

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 10 No. 3 117

Tailoring Software Development

Methodologies for Reliability

Mohammad Ahmadi1, Babak Bashari Rad2 and Michael Onuoha Thomas2
1School of Computing, Engineering and Mathematics, Western Sydney University, Australia.

2Asia Pacific University of Technology and Innovation, Malaysia.

m.ahmadi@westernsydney.edu.au

Abstract—In recent times, many organizations have sought

ways of improving the quality of software products due to the

complexity and continuous change in technological trends.

These trends have given rise to more sophisticated software

systems, which are required for proper functioning at all times.

Most research literature proposes tailoring of standard

development methodologies due to their inadequacies and

inability to meet up with users’ needs and system requirements.

Reliability engineering has become an approach towards

addressing software systems complexity, and also serve as a

guarantee towards quality conformance and assurance of

software products. In this research paper, the importance of

reliability and tailoring is discussed to lay the foundation for the

integration of basic reliability engineering techniques into

software development.

Index Terms—Methodologies; Quality Assurance; Reliability

Engineering; Software Development.

I. INTRODUCTION

The world we currently live in is getting complicated day by

day, with new issues and trends arising daily due to the

complexity and needs industrially and technologically.

Software development paradigm for decades continues to

evolve with much research both industrially and

academically, proposing different dimensions and approach

towards mitigating the complexity and issues [1], which

arises during service delivery in both software development,

deployment and also project management execution. Issues

like availability, dependability, usability, and reliability are

some fundamental quality principles which according to [2],

[3-7] must be possessed by every system for effectiveness and

efficiency, due to the ever-changing demands in systems and

product functionality. The architectural representation of

systems and product have over the past years evolved due to

technological changes.

New technological paradigms continue to emerge and

evolve with cloud computing, internet of things and big data

analytics leading the way. The reliance of humans to these

technological paradigms has also increased due to the

capabilities of these technologies to easily and readily solve

or reduce problems encountered in our daily lives and

activities [8-13]. Software integrated into these technological

trends needs to function at its maximum capabilities to ensure

there is no disruption or interruption of service while in usage.

The principle of tailoring ensures that processes guaranteed

in software engineering and information technology are

adjusted to meet the needs and objectives of service delivery

in a software system. Organizations like PMBOK, PRINCE

2, ISO/IEC and IEEE continues to provide and propose

mechanisms, principles, and techniques for integration into

normal development, production, deployment and

management to ensure every system or product development

with project management conforms to the responsibility of

providing quality service(s) to the users or stakeholders. The

concept of reliability arises due to the need to continually

facilitate quality assurance of both products and services.

Reliability engineering ensures that some basic fundamental

engineering principles and techniques are integrated not only

into software development but also towards ensuring

effectiveness and efficiency in product and service during

project management.

Scholarly articles from different schools of thought defined

reliability engineering as the ability of a product to be totally

free from fault or failure, also as the ability to minimize

failures, faults, or errors in a product or service [1, 7, 9, 14-

19]. Faults, error or failure signifies unsuccessful execution

of a process in a program, as noted in [14]. The effect of fault

occurrence in a software system can be very devastating due

to the enormous reliance on humans to these systems. This

software system constitutes our daily lives and users depend

heavily on them for security, industrial and home automation

hence adequate measures are required to guarantee their

functionality.

To further expatiate on the necessity of tailoring the

principles and techniques of software development

methodologies and quality assurance in service delivery

through reliability engineering of product, this research paper

evaluates previous literature in a bid to profound a basis for

studies towards developmental approach, and project

execution for cost-effectiveness and quality assurance of

software products and services. Software development

methodologies serve as a guide towards successful execution

of software products and hence should be continuously

tailored according to [20-21] to meet the needs of the

phenomenon in technological dynamics.

