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Abstract— The Cytological images play an essential role in 

monitoring the progress of cancer cell mutation. The 

proliferation rate of the cancer cell is the prerequisite for 

cancer treatment. It is hard to accurately identify the nucleus 

of the abnormal cell in a faster way as well as find the correct 

proliferation rate since it requires an in-depth manual 

examination, observation and cell counting, which are very 

tedious and time-consuming. The proposed method starts with 

segmentation to separate the background and object regions 

with K-means clustering. The small candidate regions, which 

contain cell region is detected based on the value of support 

vector machine automatically. The sets of cell regions are 

marked with selective search according to the local distance 

between the nucleus and cell boundary, whether they are 

overlapping or non-overlapping cell regions. After that, the 

selective segmented cell features are taken to learn the normal 

and abnormal cell nuclei separately from the regional 

convolutional neural network. Finally, the proliferation rate in 

the invasive cancer area is calculated based on the number of 

abnormal cells. A set of renal cancer cell cytological images is 

taken from the National Cancer Institute, USA and this data 

set is available for the research work. Quantitative evaluation 

of this method is performed by comparing its accuracy with the 

accuracy of the other state of the art cancer cell nuclei 

detection methods. Qualitative assessment is done based on 

human observation.  The proposed method is able to detect 

renal cancer cell nuclei accurately and provide automatic 

proliferation rate. 

 

Index Terms— Cell nucleus; Convolution neural network; 

Cytological images; Renal cancer. 

 

I. INTRODUCTION 

 

Cancer is the most growing problem all around the world 

and it has become the primary cause of death. The main 

reason for cancer is the tumour cells and it is important to 

determine whether these cells are benign or malignant. 

Benign cells are the least aggressive and do not contain 

cancer cells. However, malignant cells have cancer cells and 

proliferate rapidly, which is the life-threating for the patients 

[1]. Renal cancer is the most common and aggressive cancer 

type among all others. Generally, the first step to detect the 

renal tumour is to use the medical reasoning images (MRI), 

which is then followed by performing the biopsy test. 

Biopsy test is the removal of small sample renal tumour 

tissue for diagnosis purpose by staining with dyes. Eosin 

and hematoxylin are the two stains to visualize the nuclei in 

terms of purple or blue color, while cytoplasm is in pink 

color to highlight the interesting point of the tissue. The 

pathologist finds the percentage of cancer cell proliferation 

rate and the result provides a better understanding for the 

physician to decide on the proper renal cancer treatment. 

According to the world cancer research fund, 80-90% of 

people are suffering from primary renal cancer disease [2]. 

If it is detected in the early stage and starts the treatment 

based on the accurate proliferation rate in the affected area, 

then it would not spread in the other area of the human 

body. The accuracy of the proliferation rate depends on the 

experience level and visual quality of the pathologist. While 

accuracy is an important issue because it is directly 

connected with the cancer treatment. However, it is difficult 

to detect the cancerous cell nuclei [3]. According to the 

American cancer society, approximately 70%-80% patients 

discover the renal cancer cell carcinoma at the 3rd or 4th 

stage, and in these stages, it is very rare to cure the patients 

excepts continuing the proper and accurate treatment based 

on the cancer proliferation rate until the patient’s longevity 

[4].  

Therefore, it is necessary for the medical professional to 

estimate the proliferation rate of cancer cell from the 

hundreds or thousands of samples of cytological images 

slide and observed the nuclei accurately which contains 

thousands of cells. Observation of the nuclei of the normal 

and abnormal cell is a time-consuming job. Sometimes, 

pathologist lost the concentration, and according to the 

visual appearance, many abnormal nuclei are similar to the 

normal nuclei. So, it is essential to building a machine-

oriented automated detection process to detect the nuclei 

from the renal cancer cell as well as the detection of nuclei 

from other cancer cells. However, it is very challenging to 

develop an automated and efficient nuclei detection process 

and measure the proliferation rate based on the renal cancer 

cell histopathology images due to the complex structure of 

histopathological images. 

In general, reasons for the increase complexity to detect 

the nuclei from the cell are such as the large number of 

nuclei and high resolution of pathology images. 

Additionally, the cell structure, namely the different size, 

shape, texture and appearance of an individual nucleus also 

contribute to the difficulties to detect the nuclei. The 

touching and overlapping cells are the primary difficulties 

for machine-based nucleus segmentation and detection. 

Besides, the boundary of the touching and overlapping cells 
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are not as smooth as an isolated nucleus. Another important 

factors are the non-homogenous and noisy background. 

Therefore, automated cancer cell diagnosis and prognosis 

is crucial in the pathological department to assist the 

pathologist in detecting the abnormal renal cancer cell 

nuclei automatically from the cytoplasmic image of cancer 

affected area. This approach can eventually lead to accurate 

identification for anti-cancer treatment. The rest of the study 

is arranged as follows. In section II, the related works of the 

nucleus detection of the cell are briefly explained. The 

proposed hierarchical R-CNN method and procedure are 

described in part III. The experimental results of the 

proposed process and comparison with the other existing 

methods presented in section IV. Finally, section V draws 

the conclusion by pointing out further works of the proposed 

method.  

