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Abstract—In this paper, we derive the far field electromagnetic 
fields of a rotating half-wave dipole antenna. Theoretically, we 
have demonstrated that the far electromagnetic fields of a 
rotating half-wave dipole carry angular momentum in the term 
of ϕ - ϕ′, which is absent from the stationary half-wave dipole 
antenna. The term

 

sin(kr −ωt + [ϕ −ϕ']) tells us that the 
electromagnetic wave propagates outward with the speed of light 
c (evidence from k = ω/c) from the dipole along the r axis and 
both electric and magnetic fields are spinning (oscillate with ω
rad/s) and orbiting (rotating with ω0 rad/s) along the r axis with 
the speed of light. The orbital frequency is evidence from the 
term 

 

ϕ −ϕ'= ω 0t −ω 0t'= ω 0r /c .

Index Terms—angular momentum, electric field, magnetic 
field, rotating dipole.

I. INTRODUCTION

An electromagnetic system radiates not only energy (linear 
momentum) but also angular momentum into the far zone as 
evidence from electrodynamics literature [1,2,3]. In this paper, 
we are motivated to derive the far field electromagnetic fields 
of a rotating half-wave dipole antenna, in order to demonstrate 
theoretically that such antenna would radiate angular 
momentum into the far zone.

II. CURRENT DISTRIBUTION

A thin rod with length L, perfectly conducting, half-wave 
dipole antenna is located in the x1′x2′ plane and are fed at the 
midpoint of the rod (x0 = 0) so that the Fourier amplitude of 
the current distribution can be written as such

 

jω (x1') = δ(x2 ')δ(x3 ')I0 cos(ωx1' ν ) x̂1' (1)

where ν is the velocity of the current propagation along the 
rod that is equivalent to the drift velocity of the moving 
charges. The rod is rotating at an angular frequency ω0 around 
a fixed axis (ω ≠ ω0), which is always perpendicular to the rod 
and passes through its midpoint.

As shown in Figure 1, we introduce a coordinate system (x1,
x2, x3) to describe the fixed observer (the field point) and (x1′,
x2′, x3′) system to describe the source, i.e., a coordinate system 
that is fixed in the rod and, consequently, rotates around the 
x3′ axis (in fact, x3′= x3) with a constant angular frequency ω0.

The direction of the current source in coordinate system (x1,
x2, x3) can be written as such

 

x̂1'= cos(ϕ') x̂1 + sin(ϕ') x̂2 = Re ( x̂1 + ix̂2)e−iω 0t '{ } (2)

Figure 1: Geometry relevant to the current distribution formulation

where ϕ′ = ω0t′ is the azimuth angle of the source 
coordinate system and t′ is the retarded time.

Consequently, the Fourier amplitude of the current 
distribution due to propagating current with angular frequency 
ω and speed ν in the rotating rod with angular frequency ω0
can be re-written as such

 

jω (x1') = I0 cos(ωx1' ν )e− iϕ '[ x̂1 + ix̂2]. (3)

III. THE MAGNETIC FIELD

The fields at large distances from the dipole are given in 
[1]. From these equations we see that

 

Eω = c 2Bω ×
k
ω

(4)

where c is the speed of light and k is the wave vector. 
Therefore it is sufficient to calculate

 

Bω (x) = −i
k

4πε 0c
2

eik x −x 0

x − x0

dx1'−λ 4

λ 4∫ (jω eik•(x '−x 0 ) × k) (5)

where |x – x0| (or r) is the magnitude of the difference 
between position vector x at observation point and the 
midpoint vector x0 at the source coordinate system. Further, 
we can estimate the magnetic field as such
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Bω (x) = −i k
4πε 0c

2
ei(kr−ϕ ' )

r

dx1'−λ 4

λ 4∫ I0 cos
ωx1'
ν

 
 
 

 
 
 eik•x1 '[( x̂1 + ix̂2) × k]

 

 
 

 

 
 

(6)

The directions of the components of the magnetic field are 
given by term

 

[( x̂1 + ix̂2) × k]. For transformation to spherical 
coordinates,

 

x̂1 = sinθ cosϕr̂ + cosθ cosϕθ̂ − sinϕϕ̂ 

x̂2 = sinθ sinϕr̂ + cosθ sinϕθ̂ + cosϕϕ̂ 

Hence,

 

x̂1 + ix̂2 = sinθ(cosϕ + isinϕ)r̂ + cosθ(cosϕ + isinϕ)θ̂ +
(icosϕ − sinϕ)ϕ̂ 
          

 

= eiϕ (sinθr̂ + cosθθ̂ + iϕ̂ )
Therefore, the directions of the components of the magnetic 

field are 

 

( x̂1 + ix̂2) × k = keiϕ (iθ̂ − cosθϕ̂ ) (7)
under paraxial approximation when the wave vector 

 

k = (ω c)(r r) is propagating in the same direction as radial 
vector r with the speed of light c. Equation (6) can be re-
written as such

 

Bω (x) = −iI0
k 2

4πε 0c
2

ei(kr+ϕ −ϕ ' )

r
[iθ̂ − cosθϕ̂ ]

cos
ωx1'
ν

 
 
 

 
 
 eik•x1 'dx1'−λ 4

λ 4∫
(8)

The phase error term 

 

eik•x1 ' is very significant due to the 
fact that the length of the dipole L = λ/2 and can be estimated 
as such

 

k⋅ x1'= k⋅ (x1 + x2) = kx1 sinθ cosϕ + kx2 sinθ sinϕ .

