
 

 e-ISSN: 2289-8131   Vol. 10 No. 3-2 65 

 

Leaf Mechanical Resistance: Effect of Leaf 

Geometry Shapes for Maturity Classification 

 

 

C.W. H’ng and W.P. Loh 
School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 

14300 Nibong Tebal, Penang, Malaysia 

meloh@usm.my 

 

 
Abstract—The leaf mechanical resistance differs by species; 

leaf geometry shape, besides they are maturity-transition 

dependent. Despite the leaf developments being described 

extensively, different leaf geometry shapes and its maturity 

influence on its mechanical resistance is still vague. This paper 

discusses the statistical significance of the leaf mechanical 

resistance by geometry shapes for leaf maturity classification. 

Tensile tests were performed on ten samples from each of 20 

species leaf lamina strips (5 x 50 mm) at three maturity states 

(young, adult, and old). The indicators used were the Tensile 

Strength (ST), Work-to-Tear (WT), and Specific Work-to-Tear 

(SWT). Statistical and classification analyses, supported by SPSS 

and Waikato Environment for Knowledge Analysis (WEKA) 

tools, were performed to examine the leaf mechanical resistance 

indicators on the maturity states predictions. All ST, WT, and 

SWT showed statistical significance were for the young-adult. 

The young-old was only significant for WT which showed the 

better accuracy of 0.11% - 27.14% above ST and SWT for 

maturity classification. However, classification accuracy was 

higher for WT attribute on significant leaf geometry shapes 

segregation, with enhancement of 33.63%. The study suggests 

that WT measure on significant leaf geometry shapes is a useful 

indicator of leaf maturity state classification. 

 

Index Terms—Data Classification; Leaf Geometry; Leaf 

Maturity; Leaf Mechanical Resistance. 

 

I. INTRODUCTION 

 

Plants mechanical resistance often relates to its functional 

bases such as photosynthesis rate, and metabolism level for 

growth–survival trade-offs. The mechanical resistance in 

leaves was identified as one of the key indicators on the 

plant’s anti-herbivore defences. Diverse species demonstrates 

a different tolerance level towards destructive effects caused 

by herbivory and environmental stresses [1].  As the plant's 

age and become mature, their physical defence changes, 

leading to susceptibility to insect herbivores [2]. Leaf 

geometry size and shape factors have long been considered in 

the plant's growth [3, 4]. However, their relations with the 

toughness aspects were not discussed. 

The fracture properties of plants determine the toughness 

of plants towards herbivore. Punching, tearing and shearing 

tests were typical approaches to quantify the biomechanical 

resistance of leaves [5]. The choice of testing approach was 

dependent on the research interests such as herbivory by 

insects or investigation plants sustain strategies [6]. Tearing 

and shearing tests were more commonly used to evaluate the 

leaf mechanical resistance [7].   

The outcomes from these testing included ‘structural’ 

properties, for instance, leaf strength, flexural stiffness, as 

well as toughness (work to fracture) and ‘material’ properties 

such as specific strength, specific toughness and Young’s 

modulus of elasticity [8]. The standard leaf mechanical 

resistance indicators reported in the literature included 

Tensile Strength (ST), Work-to-Tear (WT) and specific Work-

to-Tear (SWT), Work-to-Shear (WS), Specific Work-to-Shear 

(SWS), Punch Strength (SP), Specific Punch Strength (SSP), 

Work-to-Punch (WP) and Specific Work-to-Punch (SWP).  

The leaf maturity state has a substantial influence on the 

plant’s growth, nutrient content, yield, photosynthesis rate 

and physiochemical properties [9, 10, 11]. Although ST, WT, 

and SWT indicators were widely studied on different leaf 

species across countries, the effect of different maturity states 

on leaf mechanical resistance was not clearly defined. Also, 

no previous works have considered leaf mechanical 

resistance by geometry shapes. As such, the leaf mechanical 

resistance indicators by geometry shape could provide some 

useful information for classifying the leaf maturity states.  

The main objectives of this work are to examine the 

statistical significance of the leaf mechanical resistance 

indicators: ST, WT, and SWT by different leaf geometry shape 

on its maturity classification. Tensile tests were conducted on 

20 species (10 samples of each species at different maturity 

states) from the Development Department in USM 

Engineering Campus.  Leaf geometry shapes and maturity 

level criteria were determined by protocols mentioned in 

Section III. The Statistical Analysis of Variance (ANOVA) 

followed by the post hoc tests were performed on ST, WT, and 

SWT to investigate statistical differences between maturity 

levels. Leaf maturity classification was then performed on six 

different algorithms. 