II. RELATED WORKS

The prospect of reliability with respect to how dependable

a system existed since the first development of computer

system in the 80’s [22-23]. This concept of reliability was

necessitated due to the frequency of failures in early

computers. Reliability as the name implies, refers to trust. It,

therefore, means the ability of a software computing system

to function and exist without faults, errors or failures [16]. To

achieve reliability in a system, according to [22] it is

necessary to design a framework that improves the trust of the

users-to-computing system through the design and

application of a framework that integrates necessary

engineering techniques for improving the functionality of

Journal of Telecommunication, Electronic and Computer Engineering

118 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 10 No. 3

complex systems. Software systems constitute the majority of

the complex systems within our environment hence,

according to [24] it is necessary to implement design criteria

during the development of software’s to ensure its reliability

is guaranteed. [25-26] suggests that tailoring software

development should be considered during development to

meet the ever-rising developmental challenges experienced in

software engineering due to changes in many factors i.e.

users, machine, and environmental requirements. Tailoring

simply refers to the act of modifying a particular

developmental model or process to suit current project or

environment. Although agile development methods are

widely employed or used during development or project

execution, it is pertinent also that it should be easily tailored

with respect to the project to be executed. Considering the

dynamics in software development, according to [27] the

concept of reliability development model is necessary to

eliminate faults is software systems.

III. TAILORING METHODOLOGIES

The process of tailoring software development

methodologies according to [28] and [29] is an emerging

trend practiced in most industries involved in software

development albeit little research that has been carried out in

this area. In most developmental organizations, the essence

of development is based on a stringent approach, which in

most cases fails to address all problems arising due to

technological changes. Tailoring is necessitated solely to

increase performance and productivity, which ultimately

ensures efficiency and effectiveness in the quality of a

software product.

Since the conceptualization of software development

practice, which lays emphasis on standards and guideline for

development, many development practices have

consequently shifted massively from traditional development

practice towards a lightweight agile based development

approach. According to [26], [30] building processes from

scratch can be very risky with high overhead, as such, many

product development organizations tailors (modifies or

change) already existing development methodologies to suit

the development process of a new system.

This process sometimes can be time-consuming, and most

times does not guarantee the total quality of a software

product. Flexibility in software development approach

according to [31-32] provides an avenue that the stability of

the final software product developed is guaranteed, it also

ensures that all appropriate mechanisms that guarantee the

coherent final system is produced, despite the potential

difference in requirements and specifications. The basic

fundamental concept in developing new products and

services is to ensure that they are highly reliable in dispersing

the essential functional values for which they are created for,

irrespective of the environment.

In [33], [29], and [30] it is stated that the agile manifesto is

based on the application of fundamental, appropriate tools

and techniques towards a highly efficient working product

with constant user collaboration throughout the phases or

process of development. The justification made in agile

manifesto towards integrating appropriate tools and

techniques in the provision of a high-quality product, [33]

gives room for application of systems engineering processes

towards ensuring that the goals and objectives of the agile

manifestos are met.

IV. PREMISE FOR RELIABILITY

Software reliability has over the decades become a

bottleneck in both small, large and complex systems. Unlike

hardware systems, designing for the software system is more

complex and difficult due to systems functionalities and

unending changes in both users and environmental

requirements [1]. In [34] in Computerworld, it was stated that

in America alone software problems and defects as a result of

bugs cost the U.S economy an estimated sum of $59.5 billion

yearly, in which half of the cost is borne by the end users and

the rest by the software developers and vendors. To ensure

the issues relating to inadequacies in software development

and functionality, [35] suggest benchmarks and standards that

would ensure that software systems meet up with

requirements and conforms to specification is enforced.

This process would ensure proper engineering of software

products towards maximum functionality. According to [16],

[36], and [1] software development sectors and their

developmental processes, approach or procedures have

greatly improved but still far from the issues in regards to

design and development for highly reliable software systems.

It was further stated by [1] that issues relating to memory loss,

leak, corruption, overflow, and deadlocks are still some of the

problems that have persisted over time. Reliability, as

represented in figure 1, incorporates many other quality

characteristics, hence serves as a more comprehensive quality

process which ensures all failures and errors are totally

eliminated in a computing system.

According to [19], the processes ensured through design

and development for reliability ensures that cost of software

development is drastically reduced due to the elimination of

future recurring maintenance of a software system. Design

and development for reliability according to [15] and [37] has

not been fully defined and integrated into most development

paradigm.in a bid to improve systems prospects according to

functionality [16] the concept of reliability was

conceptualized. Design, development and testing for

reliability ensure that systems conform to specifications and

functions maximally, at all times.

V. RELIABILITY ENGINEERING

In most software developmental methodological approach,

the process of testing and validation of functional

components in a software system results in delays and also

cost high without any adequate assurance of functional

stability of the software system processes [38] and [1].

