Map (284x216 pixels) and 
Tsukuba (384x288 pixels) image with different similarity 
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the stereo pair images set to 9x9 window size with maximum 
disparity 30(Map) and 16 (Tsukuba). 
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different similarity metric are shown in Fig. 9. The raw 
disparities based on the block-based window searching 
contained errors with unmatched pixels especially with the 
similarity metric in SHD. For this sample, the disparity depth 
map has been mapped with colour to show the hotter the 
colour, the closer of the object to the camera. In this case, the 
red colour (the lamp) is the closest object. The output of the 
disparity depth maps can be improved with the post-
processing stage by using a median filter to smooth the result. 
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unmatched pixels, which can produce accurate disparity depth 
map.   
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Fig. 9: Results of stereo matching based on different similarity metric. 
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the performance as indicated in Fig. 10(a), where the RMS 
errors reduced accordingly when the window size increased 
for the all-pixels evaluation. The non-occlusion pixels errors 
are not affected with different window size as shown in Fig. 
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reference segmented image. After all of the layers have been 
processed, the collection of layered disparity depth images 
merges into a new single refined disparity depth image. The 
process of the layer composition of the DLR algorithm can be 
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where dδ  is a disparity error tolerance. For the experiments 
and evaluations, the disparity error tolerance, dδ   is set 1.0. In 
addition to compute these statistics over the whole image, two 
different kinds of regions are evaluated which are the non-
occluded and depth discontinuities regions. 
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V. RESULTS AND DISCUSSION

The results for the depth refinement algorithms evaluated 
based on the performance evaluation with two approaches. 
The first performance is tested based on different similarity 
metric for the cost aggregation. Although the selected 
similarity metric is SAD, the comparison with different 
approaches will be shown. This includes the selection of 
window size for the correspondence matching. The second 
performance is based on the Middlebury Stereo Evaluation. 
The evaluation platform provides stereo image datasets 
consisting of the stereo image pair and the ground truth image. 
The proposed algorithm evaluated by using the Middlebury 
datasets and compared with results with many others through 
online. The performance evaluation based on this platform 
considered state-of-art for the reliability and constantly 
updated.  

A. Performance Evaluation Based on Different Similarity 
Metric
This section gives a detailed evaluation of the proposed 

algorithm in term of results, quality and processing time. The 
DLR algorithm can be used with any stereo matching 
algorithm since it was developed to refine the raw disparity 
map images (in the post-processing stage). For this case, the 
evaluation has been made with Map (284x216 pixels) and 
Tsukuba (384x288 pixels) image with different similarity 
metric including SAD, SSD, SHD and NCC. The parameter of 
the stereo pair images set to 9x9 window size with maximum 
disparity 30(Map) and 16 (Tsukuba). 

The results of stereo matching for Tsukuba image based on 
different similarity metric are shown in Fig. 9. The raw 
disparities based on the block-based window searching 
contained errors with unmatched pixels especially with the 
similarity metric in SHD. For this sample, the disparity depth 
map has been mapped with colour to show the hotter the 
colour, the closer of the object to the camera. In this case, the 
red colour (the lamp) is the closest object. The output of the 
disparity depth maps can be improved with the post-
processing stage by using a median filter to smooth the result. 
The bidirectional matching can be used to eliminate the 
unmatched pixels, which can produce accurate disparity depth 
map.   
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Fig. 9: Results of stereo matching based on different similarity metric. 

The size of window for the block-based matching affecting 
the performance as indicated in Fig. 10(a), where the RMS 
errors reduced accordingly when the window size increased 
for the all-pixels evaluation. The non-occlusion pixels errors 
are not affected with different window size as shown in Fig. 
10(b). The errors reduced significantly when the disparity 
depth map filtered (in this case by using 11x11 median filter).  
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V.	 RESULTS AND DISCUSSION

The results for the depth refinement 
algorithms evaluated based on the 
performance evaluation with two 
approaches. The first performance is 
tested based on different similarity metric 
for the cost aggregation. Although the 
selected similarity metric is SAD, the 
comparison with different approaches 
will be shown. This includes the selection 
of window size for the correspondence 
matching. The second performance 
is based on the Middlebury Stereo 
Evaluation. The evaluation platform 
provides stereo image datasets consisting 
of the stereo image pair and the ground 
truth image. The proposed algorithm 
evaluated by using the Middlebury 
datasets and compared with results 
with many others through online. The 
performance evaluation based on this 
platform considered state-of-art for the 
reliability and constantly updated. 

A.	P erformance Evaluation Based on 
Different Similarity Metric

This section gives a detailed evaluation 
of the proposed algorithm in term of 
results, quality and processing time. The 
DLR algorithm can be used with any 
stereo matching algorithm since it was 
developed to refine the raw disparity 
map images (in the post-processing 
stage). For this case, the evaluation has 
been made with Map (284x216 pixels) 
and Tsukuba (384x288 pixels) image with 
different similarity metric including SAD, 
SSD, SHD and NCC. The parameter of the 
stereo pair images set to 9x9 window size 
with maximum disparity 30(Map) and 16 
(Tsukuba).

The results of stereo matching for 
Tsukuba image based on different 
similarity metric are shown in Fig. 9. 
The raw disparities based on the block-
based window searching contained 
errors with unmatched pixels especially 
with the similarity metric in SHD. For 
this sample, the disparity depth map 
has been mapped with colour to show 
the hotter the colour, the closer of the 

object to the camera. In this case, the red 
colour (the lamp) is the closest object. The 
output of the disparity depth maps can be 
improved with the post-processing stage 
by using a median filter to smooth the 
result. The bidirectional matching can be 
used to eliminate the unmatched pixels, 
which can produce accurate disparity 
depth map.  