 

II. RELATED WORKS 

 

Previous studies on leaf mechanical resistance 

concentrated on plant’s self-support under the impacts of 

environmental factors and habitat variations [8, 12, 13, 14]. 

Some additional efforts also considered the leaf morphology 

for a better understanding of the leaf mechanical resistance 

[15]. Meanwhile, works related to leaf maturity were mainly 

performed on the plant’s health and crops yield. For instance, 

Jahan et al. [16] evaluated the effect of leaf maturity on 

antioxidant activity on Moringa plant while Tyson et al. [17] 

evaluated the influence of leaf age on the plant’s infection.  

Lowman and Box [18] presented the variation in leaf 

toughness at different maturity states. In [18], punching test 

with penetrometer was used on five species of Australian 

rainforest trees. Leaf samples were collected from the same 

branch and segregated by five leaf ages for each species. It 

has been agreed in the literature that leaves can vary 

significantly by distinctive features such as outline shape, 
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texture, venation, and colours. 

Lee et al. [19] had identified plant using the deep learning 

approach by considering their features. Their findings proved 

that the venation showed better representative features than 

the outline shape. Dyrmann et al. [20] identified plant species 

using a combination of the leaf and plant outline. In Harrison 

et al. [21], the tropical tree species were recognised from the 

leaf spectral. Mahlein et al. [22] developed specific spectral 

disease indices for diseases detection in crops; while Zhang 

et al. [23] conducted plant diseased leaf segmentation and 

recognition by K-means with superpixel and orientation 

gradient. Regarding leaf maturity state, Hang et al. [24] 

studied the tobacco leaf by using spectral feature parameters 

with the Support Vector Machine (SVM) approach.  

Previous researchers have confirmed that the variations in 

leaf mechanical resistance were dependent on its species and 

the surrounding variables such as nutrient and water supply, 

light intensity and competition among the neighbourhood. 

While the leaf outline shape was considered in many 

classification studies, the impact of its different shapes on leaf 

mechanical resistance is still vague. The knowledge about the 

leaf mechanical resistance classification by maturity level is 

also lacking. Thus, this paper attempts to fill up this 

knowledge gap.   

 

III. METHODOLOGY 

 

A. Sample Preparation  

All the leaves samples were collected from terrestrial 

potted plants grown and nursed at the Development 

Department in USM Engineering Campus (5°08'59.8" N 

100°29'27.8" E, approximately 4 m above sea level) between 

September to October 2017. Five leaf samples from each 

species, for 20 different plant species at three maturity states 

(young, adult, and old) were collected. The determination of 

leaf maturity criteria was based on the preliminary field 

observations by a number of leaves on branches, its colour or 

size; whichever is prevalent with reference to [18] and [25] 

as shown in Figure 1.  

 

 

Figure 1: Leaf maturity state determination criteria 

 

Leaf images were captured using Mi3 Smartphone camera 

(Sony IMX135 sensor, 13-megapixel 1/3.06-inch chip) in a 

light-controlled condition. The leaf geometry dimensions 

(longest width and length) were measured using the ImageJ 

1.51n software. The leaves were subsequently stored in a 

plastic bag with moist towels until deemed ready for the 

tensile test, within 24 hours of each species leaf collection.  

There were nine leaf geometry shapes (cordate, elliptical, 

irregular, lanceolate, linear, oblanceolate, obovate, ovate, 

peltate) compiled and characterised based on [26, 27, 28].  

The determination of leaf shapes proposed in this study was 

according to the hierarchy of “leaf outline”, “the location of 

broadest width” and “width-to-length ratio” criteria as shown 

in Figure 2. The leaf lamina outline could directly determine 

the ‘cordate’ and ‘irregular’ shapes on visual inspection. The 

remaining seven shapes falls under the convex shape outline 

were distinguishable by the location of broadest width; ‘Top’, 

‘Middle’, and ‘Bottom’. The ‘Top’ location refers to the 

region above middle line of the leaf lamina; the ‘Middle’ 

location refers to the region at the middle line while the 

‘Bottom’ location refers to a region below middle line. 