 

II. LITERATURE REVIEW 

 

Researchers have focused their interest in the field of 

automated cancer cell diagnosis because of the necessity for 

accurate nucleus segmentation and detection. Several 

computer-based methods have been implemented in the past 

few years. In general, these methods are divided into three 

steps: cell segmentation to detect the nucleus, extraction of 

the nucleus features and then classification of the normal 

and abnormal nuclei. Some methods are semi-automated, 

while others are automated. However, the basic idea is to 

extract the structural information of the cell such as the 

shape, texture, staining intensity and number from an 

individual cell. Among all these methods, artificial 

intelligence and deep learning neural network approaches 

have achieved satisfactory results and have been applied in 

cell detection and segmentation for classifying the normal 

and abnormal nuclei. However, despite the progress of 

recent detection methods, the accurate nucleus detection of 

the cancer cell is a challenging task because of reasons such 

as weak contrast, diffused background, touching and 

overlapping of nuclei and irregular nuclei shape. Therefore, 

up till now, accuracy detection of the nuclier is not at its 

satisfactory level [5].  

The cancer cell and nucleus detection are classified into 

two categories: 

i. The threshold-based segmentation with the 

morphological operation, region growing, level 

sets, graph-cuts and k-means clustering.  

ii. The deep learning models for image segmentation 

with the deep neural network.  

Kun Zhang et al. [6] proposed a framework where 

colorectal cancer cells are automatically detected. While 

Mandal et al. [7] presented a method with naïve Bayes, 

logistic regression and decision tree. Logistic regression is 

used to extract the nucleus features as well as select the 

features. Naïve Bayes classifier is designed based on the 

Bayes’ theorem, and it is used to predict the probability of 

class membership and decision tree that supports the class of 

normal and abnormal nuclei. Veta et al. [8] proposed a 

method, where the nucleus centre is identified by the 

direction of the gradient, but this method does not able to 

detect the irregular shape and spindle shape nucleus. Vink et 

al.  [9] used ADA-boost classifier for training the two 

detectors. One is the Haar-like features, and another one is 

the pixels-based features, in which both detectors are 

merged for the purpose of the training. After that, this 

combined detector is applied to the histopathology stained 

breast cancer cell images. The performance of this method is 

very poor when small nuclei and thin fibroblasts are 

detected. Sharma et al.[10] proposed a segmentation method 

for nucleus detection based on text feature, morphological 

and intensity with ADA-boost classifier. This work can only 

detect the nucleus, but it cannot classify the normal and 

abnormal cell. Chung et al. and Zheng et al. [11, 12] 

implemented superpixels and support vector machine 

(SVM) to detect the normal and abnormal nuclei of the 

tumour tissue. In these two methods, the (SVM) classifier 

are trained to achieve the segmentation results. However, 

the segmentation process is time-consuming, and the 

detection of the cell with a weak edge is relatively poor. 

Alomari et al.[13] proposed a method where the pathology 

image is divided into six patches and applied threshold value 

to find the density of the pixels from every patch. After that, 

the bounding box is used to localise the nuclei. The 

evaluation result of this method is 84% accurate. Next, 

Alomari et al. [1] introduced an improved method by 

segmenting the nuclei based on colour features with k-

means clustering of stained histopathology images. The 

cancerous cell is represented by the brown cell, and the 

normal cell is represented with the blue cell. Then, the 

circularity features are used to count the nuclei of the 

cancerous cell to estimate the proliferation rate. George et 

al.[14] presented a remote computer-aided breast cancer cell 

detection method, where the location of the nucleus is 

detected with Hugo Transformation. The blood cell, noisy 

circle and other false positive are removed by the fuzzy c-

means clustering and Otsu’s threshold. After that, the 

segmentation of nuclei boundary is performed with marker-

controlled watershed transformation. At last, the probability 

neural networks are used for the classification of nucleus 

and accuracy is 90.99%. 

Recently, deep neural network based methods has 

provided better results than the segmentation based methods 

as they have been able to deal with a large number of 

histopathological images. Song et al. [15] proposed a deep 

learning method and a deformation model to detect the 

cervical cancer cell. Convolution neural network is used to 

learn the cell feature to classify the nucleus, cytoplasm and 

background. After that, overlapping cells are split based on 

the shape of cells using Gaussian kernel fitting. Next, Song 

et al., and Zhang et al. [16, 17] introduced an improved 

method, where cytoplasm and nucleus are segmented with 

multi-scale convolution network (MSCN) and graph 

partitioning method. Firstly, the cell features are detected 

with the MSCN, and then this harsh segmentation is refined 

with the graph partition method based on pre-learning 

nucleus features. The overlapping nuclei are segmented with 

nuclei clump splitting algorithm. However, these methods 

cannot detect the isolated nucleus and overlapping nuclei in 

the same process. In the recent work of Song et al. [18], the 

overlapping nuclei as well as an isolated nucleus are 

segmented from the cervical cancer tissue during the same 

process. In this method, the cost function is used to segment 

the overlapping nuclei, and then the edges of the nuclei are 

refined with the dynamic multi-template nucleus shape 
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model. Deep convolution network is used to learn the 

different shapes of the nucleus.  This method also can detect 

the nuclei, that have weak or lost boundary for overlapping. 