Reliability

S
af

et
y

In
te

g
ri

ty

A
v
ai

la
b

il
it

y

S
u
rv

iv
ab

il
it

y

M
ai

n
ta

in
ab

il
it
y

Figure 1: Reliability Attributes [39]

Tailoring Software Development Methodologies for Reliability

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 10 No. 3 119

Testing software components in software is a subject of

strong conflicting force in software development engineering

because most approaches focus more on iteration process,

which states that at every level of development, any issues,

error, or fault discovered or encountered can be revisited,

reevaluated and mitigated. The problem of reiteration is the

time spent on revisiting or repairing a single particular system

or product. The issues as to frequent problem of a software

system as a result of failure or faults in a system according to

[1], [14], [16], [26], [35], and [38] is because most software

developmental process is not engineered and as such the

testing process cannot be adequately relied on and in most

cases can cost more than expected due to time of reoccurring

maintenance. To enable a competitive and stable software

system with less time towards service delivery during

development, the fundamental processes of development

must be engineered and aligned towards sustainability in

products and services.

Reliability engineering uses the operational profile of a

software system and guides developers to test software

systems and products, in general, more realistically. This

process makes it easier for developers to trace the quality

level achieved in a system during development or

deployment. The process of reliability engineering plays a

very important but undervalued role in today’s software

development process [17]. The study and process of

reliability engineering is a very broad discipline which is

practiced virtually in most industrial sectors, it ensures

quality as a necessity is maintained and improved daily.

Reliability engineering which according to [1], [16], [18],

[40], and [41] is a process which focuses on basic engineering

techniques ensured during design, development, deployment,

and maintenance of a system.

 [16] states that the ubiquitous nature of most software and

its invisible nature makes it more beneficial with respect to

space but also harmful. The reason for its negative nature is

due to the fact that no one can state when, how, and where a

software system would fail, the failure of an important

component in a software system can in cure great cost for the

users.

Reliability engineering by definition refers to the

capability of a product i.e. software, hardware to function at

its maximum capacity without any issues arising either from

failure or breakdown [1], [16], [40], [42], and [43]. The

processor techniques ensured or employed during reliability

of product or services ensures it is totally free or minimal

defects from faults, errors or failure. The process of reliability

is centered upon key attributes towards the operation of

failure-free systems within a specified time-frame. This

entails that at every given point of time, software systems

must function properly and appropriately within its specified

duration. Figure 2 depicts the basic processes used in

providing a framework towards quality availability in a

system as proposed by [14] and [16], it describes the

validation process through extensive testing of a software

system to ensure that at every developmental phase, all errors,

faults or failures are discovered and eliminated.

The reliability framework depicted by [14] and [16] as

shown in Figure 1 encompasses four fundamental phases

which are reliability objective definition, the operational

profiling of the system, modeling and measurement and

validation of the reliability.

VI. RELIABILITY ENGINEERING TECHNIQUE

The prospects towards achieving highly reliable software

system depend on the application and strict adherence to

some fundamental engineering principles, according to [14],

[16], [24], [44], and [45], the following are some basic

reliability engineering techniques which ensure the provision

of high-quality software product:

• Fault avoidance

• Fault detection

• Fault tolerance

• Fault removal

Determine Reliability

Objective

Develop Operational

Profile

Feedback to Next

Release

Perform Software Testing

Collect Failure Data

Apply Software Reliability

Tools

Select Appropriate Software

Reliability Models

Use Software Reliability

Models to Calculate Current

Reliability

Start to Deploy

Validate Reliability in the Field

Continue Testing

Reliability

Objective met?

Yes

No

Figure 2: Overview of reliability implementation process [16]

Reliability

Faults

Errors

Failures

Fault Avoidance

Fault Tolerance

Fault Removal

Fault Forecasting/Detection

T
hr

ea
ts

M
ea

ns
/T

ec
h
n

iq
u
e
s

Figure 3: Reliability threats and mitigation techniques [39] and [41]

Journal of Telecommunication, Electronic and Computer Engineering

120 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 10 No. 3

Fault Avoidance: according to [16] and [24] this technique

describes the defensive mechanism ensured towards

unreliability, a fault never created would cost nothing to fix.