  

 

Figure 2: Criteria for leaf geometrical shape determination 

This is further refined by different categories of width-to-

length ratio measurement [27] into ‘elliptical’, ‘lanceolate’, 

‘linear’, ‘oblanceolate’, ‘obovate’, ‘ovate’, and ‘peltate’ 

shapes. The dimensions which were not detected on any of 

these criteria were categorised as ‘Special’ and discarded 

from the study as indicated in Figure 2. Two parallel-sided 

intercostal lamina strips (50 x 5 mm) with an aspect ratio 

(length: width), 10:1 were used to avoid the potential effects 

of necking [29]. Therefore, the highly dissected, needle-type 

or twisted leaves, palmate compound leaflet and small leaves 

of size < (10.4 x 50) mm were avoided. Strips were cut within 

2 mm away from both sides of the midrib using HIPPO SS650 

6.5” scissors. 

Approximately 5-10 mm of the leaf strip’s surface from 

each end was attached to an aluminium plate using 
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cyanoacrylate compound (super glue) and strengthened with 

cloth tape to mount within tensile equipment clamp as 

presented in Figure 3. This is to ensure the test strips did not 

break at the ends and to prevent direct grip effect that 

potentially damages the leaf tissue. 

  

             

Figure 3: Photos and illustrative diagram of the leaf strip setup mounted on 

Instron UTM for the tensile test 

B. Tensile Testing 

Axial tensile tests were conducted using the Instron 

Universal Testing Machine (UTM), model 3367 equipped 

with a 500N static load cell. The crosshead extension speed 

was kept constant at 0.45 mm/s, and the resulting load (N) 

applied with the displacement (mm) were recorded to a 

personal computer at every 100 ms. Three leaf mechanical 

resistance properties were measured and derived, ST, WT, and 

SWT.  

• ST is defined as the work to tear the leaf per unit leaf 

thickness. It indicates the maximum stress to break the 

leaf reflecting the measure of resistance against crack 

initiation [12].   

• WT is defined as the absolute amount of work done to 

tear the leaf per unit leaf width [12]. This attribute 

designates the energy required to break the leaf. 

• SWT indicates the specific toughness (work to 

break/tear) influenced by the leaf thickness [12].  

 

ST, WT, and SWT were evaluated according to Equations (1) 

to (3). 

 

   𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 𝑆𝑇 (𝑁𝑚−1) =
𝐹𝑇 

𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛
                        (1) 

𝑊𝑜𝑟𝑘 − 𝑡𝑜 − 𝑡𝑒𝑎𝑟, 𝑊𝑇 (𝐽𝑚−1) =  
𝐹𝑇×𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

2
                (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑜𝑟𝑘 − 𝑡𝑜 − 𝑡𝑒𝑎𝑟, 𝑆𝑊𝑇 (𝐽𝑚−2) =
𝑊𝑇

𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛
   (3) 

 

where: FT = tearing force (N), the maximum force exerted to 

break apart leaf strip on UTM. 

cross-section = area (mm2) of which leaf strip is 

broken into pieces (thickness × width). 

 

C. Statistical Analysis 

The statistical analysis was performed using IBM SPSS 

software version 22. Pearson correlation analysis was used to 

investigate associations among ST, WT, and SWT.  One-way 

ANOVA was used to test the differences among the leaf 

maturity states (young, adult and old) for a 95% confidence 

interval.  

We tested two hypotheses relating to the leaf mechanical 

resistance indicators (ST, WT, and SWT) across species: (i) The 

statistical significances of mechanical resistance indicators 

differ by maturity states (young, adult, and old), (ii) Leaf 

mechanical resistance by maturity states differ better in terms 

of leaf geometry shapes. The basic assumptions for one-way 

ANOVA including independent observations, normal 

distribution, and equal variances in each data group were 

carefully studied [30].  

Any outlier and extreme values detected were filtered to 

ensure that qualitative data remains for reliable statistical 

analyses. The independent data between maturity levels and 

geometry shapes has confirmed the unrelated independent 

observations. Due to this study large sample size data (𝑛 =
600), the Central Limit Theorem supports the convergence to 

a normal distribution.  

Following Ghasemi and Zahediasl [31], the ANOVA is 

robust to violations of normality and tiny adverse effects on 

results. In the event of non-homogeneity of variance analysis, 

the Welch’s ANOVA test was used instead of one-way 

ANOVA.  Tukey HSD post hoc test was performed to further 

investigate the differences in mechanical resistance within the 

three maturity states: young, adult and old. Games-Howell 

post hoc test was applied when non-homogeneity of variance 

was violated.  