Malon et al.[19] used the convolutional neural network 

(CNN) to classify the non-mitotic and mitotic cell based on 

the shape information, texture and colour features. Wang et 

al. [20] presented a cascade classifier, which is the 

combination of the hand-crafted features. The features are 

learned with CNN to detect the cancer nucleus. Two-stage 

cascade CNN is proposed by Hu et al.[21], where CNN 

network is trained with the cancer cell patches which are 

detected with the selective search instead of using region of 

interest (ROI). In this method, the cancer cells are processed 

after the detection of selective search and before feeding 

them as input to CNN. However, this method is challenged 

due to its low contrast histopathological images. Cruz-Roa 

et al. [22] applied deep learning method with pre-defined 

bag of features and discrete wavelength transformation to 

detect the basal-cell carcinoma. To detect the nucleus, Xu et 

al. [23] proposed stacked sparse auto-encoder to learn the 

regions of the nuclei of cell in an unsupervised way and 

soft-max classifier is employed to classify non-nucleus and 

nucleus objects. This method is applied to the 500 

histopathology images of breast cancer and the accuracy is 

84.49%. Ciresan et al. [24] detected the nuclei of the mitotic 

breast cancer cell with CNN, which is learned with the 

probability pixels that belong to the mitotic nucleus pixels. 

Each mitotic nucleus patch is taken based on the centre of 

probability pixels. Xie et al. [25] proposed a method where 

the nuclei patches are learned with structural regression 

CNN and the patches are selected based on the voting 

scheme, where the centre of nucleus exists. Moreover, Xie 

et al. [26] introduced an improved structured regression 

method with fully residual CNN. This model is learned to 

create a compact proximity map at the higher response 

around the cell centre instead of the patch classification. The 

structure information of the cell is encoded, and the pixels 

that are near to the cell centre achieved more values than the 

neighboring pixels. However, the performance of this 

method is inefficient in a large number of cells in the 

cytoplasmic image, irregular shape of the cell and non-

homogenous background noise. Ma et al. [27] presented a 

cell detection method for head and neck cancer cell, where 

the method is divided into three steps: pre-processing, patch 

extraction and convolution neural network to learn the 

features. In the pre-processing step, cell images are 

normalized to eliminate the dark reference. However,  it also 

eliminates the essential pixel attributes of the cell. In patch 

extraction, features are extracted from the patch as a pixel 

vector for training and these features are fed as input for 

CNN. However, the nucleus detection accuracy is 86.05%, 

and this accuracy affects the proliferation rate. Another 

histopathology image analysis using deep learning for non-

small cell lung cancer is presented by Nicolas et al. [28]. In 

this method, each layer of CNN is trained with cell features 

without any pre-processing. Instead of training all the layers, 

only the last layer is trained as a transfer learning, and the 

accuracy is 92%. Zhang et al. [29] proposed a pre-trained 

neural network. The cervical cancer nuclei are fine-tuned 

and resampled in the last layer, which is the main advantage 

of transfer learning approach. The performance of this 

method is 91.3%. However, it uses pre-trained network, 

which is not efficient to detect other cancer cell nucleus. 

Chandran et al.[30] introduced a semi-supervised deep 

learning neural network. In this method, the patches of 

retinal cancer cell are segmented with three modules. In the 

first module, the maximum and minimum pixel values are 

set and sent it to the second module to calculate the 

similarity of pixel values. In the third module, complexity is 

measured, and the segmented patches are fed as input for the 

deep learning neural network (DLNN). But the threshold 

value is predefined, in which it is adjusted according to the 

histopathological images. Therefore, the accuracy of the 

nuclei detection depends on a suitable threshold value, 

which is not efficient. Spatially constrained convolution 

neural network (SC-CNN) is proposed by Sirinukunwattana 

et al.[31]. In this method, each nucleus is a collection of 

pixels, and this method finds the probability of the pixel of 

being nucleus pixel using neighboring ensemble predictor 

(NEP). The NEP measures the probability based on the 

intensity value of nucleus pixels. The higher probability of 

the nucleus center is indicated with the higher value of  

pixel. After segmenting the colon cancer nucleus, all the 

nuclei patches are trained with the CNN. This method can 

accommodate a large amount of training data. However, 

NEP not only detects the cancer cell nucleus but also detects 

the normal cell nucleus, which has a similar probability. 