Fig. 7: Layer extraction with edge map image. (a) Raw object mask layer i;
(b) Refined layer i through morphological process 

D. Layers Composition 
Each layers of disparity depth map undergo the same 

process of mapping and fusing (diffusion) with the same 
reference segmented image. After all of the layers have been 
processed, the collection of layered disparity depth images 
merges into a new single refined disparity depth image. The 
process of the layer composition of the DLR algorithm can be 
summarized in Fig. 8.  

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of a stereo algorithm, a 
quantitative way is needed to estimate the quality of the 
computed correspondences. Two general approaches to this 
are to compute error statistics with respect to some ground 
truth data and to evaluate the synthetic images obtained by the 
disparity depth map. Two quality measures based on known 
ground truth data provided by the Middlebury Vision Page are 
RMS (root-mean-squared) error and percentage of bad 
matching pixels. RMS error measured in disparity units 
between the computed disparity map dc(x,y) and the ground 
truth map dT(x,y),
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where dδ  is a disparity error tolerance. For the experiments 
and evaluations, the disparity error tolerance, dδ   is set 1.0. In 
addition to compute these statistics over the whole image, two 
different kinds of regions are evaluated which are the non-
occluded and depth discontinuities regions. 

Fig. 8: Part 4 block of DLR algorithm, layers composition 

V. RESULTS AND DISCUSSION

The results for the depth refinement algorithms evaluated 
based on the performance evaluation with two approaches. 
The first performance is tested based on different similarity 
metric for the cost aggregation. Although the selected 
similarity metric is SAD, the comparison with different 
approaches will be shown. This includes the selection of 
window size for the correspondence matching. The second 
performance is based on the Middlebury Stereo Evaluation. 
The evaluation platform provides stereo image datasets 
consisting of the stereo image pair and the ground truth image. 
The proposed algorithm evaluated by using the Middlebury 
datasets and compared with results with many others through 
online. The performance evaluation based on this platform 
considered state-of-art for the reliability and constantly 
updated.  

A. Performance Evaluation Based on Different Similarity 
Metric
This section gives a detailed evaluation of the proposed 

algorithm in term of results, quality and processing time. The 
DLR algorithm can be used with any stereo matching 
algorithm since it was developed to refine the raw disparity 
map images (in the post-processing stage). For this case, the 
evaluation has been made with Map (284x216 pixels) and 
Tsukuba (384x288 pixels) image with different similarity 
metric including SAD, SSD, SHD and NCC. The parameter of 
the stereo pair images set to 9x9 window size with maximum 
disparity 30(Map) and 16 (Tsukuba). 

The results of stereo matching for Tsukuba image based on 
different similarity metric are shown in Fig. 9. The raw 
disparities based on the block-based window searching 
contained errors with unmatched pixels especially with the 
similarity metric in SHD. For this sample, the disparity depth 
map has been mapped with colour to show the hotter the 
colour, the closer of the object to the camera. In this case, the 
red colour (the lamp) is the closest object. The output of the 
disparity depth maps can be improved with the post-
processing stage by using a median filter to smooth the result. 
The bidirectional matching can be used to eliminate the 
unmatched pixels, which can produce accurate disparity depth 
map.   

(a) SAD (b) SSD (c) NCC (d) SHD 
Fig. 9: Results of stereo matching based on different similarity metric. 

The size of window for the block-based matching affecting 
the performance as indicated in Fig. 10(a), where the RMS 
errors reduced accordingly when the window size increased 
for the all-pixels evaluation. The non-occlusion pixels errors 
are not affected with different window size as shown in Fig. 
10(b). The errors reduced significantly when the disparity 
depth map filtered (in this case by using 11x11 median filter).  

    

Fig. 9: Results of stereo matching based on 
different similarity metric

The size of window for the block-based 
matching affecting the performance as 
indicated in Fig. 10(a), where the RMS 
errors reduced accordingly when the 
window size increased for the all-pixels 
evaluation. The non-occlusion pixels 
errors are not affected with different 
window size as shown in Fig. 10(b). The 
errors reduced significantly when the 
disparity depth map filtered (in this case 
by using 11x11 median filter).

(a) (b) 
Fig. 10: RMS error based on window size for all pixels and non-occlusion 

pixels. 

The performance of different similarity metrics presented in 
Table 1 for Tsukuba and Map images. The table shows the 
statistics aimed at assessing the capability of the similarity 
metrics in term of processing time and RMS. The time is 
calculated in seconds for the processing time and the RMS in 
term of pixels. The stereo matching evaluated with Intel Quad 
CPU of 3.0 GHz, 3,25GB of RAM. The comparison of 
similarity metric with bidirectional matching (BM) also 
included. It is worth noticing that with the Map stereo pair, the 
similarity metrics of SAD, SSD and NCC perform similarly 
and pretty well, with slightly better RMS yielded by BM. The 
BM shows the capability to deal with occlusions and not 
corrected disparities. The similarity metric performs better 
with Map image pairs compared to the Tsukuba due to the 
complex objects at different depths generating several 
occlusions, as well as poorly textured regions in the 
background. Moreover, this stereo pair contains some specular 
regions (such as the face of statue and some regions of the 
lamp) that quite difficult with stereo matching process.  

Table 1: Processing time and RMS of Tsukuba and Map images 

Algorithms Map image Tsukuba image 
Time RMS Time RMS

SAD 6.84 41.29 7.09 57.15 
SSD 6.07 42.48 6.54 56.86 
NCC 9.94 43.15 10.58 56.99 
SHD 38.37 43.85 41.58 58.58 

BM SAD 6.76 26.86 7.23 53.22 
BM SSD 6.05 28.95 6.59 52.75 
BM NCC 9.93 29.36 11.07 51.14 
BM SHD 41.98 37.17 41.16 50.55 

Based on this evaluation, it shows that the similarity metric 
by using SAD is satisfactory. Besides the simplicity, reliability 
and low computational cost, the SAD has been adapted for 
real-time implementation. Faster execution can be 
implemented by using the SAD through computational 
optimisation techniques which has been proposed by Stefano 
[3, 24].  