 

D. Classification Analysis 

The classification analyses were conducted using 

NaiveBayes, SMO, IBK, KStar, J48, and REPTree 

algorithms in Waikato Environment for Knowledge Analysis 

WEKA (WEKA) tool version 3.8.1. The inputs were 600 

instances featured by the mechanical resistance ST, WT, and 

SWT and their corresponding maturity state: young, adult and 

old were the class attribute outputs. All the classifications 

were conducted under a 10-fold cross-validation test option 

to maximise information gained (ensuring all instances were 

used for both training and testing) and prevent overfitting 

phenomena.  

The default parameters for each classifier were used 

without optimisation since we focus on the impact of study 

attributes instead of the algorithm’s performance. ZeroR 

algorithm which always predicts the class with most 

observations was used as the performance reference baseline 

for comparisons among classifiers [32]. The classification 

analyses were considered on each attribute ST, WT, and SWT 

and their combinations for the entire collective samples. The 

better classification performance was further analysed by 

segregating the dataset into nine geometry shapes 

accordingly.  

 

IV. RESULTS AND DISCUSSION 

 

ST, WT, and SWT were the attribute indicators, 

experimentally measured to determine the leaf mechanical 

resistance. Associations among ST, WT, and SWT were 

evaluated on the Pearson correlation.  

These attributes were statistically assessed on their mean 

differences within group samples across species. One of the 

issues identified was the existence of outliers.  A remedy was 
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taken in which 15% outliers from the original dataset 

consisting of 600 instances data were trimmed down to 509 

instances. An assumption for the one-way ANOVA has not 

met; unequal sample size effect upon the outliers’ removal 

and the violation of the homogeneous variance. This was 

adjusted on Welch’s ANOVA with the follow-up Games-

Howell post hoc test to determine the mean differences 

between maturity states.  

The maturity state classifications were dependent on ST, 

WT, and SWT attributes. Classification results on the cleaned 

dataset (outliers’ removal) (n=509) were demonstrated on 

NaiveBayes, SMO, Ibk, KStar, J48, REPTree algorithms 

using 10-fold cross-validation. The cleaned dataset 

classification was considered to deduce the results obtained 

from statistical significance analysis. The baseline classifier 

(ZeroR) was included to indicate the minimum acceptable 

performance thresholds for comparisons among algorithms. 

As observed in Figure 4, classification accuracies achieved 

were low on each ST, WT, and SWT and their combinations, 

within the range 30.25% - 44.01% for all algorithms.  

The findings from statistical and classification analyses 

were discussed within entire collective samples and 

subsequently segregated by the leaf geometrical shapes. 

 

 

Figure 4: Classification accuracy by leaf mechanical resistance for the 

collective sample cleaned data 

 

A. Collective Samples 

All the leaf mechanical resistance attributes: ST, WT, and 

SWT were strongly inter-correlated to each other as listed in 

Table 1. According to Edwards et al. [33], even though the 

indicators were strongly correlated, it is risky to assume that 

either attribute by itself could sufficiently represent the leaf 

mechanical resistance. It is therefore essential to take a step 

further to investigate the attributes’ impacts on the mean 

differences between the leaf maturity states.  
 

Table 1 

Pearson Correlation Among ST, WT, and SWT  

(Statistically Significant, p < 0.05*) 
 

 ST WT SWT 

ST    

WT 0.836*   
SWT 0.911* 0.919*  

 

The results from Table 2 manifested that there were major 

significances between the young-adult as agreed in ST, WT, 

and SWT attributes showing all tests were statistically 

significant (p<0.05). Meanwhile, significant differences were 

observed between young-old maturity states only for WT. 

Conversely, no significant results were observed for adult-old 

in all ST, WT, and SWT.  

As reported in [18], old leaves were found four times 

tougher than the young leaves, since the adult leaves have 

higher leaf tissue density, toughness, leaf thickness and Leaf 

Mass per Area (LMA) as compared to the sapling leaves [8]. 

Past studies had merely focused on the comparisons between 

young (juvenile or sapling) and adult leaves. An early 

prediction observed at this level was that there was not much 

amplification in the leaf mechanical resistance after maturity. 