Therefore, the probability value is adjustable, and this value 

is set within a suitable range to find a better result. In this 

method, probability value M = 2 is taken for the 

experimental purpose. Xing et al. [32] introduced a method 

where the nuclei patches are cropped with a sliding window 

method. Then, the patches are learned with CNN to create a 

probability map. The larger probability of input patches 

belongs to the nuclei of the cancer cell. After that, the nuclei 

shapes are marked with the iterative region merging 

algorithm and all overlapping nuclei are detected with H-

minima transformation. Li et al.  [33] applied the granularity 

and morphological process to detect blood cancer cell 

object. Granularity process with probe structure is analyzed 

based on the smooth and noiseless image. After that, 

morphological operation-erosion and dilation are employed. 

Four features of rectangular factor, area, roundness and 

elongation of the cell are considered for the segmentation 

with the adapted active contour algorithm. However, this 

process is iteratively applied to find the optimal 

segmentation results leading to an increase in the processing 

time and a rise in the over segmentation results. Granularity 

process is also used by Narayanan et al. [34], and for the 

final cell segmentation, stochastic gradient optimizer is 

used. After that, constrained CNN are applied to classify the 

cancer cell nuclei. A supervised model combined with deep 

learning and handcrafted features is proposed by the Saha et 

al.[35], in which the textural, intensity and morphological 

features are known as handcrafted features. In this method, 

the rectified linear unit (ReLU) is applied after every 

convolution layer and dropout layer is added to reduce the 

overfitting difficulty after the final connected layer. 

However, the precision rate is 92%.  Feature-based cell 

segmentation is used by Khoshdeli et al.[36]. In this method, 

the Laplacian of Gaussian (LoG) filter is applied to extract 

the cell shape. The colour decomposition information is also 
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provided by the LoG filter. After that, CNN is combined 

with the LoG response and applied to detect the nucleus.  

Based on the above approaches, the high efficiency and 

accurate results are provided with the combination of 

classifying segmented regions approach followed by the 

convolutional neural network method to detect the nucleus 

in the histopathology image are mostly for separating the 

normal and abnormal nuclei. In the proposed method, the 

renal cytoplasmic image regions are segmentated with the k-

mean clustering based on color features to detect the object 

regions and non-object regions. After that, the object regions 

are determined with the SVM whether it is normal or 

abnormal cell nuclei. Selective search is applied to separate 

the isolated and touching or overlapping cell nuclei. Finally, 

regional convolutional neural network (R-CNN) is trained 

with normal and abnormal cell nuclei to detect the renal 

cancer cell nucleus, which is able to estimate the 

proliferation rate accurately. The performance of the 

proposed method is outstanding no matter whether it 

involves with the touching or overlapping cell and the 

number of the clustered cell. 

 

III. PROPOSED METHOD 

 

To detect the renal cancer cell nucleus efficiently and 

measure the proliferation rate accurately, the hierarchical 

method is proposed. The proposed method is divided into 

four steps and organized as follows: cell region 

segmentation, cell region classification, touching or 

overlapping cell identification, and the learning normal and 

abnormal cell regions and proliferation rate estimation. The 

workflow of the proposed method is presented in Figure 1. 

 
Figure 1: The hierarchical framework of renal cancer cell nucleus 

detection and proliferation rate estimation 

 

A. Cell Region Segmentation 

The aim of the cell region segmentation is to classify the 

pixels of the cell region and complex background. Each cell 

is represented by a single nucleus. Thus, the cell 

segmentation is very critical because of noise. The K-mean 

clustering is applied to remove all the uniform areas, such as 

background based on different color features. The feature 

channel is extracted from the L*a*b color model. L*a*b 

color model is very efficient for decoupling of color and 

intensity [1].  
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where: L = The brightness 

            a* = The ratio of green-red color 

            b* = The ration of blue and yellow color 

The L*a*b color model image is presented in Figure 2. 

The original image is modified based on the L*a*b color 

model. The brown cell is clustered after segmentation. The 

brown cells are converted to light brown cells by taking the 

low value of L. This modification improves the clustering 

performance and reduces the loss of information, as shown 

in Figure 3. 

The a* and b* channels are used for the color features of 

the K-mean clustering to classify the background and cell 

regions. The image is grouped into two clusters: tissue 

background and nucleus. After that, the image is converted 

into a greyscale image to perform canny edge detection. The 

holes appear in some cells. These holes are required to be 

filled to detect the boundary of the cell regions with canny 

edge detection. Therefore, the morphological operation is 

applied to fill the hole, as shown in Figure 4. After that, the 

image is ready for used as input of the support vector 

machine [12]. 