B. Performance Based on Middlebury Stereo Evaluation 
Scharstein and Szelinski [1] have developed an online 

evaluation platform, the Middlebury Stereo Evaluation [24], 
which provides a huge number of stereo image datasets 
consisting of the stereo image pair and the ground truth image. 
We evaluated our algorithm by using the Middlebury datasets 
and compared the results with many others online. The 
samples of these datasets are shown in the first row of Fig. 11, 

which consist the ‘Tsukuba’, ‘Venus’, ‘Teddy’ and ‘Cones’. 
Since this evaluation is very well-known and state-of-the-art, 
the proposed algorithm in this work is also evaluated in this 
manner. In order to evaluate an algorithm on this website, the 
disparity maps of all four datasets have to be generated and 
uploaded to through online. The disparity maps have to 
correspond to the left stereo image and the disparities have to 
be scaled by a certain factor. The evaluation engine calculates 
the percentage of bad matched pixels within a certain error 
threshold by pixel-wise comparison with the ground truth 
image. This is done three times for each dataset. Firstly the 
disparity map image evaluated for all pixels where a ground 
truth value is available. Secondly, it will be evaluated for all 
non-occluded pixels. And lastly, the disparity map images 
compared for all pixels at disparity discontinuities. Many 
stereo algorithms researchers use this platform for evaluation 
and this gives a significant overview of how the developed 
algorithm performs in comparison to other algorithms. The 
platform is up-to-date and constantly mounting. 

(a) (b) (c) (d) 

Fig. 11: Results of the proposed method by the Middlebury benchmark 
datasets: Tsukuba, Venus, Teddy and Cones. The first row images are the 

reference images of each set. The second row images are the ground truths. 
The third row images are the disparity maps by left-to-right SAD. The fourth 

row images are the disparity maps by DLR-SAD method. 

Fig. 11 shows the Middlebury evaluation datasets, the 
ground truths of four datasets and the resulting disparity maps 
estimated by SAD and DLR-SAD methods. The results based 
on third row in Figure 5.12 used the fixed window SAD of 
21x21 (‘Cones’ and ‘Teddy’), 11x11 (‘Tsukuba’) and 25x25 
(‘Venus’). Additionally, an 11x11 median filter is applied as a 
post-processing step for the SAD. The selected parameters are 
chosen to achieve the best possible result for the disparity 
maps. The results based on SAD has been further enhanced 
and refined by using the proposed algorithm, DLR where 
every disparity depth layers has been separated. Through the 

Fig. 10: RMS error based on window size for 
all pixels and non-occlusion pixels.

The performance of different similarity 
metrics presented in Table 1 for Tsukuba 
and Map images. The table shows the 
statistics aimed at assessing the capability 
of the similarity metrics in term of 
processing time and RMS. The time is 
calculated in seconds for the processing 
time and the RMS in term of pixels. The 
stereo matching evaluated with Intel 
Quad CPU of 3.0 GHz, 3,25GB of RAM. 
The comparison of similarity metric 
with bidirectional matching (BM) also 
included. It is worth noticing that with 
the Map stereo pair, the similarity metrics 
of SAD, SSD and NCC perform similarly 
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and pretty well, with slightly better 
RMS yielded by BM. The BM shows the 
capability to deal with occlusions and 
not corrected disparities. The similarity 
metric performs better with Map image 
pairs compared to the Tsukuba due 
to the complex objects at different 
depths generating several occlusions, 
as well as poorly textured regions in the 
background. Moreover, this stereo pair 
contains some specular regions (such as 
the face of statue and some regions of 
the lamp) that quite difficult with stereo 
matching process. 

Table 1: Processing time and RMS of Tsukuba 
and Map images

(a) (b) 
Fig. 10: RMS error based on window size for all pixels and non-occlusion 

pixels. 

The performance of different similarity metrics presented in 
Table 1 for Tsukuba and Map images. The table shows the 
statistics aimed at assessing the capability of the similarity 
metrics in term of processing time and RMS. The time is 
calculated in seconds for the processing time and the RMS in 
term of pixels. The stereo matching evaluated with Intel Quad 
CPU of 3.0 GHz, 3,25GB of RAM. The comparison of 
similarity metric with bidirectional matching (BM) also 
included. It is worth noticing that with the Map stereo pair, the 
similarity metrics of SAD, SSD and NCC perform similarly 
and pretty well, with slightly better RMS yielded by BM. The 
BM shows the capability to deal with occlusions and not 
corrected disparities. The similarity metric performs better 
with Map image pairs compared to the Tsukuba due to the 
complex objects at different depths generating several 
occlusions, as well as poorly textured regions in the 
background. Moreover, this stereo pair contains some specular 
regions (such as the face of statue and some regions of the 
lamp) that quite difficult with stereo matching process.  

Table 1: Processing time and RMS of Tsukuba and Map images 

Algorithms Map image Tsukuba image 
Time RMS Time RMS

SAD 6.84 41.29 7.09 57.15 
SSD 6.07 42.48 6.54 56.86 
NCC 9.94 43.15 10.58 56.99 
SHD 38.37 43.85 41.58 58.58 

BM SAD 6.76 26.86 7.23 53.22 
BM SSD 6.05 28.95 6.59 52.75 
BM NCC 9.93 29.36 11.07 51.14 
BM SHD 41.98 37.17 41.16 50.55 

Based on this evaluation, it shows that the similarity metric 
by using SAD is satisfactory. Besides the simplicity, reliability 
and low computational cost, the SAD has been adapted for 
real-time implementation. Faster execution can be 
implemented by using the SAD through computational 
optimisation techniques which has been proposed by Stefano 
[3, 24].  