Therefore, the adult and old leaves were hardly 

distinguishable by the mechanical resistance measures.  

On the other hand, there was a slight variation effect 

between the young-old states which was seen through 

significant results for WT attribute while the results were 

insignificant in ST and SWT attributes as shown in Table 2. 

The insignificant findings on young-old on ST and SWT 

attributes shall cause the tendency of cancelling effects 

leading to a non-distinguishable mean difference in young-

old leaf maturity states. 

 
Table 2 

Statistical Analyses Result for ST, WT, and SWT on Mean Difference 

between the Maturity States (Statistically Significant, p < 0.05*) 
 

Response 
variable 

Welch’s 
ANOVA 

Post hoc test (Games-Howell) 

young-

adult 

young- 

old 

adult-

old 

ST 0.033* 0.031* 0.251 0.540 
WT <0.001* <0.001* 0.005* 0.133 

SWT 0.013* 0.009* 0.431 0.129 

 

B. Leaf Geometry Shape 

On discrimination by nine leaf geometrical shapes, results 

showed statistically significant differences among maturity 

states for ST, WT, and SWT in three shapes: Lanceolate, Linear 

and Oblanceolate while non-significant for the remaining as 

indicated in Table 3. The young-adult and young-old were 

observed significant for Lanceolate’s on ST, young-adult, and 

adult-old for both WT and SWT measures. In Linear, young-

old was more variable for ST, while young-old and adult-old 

indicated more differences for WT and SWT. No significant 

effects were observed in ST, WT, and SWT for young-adult.  

While in Oblanceolate, young-adult and young-old were 

observed significant for ST, WT, and SWT. It may be argued 

that the three significant shapes were dominant over the non-

significant ones, to distinguish leaf maturity states better for 

classification analyses, as compared to the collective samples. 

Genetic, biotic and abiotic components play a role in leaf 

shape diversity [34] while the specific properties of cell walls, 

vein networks, and epidermis properties could be important 

aspects in determining leaf mechanical resistance [35].  

However, no study relates leaf maturity states to leaf 

geometry shapes. One of the explanations could be due to the 

limitation of leaf maturity determination criteria and 

protocols used. Seedling leaves and small size leaves were 

inappropriate to be used; while most of the old leaves might 

easily drop-off or defected. These conditions gave constraint 

to the sample leaves collection to sufficiently represent leaf 

maturity states across species. 
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Table 3 

Statistical Significance Results, p < 0.05* for ST (WT) SWT between Maturity States by Leaf Geometry Shape 

 

Shape No. of sample, 𝒏  ANOVA/Welch’s ANOVA& 
Post hoc test (Tukey HSD/Games-Howell&) 

young-adult young-old adult-old 

Lanc.* 30 <0.001* (0.002*, &) 0.005*,& 0.001* (0.004*, &) 0.009*, & 0.002* (0.996&) 1.000& 0.897 (0.003*,&) 0.006*,& 

Irre. 30 0.809 (0.522) 0.774 0.981 (0.599) 0.812 0.802 (0.570) 0.807 0.895 (0.999) 1.000 
Obov. 112 0.339& (0.112&) 0.073& 0.633& (0.734&) 0.864& 0.321& (0.654&) 0.204& 0.846& (0.098&) 0.141& 

Ovat. 90 0.340 (0.250) 0.212& 0.318 (0.252) 0.187& 0.606 (0.933) 0.908& 0.873 (0.431) 0.321& 

Elli. 176 0.680 (0.753&) 0.947 0.693 (0.937&) 0.982 0.772 (0.960&) 0.988 0.992 (0.735&) 0.942 
Line.* 30 0.018* (0.002*) 0.004* 0.321 (0.960) 0.925 0.265 (0.004*) 0.007* 0.013* (0.008*) 0.017* 

Cord. 60 0.410 (0.389) 0.511 0.436 (0.356) 0.583 0.986 (0.813) 1.000 0.532 (0.723) 0.565 

Obla.* 40 0.005* (<0.001*) 0.000*,& 0.022* (<0.001*) 0.022*,& 0.012* (<0.001*) <0.001*,& 0.997 (0.977) 0.983& 
Pelt. 30 0.296 (0.150) 0.379 0.275 (0.267) 0.382 0.854 (0.166) 0.551 0.563 (0.957) 0.953 

 

C. Leaf Maturity Classification 

Since the leaves’ maturity differ by its mechanical 

resistance on statistical analyses, the maturity state 

classifications with collective samples were presented. 