Figure 2: The example of L*a*b image; (a) the original image; (b) after 

L*a*b image transformation 

Figure 3: The example of a segmented image; (a) the brown cells image; 
(b) the blue cell image 

 
Figure 4: The example of morphological operation; (a) the grayscale 

image; (b) image after dilation  

Input cytoplasmic renal 
cancer cell image

Segment the object and 
non-object area with k-

mean clustering

Separate all the normal 
and abnormal cell 
regions with SVM

Identify the the isolated 
and touching or 

overlapping cell with 
selective search

Learn the normal and 
abnormal cell regions 

with R-CNN

Estimate the renal 
cancer cell ploriferation 

rate.

(a) (b) 

(a) (b) 

(a) (b) 
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B. SVM To Classify Cell 

The SVM has an excellent capability to classify with the 

small amount of training data samples. An SVM is trained 

with a label and the feature vector to classify the nucleus 

region. The sample training image is labelled manually. 

After that, the hyperplane among the classes is maximized 

with the SVM. The idea of SVM is explained as follows 

[12]: 

Suppose, training data is  ,
1

S
x yi i i , where, the feature 

vector is defined as x
i , the binary label which indicates the 

cell region is defined by  1yi   , the size of samples 

training data is determined as S , where, 1, 2, 3, .......i S . 

Therefore, the decision support function is defined as: 

 

   * *sgn ,

1

S
f x a y K x x b

i i i
i

 
  

                       
(4)

 
 

where, 
*ai is the Lagrange multiplier and the bias *b , 

which is learned from the samples of training data. The 

kernel function is defined as  ,K x xi ,which is used to find 

the relationship between x (feature vectors) and xi

(support vector). To find the optimal value of ai , the 

Lagrangian value is  minimized under the constraints and is 

defined as: 
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where the penalty parameter C is manually specified. 

However, the larger value of C  is the higher penalty for 

misclassification. It is required to define the kernel function 

 ,K x xi for SVM. In general, the linear kernel, radial kernel 

and polynomial kernel function are applied for SVM. In the 

proposed method, the radial kernel is applied, and the 

equation of redial kernel is defined as: 

 

)||||exp(),( 2xxxxK iji                         (7) 

 

where   is defined as a regularization parameter. This 

parameter is adjusted to find the optimal classification result 

[34]. 

 

C. Selective Search For Irregular Cell 

Selective search is a region proposal algorithm and design 

for fast recognition of the object location with high recall. It 

is used for grouping of similar areas of the image, such as 

texture, color, shape compatibility and size. After accurately 

separate the nuclei regions, the overlapping nuclei are 

observed because of their irregular nuclei shape.  
 

 

 

 

Figure 5: The example of splitting nuclei; (a) touching and overlapping 

images; (b) internal distance map; (c) split lines are surrounded at each 

nucleus. 
 

To detect the overlapping segmented nuclei, the marker-

based splitting algorithm is used in the proposed method. 

The touching nuclei are identified based on the number of 

markers, as shown in Figure 5. The number of markers 

determines whether the overlapping nuclei exist or not [32].  
Based on the observation, the shape of the renal cancer 

cell nuclei is convex, and each nucleus object has the local 

distance from cell nuclei boundary. The local distance of the 

overlapping nuclei has the maximum distance. Hence, the 

distance transformation map from the centre of the nucleus 

is used to calculate the number of markers. The inner-

distance of the nucleus is defined as [16]: 

 

||||min)( qppD
Eq




                       (8) 

 

where  p  is the nucleus pixel, ||||  is defined as the 

Euclidian distance, and q is defined as the element of an 

edge pixel of the nucleus boundary. 

To detect the marker of overlapping nuclei, the present 

pixel value should be greater than or equal to the neighbor 

pixels values within the 33 regions. To mitigate the noisy 

pixel impact, the threshold value T is set and defined as 

[16]: 
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where,  is defined as adjustment parameters, M is defined 

as the collection of markers, N is defined as the amount of 

pixels i to the M . Therefore, if the value of T is greater 

than the marker distance, then it would be discarded. 

According to the observation, the single nucleus may have 

several markers and should be combined into one marker. 

However, the total number of markers is unidentified. 

Therefore, the clustering method is implemented to combine 

with the geometrical information to increase the precision of 

markers. In the evidence distance of the i
m  and j

m , 

markers are measured with the clustering effects and defined 

as [16]: 

 

||||min),(
,

qpmmg
jmqmp

ji 
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Instead of a grid search or hard threshold, the adaptive 

threshold is used and defined as [16]:  

 

||))()((||min),(
,

qDpDmmg
jmqmp

ji 


     
(12) 

 

In conventional clustering, the overlapping nuclei may 

have lost the distance information because of the cluster 

centre is used for creating the new cluster. Therefore, the 

original marker is remained, and the clusters of pixel classes 

im  and j
m are combined to create a new cluster, as shown 

in Figure 5. The new cluster is not able to generate the 

further cluster since the current distance is not the local-

maxima. Consequently, the new marker is not able to 

represent the single nucleus object. As a result, the splitting 

error occurs with unnatural nucleus boundary. This problem 

is solved by keeping the original distance information. 