B. Performance Based on Middlebury Stereo Evaluation 
Scharstein and Szelinski [1] have developed an online 

evaluation platform, the Middlebury Stereo Evaluation [24], 
which provides a huge number of stereo image datasets 
consisting of the stereo image pair and the ground truth image. 
We evaluated our algorithm by using the Middlebury datasets 
and compared the results with many others online. The 
samples of these datasets are shown in the first row of Fig. 11, 

which consist the ‘Tsukuba’, ‘Venus’, ‘Teddy’ and ‘Cones’. 
Since this evaluation is very well-known and state-of-the-art, 
the proposed algorithm in this work is also evaluated in this 
manner. In order to evaluate an algorithm on this website, the 
disparity maps of all four datasets have to be generated and 
uploaded to through online. The disparity maps have to 
correspond to the left stereo image and the disparities have to 
be scaled by a certain factor. The evaluation engine calculates 
the percentage of bad matched pixels within a certain error 
threshold by pixel-wise comparison with the ground truth 
image. This is done three times for each dataset. Firstly the 
disparity map image evaluated for all pixels where a ground 
truth value is available. Secondly, it will be evaluated for all 
non-occluded pixels. And lastly, the disparity map images 
compared for all pixels at disparity discontinuities. Many 
stereo algorithms researchers use this platform for evaluation 
and this gives a significant overview of how the developed 
algorithm performs in comparison to other algorithms. The 
platform is up-to-date and constantly mounting. 

(a) (b) (c) (d) 

Fig. 11: Results of the proposed method by the Middlebury benchmark 
datasets: Tsukuba, Venus, Teddy and Cones. The first row images are the 

reference images of each set. The second row images are the ground truths. 
The third row images are the disparity maps by left-to-right SAD. The fourth 

row images are the disparity maps by DLR-SAD method. 

Fig. 11 shows the Middlebury evaluation datasets, the 
ground truths of four datasets and the resulting disparity maps 
estimated by SAD and DLR-SAD methods. The results based 
on third row in Figure 5.12 used the fixed window SAD of 
21x21 (‘Cones’ and ‘Teddy’), 11x11 (‘Tsukuba’) and 25x25 
(‘Venus’). Additionally, an 11x11 median filter is applied as a 
post-processing step for the SAD. The selected parameters are 
chosen to achieve the best possible result for the disparity 
maps. The results based on SAD has been further enhanced 
and refined by using the proposed algorithm, DLR where 
every disparity depth layers has been separated. Through the 

Based on this evaluation, it shows that 
the similarity metric by using SAD 
is satisfactory. Besides the simplicity, 
reliability and low computational cost, 
the SAD has been adapted for real-time 
implementation. Faster execution can be 
implemented by using the SAD through 
computational optimisation techniques 
which has been proposed by Stefano [3, 
24]. 

B.	P erformance Based on Middlebury 
Stereo Evaluation

Scharstein and Szelinski [1] have 
developed an online evaluation platform, 
the Middlebury Stereo Evaluation [24], 
which provides a huge number of stereo 
image datasets consisting of the stereo 
image pair and the ground truth image. 
We evaluated our algorithm by using 
the Middlebury datasets and compared 
the results with many others online. The 
samples of these datasets are shown in 
the first row of Fig. 11, which consist 
the ‘Tsukuba’, ‘Venus’, ‘Teddy’ and 
‘Cones’. Since this evaluation is very 
well-known and state-of-the-art, the 

proposed algorithm in this work is also 
evaluated in this manner. In order to 
evaluate an algorithm on this website, 
the disparity maps of all four datasets 
have to be generated and uploaded to 
through online. The disparity maps have 
to correspond to the left stereo image 
and the disparities have to be scaled by 
a certain factor. The evaluation engine 
calculates the percentage of bad matched 
pixels within a certain error threshold by 
pixel-wise comparison with the ground 
truth image. This is done three times 
for each dataset. Firstly the disparity 
map image evaluated for all pixels 
where a ground truth value is available. 
Secondly, it will be evaluated for all non-
occluded pixels. And lastly, the disparity 
map images compared for all pixels at 
disparity discontinuities. Many stereo 
algorithms researchers use this platform 
for evaluation and this gives a significant 
overview of how the developed 
algorithm performs in comparison to 
other algorithms. The platform is up-to-
date and constantly mounting.

(a) (b) 
Fig. 10: RMS error based on window size for all pixels and non-occlusion 

pixels. 

The performance of different similarity metrics presented in 
Table 1 for Tsukuba and Map images. The table shows the 
statistics aimed at assessing the capability of the similarity 
metrics in term of processing time and RMS. The time is 
calculated in seconds for the processing time and the RMS in 
term of pixels. The stereo matching evaluated with Intel Quad 
CPU of 3.0 GHz, 3,25GB of RAM. The comparison of 
similarity metric with bidirectional matching (BM) also 
included. It is worth noticing that with the Map stereo pair, the 
similarity metrics of SAD, SSD and NCC perform similarly 
and pretty well, with slightly better RMS yielded by BM. The 
BM shows the capability to deal with occlusions and not 
corrected disparities. The similarity metric performs better 
with Map image pairs compared to the Tsukuba due to the 
complex objects at different depths generating several 
occlusions, as well as poorly textured regions in the 
background. Moreover, this stereo pair contains some specular 
regions (such as the face of statue and some regions of the 
lamp) that quite difficult with stereo matching process.  