Consequently

 

Bω (x) = −iI0
k 2

4πε 0c
2

ei(kr+ϕ −ϕ ' )

r
[iθ̂ − cosθϕ̂ ]

cos
ωx1

ν
 
 
 

 
 
 eik1x1 dx1 + cos

ωx2

ν
 
 
 

 
 
 eik2x2 dx2

 

 
 

 

 
 

−λ 4

λ 4∫
(9)

where

 

k1 = k sinθ cosϕ and

 

k2 = k sinθ sinϕ . Letting κ
denotes either k1 or k2 and ζ denotes either x1 or x2, the 
solution for generic integral is given as

 

cos
ωζ
ν

 
 
 

 
 
 eiκζ dζ

 

 
 

 

 
 

−λ 4

λ 4∫ =
2k

k 2 − κ 2 cos κ
λ
4

 
 
 

 
 
 (10)

when condition ν = c is satisfied. Equation (12) is re-write 
such that

 

Bω (x) = −iI0
k

2πε 0c
2

ei(kr+ϕ −ϕ ' )

r
[iθ̂ − cosθϕ̂ ]

1
1− (sinθ cosϕ)2 cos

π
2

sinθ cosϕ
 
 
 

 
 
 +

1
1− (sinθ sinϕ)2 cos π

2
sinθ sinϕ

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

           (11)

Transforming this Fourier component back to time domain 
and taking the (physically acceptable) real part, we obtain, in 
spherical coordinates

 

B(t,x) = Re Bω (x)e−iωt{ }

= Re

I0
k

2πε 0c
2

ei(kr−ωt +ϕ −ϕ ' )

r
[θ̂ + icosθϕ̂ ]

1
1− (sinθ cosϕ)2 cos

π
2

sinθ cosϕ
 
 
 

 
 
 +

1
1− (sinθ sinϕ)2 cos π

2
sinθ sinϕ

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

= Re

I0
k

2πε 0c
2

cos(kr −ωt +ϕ −ϕ') + isin(kr −ωt +ϕ −ϕ')
r

[θ̂ + icosθϕ̂ ]

1
1− (sinθ cosϕ)2 cos

π
2

sinθ cosϕ
 
 
 

 
 
 +

1
1− (sinθ sinϕ)2 cos π

2
sinθ sinϕ

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 
  

 

 
 
 
 
 
 

 

 

 
 
 
 
  

 

 
 
 
 
 
 

Let 

 

ξ =
I0k

2πε 0c
2r

1
1− (sinθ cosϕ)2 cos

π
2

sinθ cosϕ
 
 
 

 
 
 +

1
1− (sinθ sinϕ)2 cos π

2
sinθ sinϕ

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

Then

 

B(t,x) = ξRe cos(kr −ωt +ϕ −ϕ') + isin(kr −ωt +ϕ −ϕ')[ ][θ̂ + icosθϕ̂ ]{ }

= ξRe
cos(kr −ωt +ϕ −ϕ')θ̂ − sin(kr −ωt +ϕ −ϕ')cosθϕ̂ ( )

+i sin(kr −ωt +ϕ −ϕ')θ̂ + cos(kr −ωt +ϕ −ϕ')cosθϕ̂ ( )
 
 
 

  

 
 
 

  

= ξ[cos(kr −ωt +ϕ −ϕ')θ̂ − sin(kr −ωt +ϕ −ϕ')cosθϕ̂ ]
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The time-varying magnetic field in the final form takes 
place as such

 

B(t,x) =
µ0I0ω
2πcr

1
1− (sinθ cosϕ)2 cos

π
2

sinθ cosϕ
 
 
 

 
 
 

+
1

1− (sinθ sinϕ)2 cos π
2

sinθ sinϕ
 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

cos(kr −ωt + [ϕ −ϕ'])θ̂ − sin(kr −ωt + [ϕ −ϕ'])cosθϕ̂ [ ]

(12)

In the presence of perfect conducting ground parallel to the 
x3′ axis, the total magnetic field observed at the ground level is 
the superposition of the magnetic field obtained in Equation 
(12) and its image. The only component survived at ground 
level is the component in the direction of 

 

ϕ̂ .
Therefore, the total magnetic field is

 

B(t,x) = −ϕ̂ 
µ0I0ω
πcr

sin(kr −ωt + [ϕ −ϕ'])cosθ

1
1− (sinθ cosϕ)2 cos

π
2

sinθ cosϕ
 
 
 

 
 
 +

1
1− (sinθ sinϕ)2 cos

π
2

sinθ sinϕ
 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

(13)

The total magnetic field carries angular momentum as 
evidence from the azimuth term ϕ - ϕ′.