After getting the appropriate makers, the nearest neighbor 

assignment is used to determine the split border of the 

touching nuclei, and the nearest marker is assigned for each 

pixel. However, the unnatural nucleus boundary is created 

for more variation of nucleus size. The effective evidence is 

measured from the marker pixel to solve this problem. 

Suppose, ),( impL  is defined as the effective evidence from 

pixel p  to marker im and is determined as [16]: 
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where pI is defined as the mean intensity of 55 patch, 

which is centred at p . im is defined as the average intensity 

of the marker im of inner-distance and , are defined as 

the adjusting parameters. After that, the p  is defined as: 

 

sm
ii

i

mpLmpS
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),(minarg),(

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D. R-CNN To Detect The Cancer cell 

R-CNN is a deep neural learning architecture consisting of 

non-linearity, convolutional (Conv), pooling (pool) and fully 

connected layers ( c
f ). The raw segmented nuclei pixels are 

taken as input to train the ConvNet. The output layer is the 

combination of several neurons, which represents the single 

class. The weight (W) of the neural network is optimized 

using the backpropagation method by reducing the 

classification error of training sets. Detected renal cancer 

cell nuclei are trained with ConvNet, as shown in Figure 6 

[36]. 

The patches of segmented nuclei as input and convolution 

filter are applied. The sum of Conv is taken as input for the 

non-linearity function, where the rectified linear unit 

(ReLU) ),0()( xMAXxf  . The similar filter is used for the 

same features map. The filter is not the same for the 

different features. The same pattern of feature map in 

different regions is detected by the sharing property of the 

filter in the convolution layer. The feature response of each 

patch is down-sampled and summarized in the pooling layer 

and often estimates the maximum pooling (max-pooling). 

This layer is also responsible for the mirror translation of the 

nucleus. The features maps are combined in the first several 

layers and sent to the feature vector. The last layer of cf  

consists of two neurons, which are used to detect the 

abnormal and normal nuclei. The dropout is applied to 

decrease the overfitting in the fully connected layers. The 

weights of ConvNet are updated according to the gradient of 

the loss function. The learning rate is gradually reduced 

after a few epochs. The learning process is stopped after the 

number of pre-determined epochs [29]. The Conv and pool 

layers generate the small patches and pass through the c
f  

layers. The proposed R-CNN architecture consists of six 

Convolution layer, five max-pooling layer, five ReUL and 

two full connected final layers, as shown in Table 1. At the 

initial stage, three feature maps are taken where the filter 

size is 2 × 2. In the first and second layer, the number of 

feature maps is the same, but the number of neurons is 

reduced to 35 × 35, where the filter size is 4 × 4. In the fourth 

layer, the filter size is 3 × 3. After that, the filter size is  2 × 2 

for all the layers until the fully connected layer, where filter 

size is 1 × 1. The filter is moved on the feature map; 

therefore it is important to reduce the filter size to increase 

the feature map to provide more information in the fully 

connected layer. The dropout is assigned to 0.05 for 

improved learning result. The workflow and the overall 

process of nuclei detection are presented in Figure 6 [35]. 

 
Table 1 

Neural Network Architecture 

 

Layer Type 
Map

s 

Neuron

s 

Filter 

size 

0 Input Image 3 71x71 2x2 
1 Conv 90 70x70 2x2 

2 Max-pooling 90 35x35 4x4 

3 Conv 256 32x32 2x2 
4 Max-pooling 256 16x16 3x3 

5 Conv 384 14x14 2x2 

6 Max-pooling 384 7x7 2x2 
7 Conv 512 6x6 2x2 

8 Max-pooling 512 3x3 2x2 
9 Conv 512 2x2 2x2 

10 Max-pooling 512 3x3 2x2 

11 Conv 512 2x2 2x2 

12 Fully Connected ( cf )  - 1000 1x1 

13 Fully Connected ( cf ) - 2 1x1 

E. Proliferation Rate  

The last step of the proposed method is the estimation of 

the proliferation rate. The simple statistical calculation is 

performed to measure the proliferation rate of the abnormal 

cell which helps the pathologist to determine the 

aggressiveness of renal cancer cell.  The proliferation 

RATE(pre) is defined as [1]: 

 

nuclei) normal ofNumber nuclei abnormal of(Number 

nuclei abnormal ofNumber 


PRE   (15) 

 

IV. EXPERIMENTAL RESULTS 

 

The proposed method is implemented using Matlab 2018a. 

The microscopic cytoplasmic images of renal cancer cell are 

publicly available for research purpose [33]. All the images 

from pathology slides are taken with Aperio Digital 

Pathology Slide Scanners (model CS2). It allows to view the 

ultrastructure of each cell with bright field illumination 

where magnification is 40x: 0.25µM/pixel and scan method 
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is time delay and integration (TDI) line scan. The average 

tissue thickness is (3-5 µm), where the tissue is stained with 

hematoxylin to increase the cell contrast. The sample slide 

images of 33 patients are taken, and total samples are 

divided into five sets to reduce the training time.  These 

microscopic image data sets are available and open for 

research purpose [37]. 