Table 1: Processing time and RMS of Tsukuba and Map images 

Algorithms Map image Tsukuba image 
Time RMS Time RMS

SAD 6.84 41.29 7.09 57.15 
SSD 6.07 42.48 6.54 56.86 
NCC 9.94 43.15 10.58 56.99 
SHD 38.37 43.85 41.58 58.58 

BM SAD 6.76 26.86 7.23 53.22 
BM SSD 6.05 28.95 6.59 52.75 
BM NCC 9.93 29.36 11.07 51.14 
BM SHD 41.98 37.17 41.16 50.55 

Based on this evaluation, it shows that the similarity metric 
by using SAD is satisfactory. Besides the simplicity, reliability 
and low computational cost, the SAD has been adapted for 
real-time implementation. Faster execution can be 
implemented by using the SAD through computational 
optimisation techniques which has been proposed by Stefano 
[3, 24].  

B. Performance Based on Middlebury Stereo Evaluation 
Scharstein and Szelinski [1] have developed an online 

evaluation platform, the Middlebury Stereo Evaluation [24], 
which provides a huge number of stereo image datasets 
consisting of the stereo image pair and the ground truth image. 
We evaluated our algorithm by using the Middlebury datasets 
and compared the results with many others online. The 
samples of these datasets are shown in the first row of Fig. 11, 

which consist the ‘Tsukuba’, ‘Venus’, ‘Teddy’ and ‘Cones’. 
Since this evaluation is very well-known and state-of-the-art, 
the proposed algorithm in this work is also evaluated in this 
manner. In order to evaluate an algorithm on this website, the 
disparity maps of all four datasets have to be generated and 
uploaded to through online. The disparity maps have to 
correspond to the left stereo image and the disparities have to 
be scaled by a certain factor. The evaluation engine calculates 
the percentage of bad matched pixels within a certain error 
threshold by pixel-wise comparison with the ground truth 
image. This is done three times for each dataset. Firstly the 
disparity map image evaluated for all pixels where a ground 
truth value is available. Secondly, it will be evaluated for all 
non-occluded pixels. And lastly, the disparity map images 
compared for all pixels at disparity discontinuities. Many 
stereo algorithms researchers use this platform for evaluation 
and this gives a significant overview of how the developed 
algorithm performs in comparison to other algorithms. The 
platform is up-to-date and constantly mounting. 

(a) (b) (c) (d) 

Fig. 11: Results of the proposed method by the Middlebury benchmark 
datasets: Tsukuba, Venus, Teddy and Cones. The first row images are the 

reference images of each set. The second row images are the ground truths. 
The third row images are the disparity maps by left-to-right SAD. The fourth 

row images are the disparity maps by DLR-SAD method. 

Fig. 11 shows the Middlebury evaluation datasets, the 
ground truths of four datasets and the resulting disparity maps 
estimated by SAD and DLR-SAD methods. The results based 
on third row in Figure 5.12 used the fixed window SAD of 
21x21 (‘Cones’ and ‘Teddy’), 11x11 (‘Tsukuba’) and 25x25 
(‘Venus’). Additionally, an 11x11 median filter is applied as a 
post-processing step for the SAD. The selected parameters are 
chosen to achieve the best possible result for the disparity 
maps. The results based on SAD has been further enhanced 
and refined by using the proposed algorithm, DLR where 
every disparity depth layers has been separated. Through the 

Fig. 11: Results of the proposed method by the 
Middlebury benchmark datasets: Tsukuba, 

Venus, Teddy and Cones. The first row images 
are the reference images of each set. The 

second row images are the ground truths. The 
third row images are the disparity maps by 

left-to-right SAD. The fourth row images are 
the disparity maps by DLR-SAD method.

Fig. 11 shows the Middlebury evaluation 
datasets, the ground truths of four 
datasets and the resulting disparity 
maps estimated by SAD and DLR-SAD 
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methods. The results based on third row 
in Figure 5.12 used the fixed window 
SAD of 21x21 (‘Cones’ and ‘Teddy’), 
11x11 (‘Tsukuba’) and 25x25 (‘Venus’). 
Additionally, an 11x11 median filter is 
applied as a post-processing step for the 
SAD. The selected parameters are chosen 
to achieve the best possible result for the 
disparity maps. The results based on SAD 
has been further enhanced and refined 
by using the proposed algorithm, DLR 
where every disparity depth layers has 
been separated. Through the DLR, the 
new disparity maps have been formed. 
The fourth row of Fig. 11 indicates that 
disparity maps improved and removed 
the noise and errors in the basic SAD 
stereo matching. It is worth observing that 
several major occlusions and boundary 
discontinuities have been discarded, 
showing the ability of DLR to deal 
with this problem. The morphological 
operation processed in separated layers 
enables the unwanted regions, errors 
and noise can be removed efficiently. 
Due to the erosion and dilation process 
in the morphological operation, the final 
disparity map probably contained holes 
and cracks between the depth layers. 
Therefore, the missing values in the 
disparity maps have to extrapolate with 
adjacent pixel values by using hole-filing 
techniques.
     
Table 2 shows the performance of our 
method by the Middlebury ranking list 
with the error threshold of 1 pixel. The 
order of the algorithms is based on the 
average rank for bad pixels percentage. 
This value is very meaningful and shows 
how close together the algorithms in 
comparison. The basic fixed-window 
(FW) with SAD as cost aggregation 
methods placed in the last ranking. 
It shows that the stereo matching by 
using the basic approach is not accurate 
and contained with errors for the all 
regions, non-occluded and near depth 
discontinuities. However, after the FW-
SAD refined by using the proposed 
method of DLR, the results significantly 
improved and the new results moved up 
to 13 places. 

Table 2: Middlebury dataset ranking with 
the 1 pixel threshold. These values indicate 
the percentage of bad pixels whose errors 

are more than 1 pixel. In Venus and Tsukuba 
image, our method shows excellent results in 

non-occluded (N-o) region.