The process in avoidance serves as a foundation towards

every developmental methodology, fault avoidance entails

that functional requirements i.e. user requirements, systems

requirement and the operational environmental requirement

is properly collected and critically analyzed to ensure that

proper refinement of the systems’ functionality is ensured and

also defined. This process does not totally guarantee defect-

free software but ensures minimal defects which can be

further mitigated through the fault removal technique. Some

processes ensured in this technique includes information-

hiding and strict adherence to all developmental principles

because according to [27] poor requirement configuration and

requirement elicitation comprise of the main process by

which faults are introduced in a system.

Fault Detection: this technique categorically aims at

detecting all faults or errors, once the software system is

developed and operational, this process recognizes the

inadequacies in software systems, as such ensures

measurement between the period and time of occurrence and

the time the fault is detected. According to [16], if the time

period between discoveries of the fault is shorter, it means the

software recovery time is better. To achieve maximum

detection of faulty components in a software system, proper

reliability tools such as root cause analysis and Fault-Tree

Analysis (FTA) needs to be deployed to monitor the system

concurrently while it functions in order to promptly identify

inconsistencies during operation.

Fault Tolerance: this technique according to [46] adds

some special features and functions to a software system or

program to ensure the system functions properly as well as

operates normally irrespective of any triggered defect(s)

tolerance according to [47] provides redundancy and

stringent adherence and compliance towards system

requirements. Error or fault management is the capability of

a software system to function properly at all time. According

to [48] all systems should be equipped with mechanisms for

preventing, detecting, and correcting faults in a bid to reduce

the risk of disruption in service during usage. This ensures

that processes and tools are employed to reduce excesses as

well as eliminate irrelevant content that might create

overheads.

In [27], it is suggested that safe modes are integrated into a

software system to ensure they perform maximally during the

process of fixing detected errors or faults. Fault removal:

removal entails that faulty components discovered as a result

of reliability testing are replaced by an off-the-shelve method.

Proper isolation is necessitated to ensure systems function

well and not all faults or errors migrates into larger faults.

Reliability tools are utilized to enable total elimination of

faults and its effects. According to [16] fault-masking

technique hides the effects of errors or failures through

redundancy. Reliability testing through tools according to

[23] and [49] is an important process in fault removal which

ensures extensive testing and evaluation of previously tested

components and mitigates all recorded errors or faults.

Table 1
Reliability threats and mitigation techniques [39], [41]

Techniques Execute

Fault Avoidance
Design Review.
Requirement Review.

Perform Root Cause Analysis.

Fault Removal
Application Routing Auditing/Checks.
Overload Control.

Component Application Check.

Fault Tolerance

Application Error/Fault Inline Self-

Correction.

Perform Audits such as:
i. Check for Inconsistencies.

ii. Check for Stuck Conditions.

iii. Reduce Application Coupling.
iv. Separate Coupled Application for

Different Functions.

v. Constant Application Backup

Fault

Forecasting/Detection

Application Fault Localization.

Root Cause Analysis.

Application Fault Repairs.
Update Application Constantly.

VII. SUMMARY AND CONCLUSION

The process of tailoring software development approach

has been used since decades either knowing or unknowingly,

this process ensures that processes used in development are

modified based on the specific project to be executed, the

need to provide systems that would serve its specific purpose

without interruption or disruption is still a topic for

contention, reliability engineering as discussed in this

research paper is proposed as an effective mechanism

towards quality assurance of software systems. Most

organizations that are into software development subscribe to

agile developmental approach and manifesto which ensures

and proposes iterations during development.

Iterations alone as discussed in this research cannot solve

or mitigate software issues completely although software

development process can be enhanced based on an agile

manifesto which suggests application of tools and techniques

to improve on quality during development as well as quality

assurance of systems. An overview on the necessity of

reliability engineering is also discussed in this paper, its

processes and some important technique is also discussed to

give an insight towards the importance of engineering

software products and services to withstand obstacles

irrespective of environmental application.

REFERENCES

[1] M.I. Malkawi, “The art of software systems development: Reliability;

Availability; Maintain,” Performance (RAMP), 2013, pp. 1–17.
[2] B. Edson, B. Hansen, and P. Larter, “Software Reliability, Availability,

and Maintainability Engineering System (SOFT-RAMES),” Reliability

and Maintainability Symposium 1996 Proceedings International
Symposium on Product Quality and Integrity Annual, 1996, pp. 306–

311.

[3] S.D. Carter, and D.M. Deans, “Reliability engineering as a practical
application to improving system performance - From concept to system

retirement,” Proceedings - Annual Reliability and Maintainability

Symposium, 2011.