The proposed method is tested on the renal cancer cell data 

sets. The accuracy of the proposed method to detect the 

abnormal nucleus from the cytoplasmic image is compared 

with the existing methods using the same data sets.  

The performance of the neural network is mostly depended 

on the parameter values, such as the number of hidden 

layers, Root Mean Square Error and Correlation Coefficient 

(R-value) between the targets and the outputs. Before 

starting the training, several parameters are initialized, such 

as the total number of test iteration, training and validation 

batch sizes etc. The 16,905 segmented cancer cell and 

22,948 normal cell nuclei of sample images are taken as 

training patches )( st , and 4,217 patches are taken as 

validation patches )( sv . The size of the training batch is the 

total number of patches processed in one batch. 

In the proposed R-CNN, the batch size )( bt  is assigned to 

256. The validation batch size bv  is the total validation 

patches processed in the test phase and bv  is assigned to 50. 

The testing iteration itts is measured as: )/( bsit vvts  . 

The testing interval iv
ts is calculated by the number of 

validation of the proposed method and ivts  is assigned to 

5,000. Therefore, )/( bs tt iterations are required to complete 

the single epoch or whole training set. The maximum 

iteration is assigned to 300,000; learning rate is assigned to 

0.01, weight decay is assigned to 0.005 and momentum is 

assigned to 0.9[35]. 

 

A. Qualitative Evaluation 

The limitations of overlapping nucleus have been 

overcome by properly stained the sample slide. Moreover, 

the complicated shape of overlapping nuclei can degrade the 

segmentation results. Therefore, the features of the 

overlapping cell are extracted and t-test is performed. The 

visualization of the filter layer and the feature training layer 

are shown in Figure 6. The features maps are presented in 

the hidden layers. The architecture of the proposed method 

is created with these features maps and allows to detect the 

abnormal nuclei from the sample image. The qualitative 

results of the proposed method are presented in Figure 7.  

According to the output of the proposed method, the 

abnormal cells are represented with the yellow circle, and 

the normal cells are represented with the red circle. 

Therefore, according to the visual observation, the better 

detection result is provided with the proposed method. 

 

B. Quantitative Evaluation 

The proposed method is quantitatively evaluated with the 

precision (PR), recall (RC) and F-measurements (FM). 

 

 

 

 

 

 
Figure 6: The example of the workflow of the R-CNN network  

 

Figure 7: The example of the detection output of the proposed method; 

(a) the abnormal cell detection; (b) the normal cell detection 
 

This method is compared with the existing methods and 

abnormal nuclei detection with the histology expert. 
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The data set is divided into five sets, and each set contains 

10 sample images. For every set, the true positive (TP) is 

measured. The TP is defined as the agreement for the 

abnormal nucleus detection between the proposed method 

and histology expert. The false positive (FN) happens when 

the histology expert is able to detect the abnormal nucleus, 

but the proposed method fails. The false positive (FP) 

occurs when the proposed method is able to detect, but the 

expert fails to detect the abnormal nucleus. The precision 

 

Features maps Features maps Features maps Features maps 
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(PR), recall (RC) and F-measurement (FM) are calculated 

for each set and presented in Table 2 and 3 [1]. 
  

Table 2 

Blue Cell Detection With Proposed Method 

 

Set MC PC TP 
F

N 

F

P 
PR  RC FM 

1 
346

6 

345

7 

343

2 

3

4 

2

5 

99.

2% 

99.

0% 
99.2% 

2 
531

9 

542

7 

527

3 

4

6 

1

54 

97.

1% 

99.

1% 
98.0% 

3 
475

3 

475

5 

462

8 

1

25 

1

27 

97.

3% 

97.

3% 
97.3% 

4 
400

4 

402

2 

396

9 

3

5 

5

3 

98.

6% 

99.

1% 
98.8% 

5 
579

3 

572

8 

564

6 

9

3 

8

2 

98.

5% 

97.

4% 
97.9% 

Tot

al 

233

35 

233

89 

229

48 

3

33 

4

41 

98.

1% 

98.

3% 
98.2% 

MC = Manual count, PC = Proposed method count, TP = True positive, 
FN = False positive, FP = False positive, PR = Precision, RC =  Recall, FM 

= F-measurement  

 

Table 3 

Brown Cell Detection With Proposed Method 

 

Set MC PC TP 
F

N 

F

P 
PR  RC FM 

1 
490

2 

486

0 

482

6 

7

6 

3

4 

99.

3% 

98.

4% 
98.8% 

2 
378

1 

378

2 

375

4 

2

7 

2

8 

99.

2% 

99.

2% 
99.2% 

3 
261

9 

261

0 

259

1 

2

8 

1

9 

99.