DLR, the new disparity maps have been formed. The fourth 
row of Fig. 11 indicates that disparity maps improved and 
removed the noise and errors in the basic SAD stereo 
matching. It is worth observing that several major occlusions 
and boundary discontinuities have been discarded, showing 
the ability of DLR to deal with this problem. The 
morphological operation processed in separated layers enables 
the unwanted regions, errors and noise can be removed 
efficiently. Due to the erosion and dilation process in the 
morphological operation, the final disparity map probably 
contained holes and cracks between the depth layers. 
Therefore, the missing values in the disparity maps have to 
extrapolate with adjacent pixel values by using hole-filing 
techniques.       

Table 2 shows the performance of our method by the 
Middlebury ranking list with the error threshold of 1 pixel. 
The order of the algorithms is based on the average rank for 
bad pixels percentage. This value is very meaningful and 
shows how close together the algorithms in comparison. The 
basic fixed-window (FW) with SAD as cost aggregation 
methods placed in the last ranking. It shows that the stereo 
matching by using the basic approach is not accurate and 
contained with errors for the all regions, non-occluded and 
near depth discontinuities. However, after the FW-SAD 
refined by using the proposed method of DLR, the results 
significantly improved and the new results moved up to 13 
places.

Table 2: Middlebury dataset ranking with the 1 pixel threshold. These values 
indicate the percentage of bad pixels whose errors are more than 1 pixel. In 

Venus and Tsukuba image, our method shows excellent results in non-
occluded (N-o) region. 

Algorithms Tsukuba Venus Teddy Cones Avg (%) N-o   All   Disc N-o   All   Disc N-o   All   Disc N-o   All   Disc 
2DPOC 2.88   4.8   10.5  6.55   7.8   17.4 14.4   22    27.8 15.2   23   24.5 14.7 
Bipartite 2.54   4.4   13.6 6.62   7.5   18.6 16.9   24    30.2 15.1   22   23 15.4 
SAD-DLR 4.22   5.1   19.5 2.50   3.2   18.3 18.2   19   37.2 18.0   21   32.9 16.5 
Phase-based 4.26   6.5   15.4 6.71   8.2   26.4 14.5   23   25.5 10.8   21   21.2 15.3 
RegionalSup 3.99   6.1   14.2 8.14   9.7   36.8 18.3   27   32.1 9.16   19   19.9 17.0 
BioDEM 6.57   8.4   28.1 3.61   4.8   33.7 13.2   21   34.5 6.84   16   19.8 16.4 
IMCT 4.54   5.9   19.8 3.16   3.8   23.2 18.0   23   35.3 12.7   19   19.8 16.3 
SSD+MF [13] 5.23   7.1   24.1 3.74   5.2   11.9 16.5   25   32.9 10.6   20   26.3 15.7 
SO [1] 5.08   7.2   12.2 9.44   11   21.9 19.9   28   26.3 13.0   23   22.3 16.6 
MI-nonpara 5.59   7.5   18.8 7.50   9     35 17.4   26   36.9 10.2   20   22.6 18.0 
PhaseDiff 4.89   7.1   16.3 8.34   9.8  26 20.0   28   29 19.8   29   27.5 18.8 
STICA 7.70   9.6   27.8 8.19   9.6  40.3 15.8   23   37.7 9.8     18   28.7 19.7 
Rank+ASW 6.51   8.4   19.7 10.5   12   32.7 15.7   24   32.8 14.1   23   21.7 18.4 
LCDM+AdaptWgt 5.98   7.8   22.2 14.5   15   35.9 20.8   27   38.3 8.9     17   20 19.5 
Infection 7.95   9.5   28.9 4.41   5.5  31.7 17.7   25   44.4 14.3   21   38 20.7 
FW-SAD 7.51   9.5   30.0 9.15   11  48.7 22.0   30    47.3 15.7   25   36.3 24.3 

As can be seen, the results in the Table 2 indicate our 
algorithm is competitive with other existing algorithms. In 
contrast to the others, the presented algorithms of DLR 
obtained by using a basic similarity metric. Therefore, the 
complexity of the algorithm is low and can be easily adapted 
with any stereo matching system. Our result is the best among 
all nominated algorithms for the non-occluded region in the 
Venus dataset, and the second for the Teddy dataset. The 
scenes of the Venus dataset consist of many textured surfaces, 
such as the background and printed document. With respect to 
the evaluations in ‘all’ sections, our results are moderate since 
the ‘all’ region includes occluded regions and the occluded 
regions mainly consist of planes of background. 

Fig. 12 shows the analysis and error evaluation for the non-
occluded regions based on bad pixel with (absolute disparity 

error > 1). The first row of Fig. 12 shown the samples images 
for evaluation provided by Middlebury Stereo Page. The non-
occluded regions visualized by the white areas while the 
occluded and border regions shown by black. The second row 
shows the errors for non-occluded regions based on FW-SAD. 
By comparing the non-occluded regions for the disparity depth 
map of the proposed algorithm, Fig. 12 (in the third row) 
visually points where incorrect measurements are produced by 
the SAD-DLR. We can notice that the number of errors low 
for the Tsukuba and Venus datasets. The incorrect disparities 
are higher for the Teddy and Cones datasets due to the 
complexity and texture regions. In general, the SAD-DLR 
improved the disparity maps obtained from the FW-SAD 
where most of the sparse small black regions (in the second 
row of Fig. 12) have been removed. One of the disadvantages 
by using the SAD is the incompetency of the similarity metric 
to calculate the discontinuity regions. This can be improved by 
selecting the different cost aggregation method. 

(a) (b) (c) (d) 
Fig. 12: Analysis for non-occluded region based on bad pixel (absolute 

disparity error > 1). Non-occluded regions (white) with occluded and border 
regions (black). 