Tailoring Software Development Methodologies for Reliability

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 10 No. 3 121

[4] C. Lindholm, and M. Host, “Introducing usability testing in the risk
management process in software development,” 2013 5th International

Workshop on Software Engineering in Health Care (SEHC), 2013.

[5] N. Zeni, and L. Mich, “Usability issues for systems supporting
requirements extraction from legal documents,” 2014. 2014 IEEE 7th

International Workshop on Requirements Engineering and Law,

RELAW 2014 – Proceedings, 2014.
[6] R. Sattiraju, and H. D. Schotten, “Reliability Modeling, Analysis and

Prediction of Wireless Mobile Communications,” 2014, pp. 14–19.

[7] G. Kaur, and K. Bahl, “Software Reliability, Metrics, Reliability
Improvement Using Agile Process,” International Journal of

Innovative Science, Engineering & Technology, 2014, pp. 143–147.

[8] M. Nkosi, and F. Mekuria, “Improving the capacity, reliability life of
mobile devices with Cloud Computing,” 2011 IST-Africa Conference,

IST 2011, May 11, 2011 - May 13, 2011. 2011 IST-Africa Conference

Proceedings, 2011, pp. 1–9.
[9] B. B. P. Rao, P. Saluia, N. Sharma, A. Mittal, and S. V. Sharma, “Cloud

computing for Internet of Things & sensing based applications,”

Sensing Technology (ICST), 2012 Sixth International Conference on.
[Online], 2012, pp. 374–380.

[10] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of

Things (IoT): A vision, architectural elements, and future directions,”
Future Generation Computer Systems, 2013.

[11] A.M. Mzahm, M.S. Ahmad, and Y. C. Alicia, “Agents of Things

(AoT),” 2013, pp. 159–164.
[12] O. Kodym, F. Benesi, and J. Svubi, “EPe Application Framework in

the context of Internet of Things,” 2015, pp. 214–219.
[13] R. D. Sriram, and A. Sheth, “Internet of Things Perspectives,” IT

Professional, 2015.

[14] M.R. Lyu, “Design, testing, and evaluation techniques for software
reliability engineering,” Euromicro Conference, 1998. Proceedings.

24th. 1998, pp. XXXIX –XXLVI vol.2.

[15] B. Littlewood, and L. Strigini, “Software reliability and dependability,”
Proceedings of the conference on the future of Software engineering,

2000.

[16] M.R. Lyu, “Software Reliability Engineering: A Roadmap,” Future of
Software Engineering (FOSE ’07), 2007.

[17] M. Houtermans, “Reliability Engineering & Data Collection.

Systems,” 2007.
[18] D. Raheja, and L. Gullo, “Design for reliability; Wiley-Blackwell,”

2012.

[19] M. Silverman, A. Kleyner, “What is design for reliability and what is
not?” 2012 Proceedings Annual Reliability and Maintainability

Symposium, 2012.

[20] F. Dai, and T. Li, “Tailoring Software Evolution Process,” Eighth ACIS
International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing (SNPD

2007), 2007.
[21] N. A. Zakaria, S. Ibrahim, and M. N. Mahrin, “The state of the art and

issues in software process tailoring,” 2015 4th International

Conference on Software Engineering and Computer Systems
(ICSECS), 2015.

[22] Y. Lin, D. Li, C. Liu, and R. Kang, “Framework design for reliability

engineering of complex systems,” 2014, pp. 19–24.
[23] A. Pasquini, G. Pistolesi, S. Risuleo, A. Rizzo, and V. Veneziano,

“Reliability analysis of systems based on software and human

resources,” Proceedings the Eighth International Symposium on
Software Reliability Engineering, 2001.

[24] F. Zeng, and S. Yang, “Design Criteria Development for Software

Reliability,” 2012 Second International Conference on Intelligent
System Design and Engineering Application, 2012.

[25] P. Xu, and B. Ramesh, “Software Process Tailoring: An Empirical

Investigation,” Journal of Management Information Systems. 24 (2),

2007, pp. 293–328.

[26] P. Xu, and B. Ramesh, “Using process tailoring to manage software

development challenges,” IT Professional. 10 (4), 2008, pp. 39–45.
[27] E. Valido-Cabrera, “Software reliability methods,” 2006.