2% 

98.

9% 
99.0% 

4 
391

7 

387

8 

384

1 

7

6 

3

7 

99.

0% 

98.

0% 
98.4% 

5 
191

1 

192

2 

189

3 

1

8 

2

9 

98.

4% 

99.

0% 
98.6% 

Tot

al 

171

30 

170

52 

169

05 

2

25 

1

47 

99.

0% 

98.

7% 
98.8% 

MC = Manual count, PC = Proposed method count, TP = True positive, 
FN = False positive, FP = False positive, PR = Precision, RC =  Recall, FM 

= F-measurement  

 

According to the statistical data of Table 2, the accuracy of 

the proposed method for normal (blue) cell detection is, PR 

= 98.1%, RC = 98.3% and FM = 98.2%. The accuracy of the 

abnormal (brown) cell detection for the proposed method 

based on the Table 3 statistical data is, PR = 99.0%, RC = 

98.7 % and FM = 98.8. The proposed method outperforms at 

any condition of the stained cytoplasmic image. The sample 

outcome results are shown in Figure 7, and  the performance 

of the proposed method is very accurate for overlapping 

nuclei.  

In addition, in equation (19), the mean value of two 

samples is defined by x and y. The difference between the 

two samples is defined with the standard deviation  , and 

the sample size is denoted as n. However, if P is less than 

the significant value 0.05, these samples are considered as 

statistically significant. However, the proper abnormal 

nuclei detection and the accurate proliferation rate are 

achieved with the proposed method [35]. 
 

C. Comparison With Other Methods 

To evaluate the performance of the proposed method, 

experimental comparison has been implemented with the 

existing methods. The same data sets were used for the other 

different nucleus detection methods and the value of PR, RC 

and FM are presented in Table 4. The same validation 

procedure was employed for all the existing methods.  

The manual observation of detecting abnormal nuclei was 

done by the pathology expert. In general, the proposed 

method is very close to the manual proliferation estimating 

value. The proposed method is able to detect the 

overlapping nuclei within a fixed range as well as the 

irregular shape nuclei. The performance of the CHT method 

is intermediate, whereas the IRIC method is remarkably 

better than the other existing methods; however, the 

performance is poor for the overlapping nuclei. The 

limitation of RCD method is unable to detect the irregular 

shape nuclei. However, the average training time of the R-

CNN for 30 epochs is 4 hours. Therefore, the computational 

time of the proposed method is faster than the existing 

techniques and suitable to be used for clinical applications. 

According to the classification strategy 1000 cv NN , the 

average testing time for the single renal cancer cell nucleus 

is 3.5 seconds. 
 

Table 4 

Comparison With Existing Methods 
 

Methods 
Precisio

n 

Reca

ll 

F-

measurement 

Circular Hough 

Transformation Method 

(CHT)[38]  

69.52% 
61.93
% 

65.56% 

Area morphological Method 

(AM)[39] 
83.55% 

66.23

% 
79.42% 

Cascaded Mitosis Detection 
method (CMD)[20] 

84.27% 
65.72
% 

73.60% 

Deep learning Based 

Method (DLB)[40] 
88.48% 

70.53

% 
78.11% 

Iterative Structural Circular 

Detection Method (IRIC)[1] 
92.46% 

88.31

% 
90.70% 

Handcrafted Featured Deep 
Learning Method (HFDL)[35] 

97.75% 
98.01
% 

97.31% 

Proposed method 99.01% 
98.70

% 
98.8% 

 

V. CONCLUSION AND FUTURE WORK 

  

The cancer proliferation rate is important for appropriate the 

dosing of the right anti-cancer drug and the prediction of 

drug response for the cancer cell. It is also an indicator to 

prognosis the aggressiveness of the cancer cell. The 

manually abnormal cell observation is a very monotonous 

work for the pathologists, and accurate proliferation 

estimation is a great challenge for them. The proposed 

method is introduced to reduce the time and improve the 

accuracy of the proliferation value as well as assist the 

pathologists to analyze the cytological images. 

This method decreases the number of parameters of the R-

CNN architecture, as it only needs to set the value of minor 

parameters. The several comparisons with the existing work 

demonstrate the better performance of the proposed method. 

On the other hand, the segmentation accuracy is ensured by 

the SVM. The touching and overlapping nuclei detection are 

enhanced with the proposed method to detect the irregular 

shape nuclei and stained in different conditions. Apart from 

this, the misclassification as abnormal cell nuclei is reduced.  

The internal information of each cytoplasmic image can 

also carry valuable information about the disease. Therefore, 

it is also required to identify the irregular spot of the image 

to help the pathologist to predict the disease factors. The 

computational time would be significantly improved if the 

segmented nucleus is in the proper size for input as R-CNN. 

The poor quality of the nucleus region is the critical factor 

for the R-CNN. Therefore, the quality of the nucleus region 

would be improved in future work.    
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