The results obtained have proven to be adequate for the 
DLR to improve the disparity depth map. Though the DLR 
does not deal with the cracks and hole due to the layer 
separations, the merging of disparity and edge boundaries 
regions change the new disparity maps significantly. The 
performance of the DLR can be improved by using advanced 
matching techniques such as graph cut, segmented-matching 
and dynamic programming, which can produce more accurate 
disparity depth map. Furthermore, a more sophisticated cost 
aggregation strategy could lead to better results. However, 
based on the performance evaluation of DLR with SAD, the 
results are satisfactory in term of accuracy and quality of the 
disparity depth maps.   

VI. CONCLUSION

The Depth Layer Refinement (DLR) module has been 
presented aimed to improve the raw disparity maps in the 
post-processing stage. The proposed system takes advantage 
of the Depth Image Layers Separation (DILS) algorithm that 
separate the layers of depth based on disparity range. The 

As can be seen, the results in the Table 
2 indicate our algorithm is competitive 
with other existing algorithms. In contrast 
to the others, the presented algorithms of 
DLR obtained by using a basic similarity 
metric. Therefore, the complexity of the 
algorithm is low and can be easily adapted 
with any stereo matching system. Our 
result is the best among all nominated 
algorithms for the non-occluded region in 
the Venus dataset, and the second for the 
Teddy dataset. The scenes of the Venus 
dataset consist of many textured surfaces, 
such as the background and printed 
document. With respect to the evaluations 
in ‘all’ sections, our results are moderate 
since the ‘all’ region includes occluded 
regions and the occluded regions mainly 
consist of planes of background.
Fig. 12 shows the analysis and error 
evaluation for the non-occluded regions 
based on bad pixel with (absolute 
disparity error > 1). The first row of 
Fig. 12 shown the samples images for 
evaluation provided by Middlebury 
Stereo Page. The non-occluded regions 
visualized by the white areas while the 
occluded and border regions shown by 
black. The second row shows the errors 
for non-occluded regions based on FW-
SAD. By comparing the non-occluded 
regions for the disparity depth map of 
the proposed algorithm, Fig. 12 (in the 
third row) visually points where incorrect 
measurements are produced by the SAD-
DLR. We can notice that the number of 
errors low for the Tsukuba and Venus 
datasets. The incorrect disparities are 
higher for the Teddy and Cones datasets 
due to the complexity and texture regions. 
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In general, the SAD-DLR improved the 
disparity maps obtained from the FW-
SAD where most of the sparse small black 
regions (in the second row of Fig. 12) have 
been removed. One of the disadvantages 
by using the SAD is the incompetency 
of the similarity metric to calculate 
the discontinuity regions. This can be 
improved by selecting the different cost 
aggregation method.

DLR, the new disparity maps have been formed. The fourth 
row of Fig. 11 indicates that disparity maps improved and 
removed the noise and errors in the basic SAD stereo 
matching. It is worth observing that several major occlusions 
and boundary discontinuities have been discarded, showing 
the ability of DLR to deal with this problem. The 
morphological operation processed in separated layers enables 
the unwanted regions, errors and noise can be removed 
efficiently. Due to the erosion and dilation process in the 
morphological operation, the final disparity map probably 
contained holes and cracks between the depth layers. 
Therefore, the missing values in the disparity maps have to 
extrapolate with adjacent pixel values by using hole-filing 
techniques.       

Table 2 shows the performance of our method by the 
Middlebury ranking list with the error threshold of 1 pixel. 
The order of the algorithms is based on the average rank for 
bad pixels percentage. This value is very meaningful and 
shows how close together the algorithms in comparison. The 
basic fixed-window (FW) with SAD as cost aggregation 
methods placed in the last ranking. It shows that the stereo 
matching by using the basic approach is not accurate and 
contained with errors for the all regions, non-occluded and 
near depth discontinuities. However, after the FW-SAD 
refined by using the proposed method of DLR, the results 
significantly improved and the new results moved up to 13 
places.

Table 2: Middlebury dataset ranking with the 1 pixel threshold. These values 
indicate the percentage of bad pixels whose errors are more than 1 pixel. In 

Venus and Tsukuba image, our method shows excellent results in non-
occluded (N-o) region. 

Algorithms Tsukuba Venus Teddy Cones Avg (%) N-o   All   Disc N-o   All   Disc N-o   All   Disc N-o   All   Disc 
2DPOC 2.88   4.8   10.5  6.55   7.8   17.4 14.4   22    27.8 15.2   23   24.5 14.7 
Bipartite 2.54   4.4   13.6 6.62   7.5   18.6 16.9   24    30.2 15.1   22   23 15.4 
SAD-DLR 4.22   5.1   19.5 2.50   3.2   18.3 18.2   19   37.2 18.0   21   32.9 16.5 
Phase-based 4.26   6.5   15.4 6.71   8.2   26.4 14.5   23   25.5 10.8   21   21.2 15.3 
RegionalSup 3.99   6.1   14.2 8.14   9.7   36.8 18.3   27   32.1 9.16   19   19.9 17.0 
BioDEM 6.57   8.4   28.1 3.61   4.8   33.7 13.2   21   34.5 6.84   16   19.8 16.4 
IMCT 4.54   5.9   19.8 3.16   3.8   23.2 18.0   23   35.3 12.7   19   19.8 16.3 
SSD+MF [13] 5.23   7.1   24.1 3.74   5.2   11.9 16.5   25   32.9 10.6   20   26.3 15.7 
SO [1] 5.08   7.2   12.2 9.44   11   21.9 19.9   28   26.3 13.0   23   22.3 16.6 
MI-nonpara 5.59   7.5   18.8 7.50   9     35 17.4   26   36.9 10.2   20   22.6 18.0 
PhaseDiff 4.89   7.1   16.3 8.34   9.8  26 20.0   28   29 19.8   29   27.5 18.8 
STICA 7.70   9.6   27.8 8.19   9.6  40.3 15.8   23   37.7 9.8     18   28.7 19.7 
Rank+ASW 6.51   8.4   19.7 10.5   12   32.7 15.7   24   32.8 14.1   23   21.7 18.4 
LCDM+AdaptWgt 5.98   7.8   22.2 14.5   15   35.9 20.8   27   38.3 8.9     17   20 19.5 
Infection 7.95   9.5   28.9 4.41   5.5  31.7 17.7   25   44.4 14.3   21   38 20.7 
FW-SAD 7.51   9.5   30.0 9.15   11  48.7 22.0   30    47.3 15.7   25   36.3 24.3 