Classification accuracies range between 30.25% - 44.01% on 

collective sample cleaned data as listed in Figure 4. 

Moreover, Figure 4. shows that ST, WT, and SWT alone 

achieved better classification accuracy, whereby, the 

combinations of ST, WT, and SWT attributes has weakened the 

performance. WT was the best attribute of all for maturity state 

classification. When comparing the before and after cleaned 

(without outliers and extreme values) data, WT showed the 

highest accuracy enhancement of all, 4.90% - 30.03% (Table 

4). Considering only reliable results shown above the 

baseline, the best classification accuracies were on WT 

attribute: 44.01% with KStar, 43.03% with J48 and 41.26% 

with REPTree. Low accuracies were indicated on ST attribute: 

35.76% with J48 and 34.77% with REPTree (Figure 4).  

  
Table 4 

Classification Accuracy Changes on Cleaned Data from the Original by 

Classification Algorithm 
 

Algorithm 
Leaf mechanical resistance indicator 

ST  WT  SWT  ST +WT+SWT 

NaiveBayes -3.98% 29.12% 9.90% 16.17% 

SMO 0.87% 30.03% 7.20% 14.96% 
Ibk -5.97% 4.90% 4.59% -6.14% 

KStar -3.45% 3.97% 8.74% -3.00% 

J48 7.29% 12.73% -0.45% 2.89% 
REPTree 10.98% 6.26% 6.03% 3.44% 

 

Additional information about the geometry shape 

significance was used to classify the maturity states via 

mechanical resistance indicators. NaiveBayes, SMO, Ibk, and 

KStar algorithms were excluded at this level based on the 

performances indicated below the baseline in collective 

sample classifications. As the WT feature alone has proven the 

best classification accuracy, the maturity state classification 

analyses by leaf geometry shape were only executed with WT 

attributes as shown in Figure 5.  

All classification accuracies in each geometry shape were 

above the performance baseline except for ‘irregular’, 

‘cordate’ and ‘peltate’ shape. As expected from the statistical 

analyses outcome, the better classification accuracies were 

reflected in significant shapes; 57.50% for ‘oblanceolate’ on 

the J48 algorithm and 50.00% on the REPTree algorithm, 

56.67% and 53.33% on the J48 algorithm and REPTree for 

‘linear’ shape respectively and 43.33% for ‘lanceolate’ on J48 

algorithm. Apparently, good classification results tie with the 

significant shapes: ‘oblanceolate’, ‘linear’ and ‘lanceolate’ as 

reported in statistical analysis (Section IV. B). 

 

 

Figure 5: Classification accuracy considering leaf geometry shape on WT 

attribute of J48 and REPTree algorithms 

The classification analyses performed better by leaf 

geometry shape compared to the entire collective samples. 

The performances tally with the outcomes of the statistical 

significance tests showing significant differences observed 

for WT on young-adult and young-old while ST and SWT 

showed significances on young-old only. On further 

breakdown into leaf geometry shapes, the statistically 

significant shapes showed better classification accuracy into 

corresponding maturity states.   

 

V. CONCLUSION 

 

On average, the leaf mechanical strength by maturity state 

varied considerably by the ST, WT, and SWT indicators. 

Despite the apparent significance of ST, WT, and SWT among 

species, there is relatively little known about the variation by 

maturity state across species. This study presents leaf 

maturity classification by its mechanical resistance attributes. 

Two study hypotheses were accepted, the statistical 

significances of mechanical resistance indicators differ by 

maturity states, and the leaf mechanical resistance by 

maturity states differ better in terms of leaf geometry shapes. 

Significant differences on ST, WT, and SWT between the young 

against adult or old maturity states were observed. Based on 

the results, ST, WT, and SWT were correlated strongly with 

each other.  Findings also showed that the WT is the best 

predictive attribute to classify the leaf maturity state. 

Classification accuracy is higher when entire collective 

samples further segregated by geometry shapes, in particular, 

on lanceolate, linear and oblanceolate shapes. An 

improvement of 33.63 % for WT could be attained on leaf 

geometry shapes classification. Other mechanical resistance 

influences could be taken into consideration.  

Future improvements in the classification accuracy could 

be targeted on other leaf geometrical measures and textures 

like length, perimeter, mass and the leaf venation. 
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