[28] R. Akbar, S. Safdar, M.F. Hassan, and A. Abdullah, “Software

development process tailoring for small and medium sized companies,”
2014 International Conference on Computer and Information Sciences

(ICCOINS), 2014.

[29] A.S. Campanelli, and F.S. Parreiras, “Agile methods tailoring - A
systematic literature review,” Journal of Systems and Software, 2015.

[30] P. Serrador, and J. K. Pinto, “Does Agile work? - A quantitative

analysis of agile project success,” International Journal of Project
Management, 2015.

[31] D. Balasubramaniam, R. Morrison, R.M. Greenwood, and B. Warboys,

“Flexible Software Development: From Software Architecture to
Process,” The Working IEEE/IFIP Conference on Software

Architecture, WICSA ’07, 2007.

[32] A.Q. Gill, “Agile enterprise architecture modelling: Evaluating the
applicability and integration of six modelling standards,” Information

and Software Technology, 2015.

[33] I. Inayat, S. S. Salim, S. Marczak, and M. Daneva, S. Shamshirband,
“A systematic literature review on agile requirements engineering

practices and challenges,” Computers in Human Behavior, 2015.

[34] P. Thibodeau “Study: Buggy software costs users, vendors nearly $60B
annually,” 2012.

[35] W. Li, Y. Yang, J. Chen, and D. Yuan, “A cost-effective mechanism

for cloud data reliability management based on proactive replica
checking,” Proceedings - 12th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, CCGrid 2012, 2012 pp. 564–571.

[36] N. F. Schneidewind, “Tutorial on Hardware and Software Reliability,
Maintainability, and. In: Computer, Network, Software, and Hardware

Engineering with Applications,” John Wiley & Sons, Inc., 2012 pp.

443–465.
[37] R. Plösch, A. Mayr, and C. Korner, “Collecting Quality Requirements

Using Quality Models and Goals,” Quality of Information and
Communications Technology (QUATIC), 2010 Seventh International

Conference, 2010.

[38] J.D. Musa, “Introduction to software reliability engineering and
testing,” Proceedings the Eighth International Symposium on Software

Reliability Engineering - Case Studies, 1997, pp. 3–12.

[39] L. Algirdas, “Basic Concepts and Taxonomy of Dependable and Secure
Computing,” IEEE Transactions on Dependable and Secure

Computing, 2004.

[40] P. Kunkun, and L. Xiangong, “Reliability Evaluation of Coal Mine
Internet of Things,” 2014 International Conference on Identification,

Information and Knowledge in the Internet of Things, 2014.

[41] T. Frühwirth, L. Krammer, and W. Kastner, “Dependability demands
and state of the art in the internet of things,” IEEE International

Conference on Emerging Technologies and Factory Automation,

ETFA. 2015-October, 2015.
[42] S.S. Gokhale, “Software Application Design Based On Architecture,

Reliability and Cost,” 2004, pp. 1098–1103.

[43] L. Yong-Fei,and T. Li-Qin, “Comprehensive Evaluation Method of
Reliability of Internet of Things,” 2014 Ninth International Conference

on P2P, Parallel, Grid, Cloud and Internet Computing, 2014.

[44] J. Shao, “New thinking and methodologies on reliability engineering,”
Proceedings of 2009 8th International Conference on Reliability,

Maintainability and Safety, ICRMS 2009. (3), 2009, pp. 149–153.

[45] O. Patrick, and A. Kleyner, “Practical Reliability Engineering. 5th Ed.
Wiley,” 2012.

[46] S. J. Huang, W. C. Chen, and P. Y. Chiu, “Evaluation Process Model

of the Software Product Quality Levels,” 2015 International
Conference on Industrial Informatics - Computing Technology,

Intelligent Technology, Industrial Information Integration, 2015.

[47] J. Yang, Y. Liu, M. Xie, and M. Zhao, “Modeling and analysis of
reliability of multi-release open source software incorporating both

fault detection and correction processes,” Journal of Systems and

Software, 2016.
[48] V. Nassar, “Common criteria for usability review,” Work. 41

(SUPPL.1), 2012, pp. 1053–1057.

[49] H. Koziolek, B. Schlich, and C. Bilich, “A Large-Scale Industrial Case

Study on Architecture-Based Software Reliability Analysis,”

ISSRE’21st, 2010, pp. 279–288.