As can be seen, the results in the Table 2 indicate our 
algorithm is competitive with other existing algorithms. In 
contrast to the others, the presented algorithms of DLR 
obtained by using a basic similarity metric. Therefore, the 
complexity of the algorithm is low and can be easily adapted 
with any stereo matching system. Our result is the best among 
all nominated algorithms for the non-occluded region in the 
Venus dataset, and the second for the Teddy dataset. The 
scenes of the Venus dataset consist of many textured surfaces, 
such as the background and printed document. With respect to 
the evaluations in ‘all’ sections, our results are moderate since 
the ‘all’ region includes occluded regions and the occluded 
regions mainly consist of planes of background. 

Fig. 12 shows the analysis and error evaluation for the non-
occluded regions based on bad pixel with (absolute disparity 

error > 1). The first row of Fig. 12 shown the samples images 
for evaluation provided by Middlebury Stereo Page. The non-
occluded regions visualized by the white areas while the 
occluded and border regions shown by black. The second row 
shows the errors for non-occluded regions based on FW-SAD. 
By comparing the non-occluded regions for the disparity depth 
map of the proposed algorithm, Fig. 12 (in the third row) 
visually points where incorrect measurements are produced by 
the SAD-DLR. We can notice that the number of errors low 
for the Tsukuba and Venus datasets. The incorrect disparities 
are higher for the Teddy and Cones datasets due to the 
complexity and texture regions. In general, the SAD-DLR 
improved the disparity maps obtained from the FW-SAD 
where most of the sparse small black regions (in the second 
row of Fig. 12) have been removed. One of the disadvantages 
by using the SAD is the incompetency of the similarity metric 
to calculate the discontinuity regions. This can be improved by 
selecting the different cost aggregation method. 

(a) (b) (c) (d) 
Fig. 12: Analysis for non-occluded region based on bad pixel (absolute 

disparity error > 1). Non-occluded regions (white) with occluded and border 
regions (black). 

The results obtained have proven to be adequate for the 
DLR to improve the disparity depth map. Though the DLR 
does not deal with the cracks and hole due to the layer 
separations, the merging of disparity and edge boundaries 
regions change the new disparity maps significantly. The 
performance of the DLR can be improved by using advanced 
matching techniques such as graph cut, segmented-matching 
and dynamic programming, which can produce more accurate 
disparity depth map. Furthermore, a more sophisticated cost 
aggregation strategy could lead to better results. However, 
based on the performance evaluation of DLR with SAD, the 
results are satisfactory in term of accuracy and quality of the 
disparity depth maps.   

VI. CONCLUSION

The Depth Layer Refinement (DLR) module has been 
presented aimed to improve the raw disparity maps in the 
post-processing stage. The proposed system takes advantage 
of the Depth Image Layers Separation (DILS) algorithm that 
separate the layers of depth based on disparity range. The 

Fig. 12: Analysis for non-occluded region 
based on bad pixel (absolute disparity error 

> 1). Non-occluded regions (white) with 
occluded and border regions (black).

The results obtained have proven to be 
adequate for the DLR to improve the 
disparity depth map. Though the DLR 
does not deal with the cracks and hole 
due to the layer separations, the merging 
of disparity and edge boundaries 
regions change the new disparity 
maps significantly. The performance 
of the DLR can be improved by using 
advanced matching techniques such as 
graph cut, segmented-matching and 
dynamic programming, which can 
produce more accurate disparity depth 
map. Furthermore, a more sophisticated 
cost aggregation strategy could lead to 
better results. However, based on the 
performance evaluation of DLR with 
SAD, the results are satisfactory in term 
of accuracy and quality of the disparity 
depth maps.  

VI.	 CONCLUSION

The Depth Layer Refinement (DLR) 
module has been presented aimed to 
improve the raw disparity maps in the 
post-processing stage. The proposed 

system takes advantage of the Depth 
Image Layers Separation (DILS) algorithm 
that separate the layers of depth based on 
disparity range. The resulting disparity 
maps are evaluated on the Middlebury 
Stereo Vision website and perform well in 
comparison to other algorithms although 
it only using a basic similarity metric 
of SAD. Qualitative and quantitative 
evaluation proved the satisfactory quality 
of the achieved matching results. The 
proposed method improved up to 13 
places from the last place after the basic 
FW-SAD refined by using DLR in the 
online evaluation on the Middlebury 
Stereo Vision website. We found that 
the proposed technique removes the 
noise and unmatched pixels on the fixed 
window searching SAD. It also improved 
the depth discontinuities of the disparity 
depth maps. 

The limitation of the presented approach 
lies in the assumption that the scene can 
be well approximated by a set of rectified 
images. In the future development, the 
system can be incorporate with real-time 
implementation, which can be used with 
the novel inter-view synthesis algorithm 
for 3D video and free-viewpoint 
applications. The proposed algorithm is 
quite practical for robot navigation and 
autonomous operations. 
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