IV. THE ELECTRIC FIELD

The electric field can be obtained from Equation (4) as such

 

Eω (x) = c 2Bω (x) ×
k
ω

= −iI0
k 2

2πε 0ω
ei(kr+ϕ −ϕ ' )

r
[i(θ̂ × r̂) − cosθ(ϕ̂ × r̂)]

1
1 − (sinθ cosϕ)2 cos

π
2

sinθ cosϕ
 
 
 

 
 
 +

1
1 − (sinθ sinϕ)2 cos π

2
sinθ sinϕ

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

= I0
k 2

2πε 0ω
ei(kr+ϕ −ϕ ' )

r
[−ϕ̂ + icosθθ̂ ]

1
1 − (sinθ cosϕ)2 cos π

2
sinθ cosϕ

 
 
 

 
 
 +

1
1 − (sinθ sinϕ)2 cos

π
2

sinθ sinϕ
 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

(14)

Transforming this Fourier component back to time domain 
and taking the (physically acceptable) real part, we obtain, in 
spherical coordinates

 

E(t,x) = Re Eω (x)e−iωt{ }

= Re

I0
k 2

2πε 0ω
ei(kr−ωt +ϕ −ϕ ' )

r
[−ϕ̂ + icosθθ̂ ]

1
1− (sinθ cosϕ)2 cos

π
2

sinθ cosϕ
 
 
 

 
 
 +

1
1− (sinθ sinϕ)2 cos π

2
sinθ sinϕ

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

= Re

I0k
2

2πε 0ωr
cos(kr −ωt +ϕ −ϕ') +

isin(kr −ωt +ϕ −ϕ')[−ϕ̂ + icosθθ̂ ]

1
1− (sinθ cosϕ)2 cos

π
2

sinθ cosϕ
 
 
 

 
 
 +

1
1− (sinθ sinϕ)2 cos π

2
sinθ sinϕ

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 
  

 

 
 
 
 
 
 

 

 

 
 
 
 
  

 

 
 
 
 
 
 

Let

 

χ =
I0k

2

2πε 0ωr

1
1− (sinθ cosϕ)2 cos

π
2

sinθ cosϕ
 
 
 

 
 
 +

1
1− (sinθ sinϕ)2 cos π

2
sinθ sinϕ

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

Then

 

E(t,x) = χRe
cos(kr −ωt +ϕ −ϕ') +

isin(kr −ωt +ϕ −ϕ')[−ϕ̂ + icosθθ̂ ]

 
 
 

 
 
 

= χRe

−[sin(kr −ωt +ϕ −ϕ')cosθθ̂ +
cos(kr −ωt +ϕ −ϕ')ϕ̂ ]+

i[cos(kr −ωt +ϕ −ϕ')cosθθ̂ −
sin(kr −ωt +ϕ −ϕ')ϕ̂ ]

 

 

 
 

 

 
 

 

 

 
 

 

 
 

= −χ[sin(kr −ωt +ϕ −ϕ')cosθθ̂ +
cos(kr −ωt +ϕ −ϕ')ϕ̂ ]
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The electric field in the final form takes place as such

 

E(t,x) = −
I0k

2πε 0cr

1
1− (sinθ cosϕ)2 cos

π
2

sinθ cosϕ
 
 
 

 
 
 

+
1

1− (sinθ sinϕ)2 cos π
2

sinθ sinϕ
 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

sin(kr −ωt + [ϕ −ϕ'])cosθθ̂ +
cos(kr −ωt + [ϕ −ϕ'])ϕ̂ 

 

 
 
 

 

 
 
 

(15)

In the presence of perfect conducting ground parallel to the 
x3′ axis, the total electric field observed at the ground level is 
the superposition of the electric field obtained in Equation (15) 
and its image. The only component survived at ground level is 
the component in the direction of 

 

θ̂ .
Therefore, the total electric field is



























−

+







−

−+−−=

ϕθπ
ϕθ

ϕθπ
ϕθ

θϕϕω
πε

θ

sinsin
2

cos
)sin(sin1

1

cossin
2

cos
)cos(sin1

1

cos])'[sin(ˆ),(

2

2

0

0 tkr
cr
kIt xE

The total electric field carries angular momentum as 
evidence from the azimuth term ϕ - ϕ′.

V. CONCLUSION

Theoretically, we have demonstrated that the far 
electromagnetic fields of a rotating half-wave dipole carry 
angular momentum in the term of ϕ - ϕ′, which is absent from 
the stationary half-wave dipole antenna. The term

 

sin(kr −ωt + [ϕ −ϕ']) tells us that the electromagnetic wave 
propagates outward with the speed of light c (evidence from k
= ω/c) from the dipole along the r axis and both electric and 
magnetic fields are spinning (oscillate with ω rad/s) and 
orbiting (rotating with ω0 rad/s) along the r axis. The orbital 
frequency is evidence from term 

 

ϕ −ϕ'= ω 0t − [ω 0t −ω 0r /c] = ω 0r /c .
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