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Abstract 

This paper presents a 3D image plane in a 
group of target or image during the process of 
stereo pair calibration. The extrinsic parameters 
of camera calibration can be viewed in 3D 
image or scene which contains the rotation and 
translation of vector. The error re-projection of 
a single image could determine the less error of 
distortion during the extraction of chessboard 
corner each image taken. The distortion model 
also generates an error coordinate system in 
pixel value.  The 3D image will viewed the 
result and output of extrinsic parameters 
during the calibration process.

Keywords: camera calibration; Tsai’s 
algorithm; rotation; stereo geometry; stereo 
camer; image translation 

I.	 INTRODUCTION

All the process of camera calibration is 
normally performed by first assuming a 
simplified model for both the camera and 
the distortion of resulting images and then 
statistically, usually fitting the distortion 
model to the observed distortion. Once 
the distortion has been modeled, it can be 
applied to the distorted image to correct 
it. An idealized pin hole camera model 
and radially symmetric lenses distortion 
are the usual modeling assumptions. 
Many calibration techniques also take 
into account distortion created by the 
digitization effects of the stereo camera. 
These effects are modeled along with the 
optical distortion and together account 
for the overall distortion observed in the 
acquired digital image. Once a model 
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of the camera and distortion have been 
chosen they are fit to the real stereo camera 
by comparing where points of accurately 
know real world coordinates appear in 
the image and where they would appear 
if there was no distortion [1]. 

The error is minimized over as many 
points as is reasonable to fit distortion 
correction function to the distortion 
observed in the test scene. This distortion 
correction function, when applied to a raw 
image, reduces the distortion and what 
appears as a straight line in the real world 
appears as a straight line in the image 
[2]. In order for stereo correspondence 
techniques to work properly and for the 
range results that they yield to be precise 
and representative of the real world, the 
effects of the stereo camera distortion 
must repeatedly be accounted for. Usually, 
stereo vision systems use cameras that are 
horizontally aligned. That is, cameras are 
placed at the same elevation as shown in 
Figure 1. 

II.	 CAMERA CALIBRATION

Typically, in stereo vision system the two 
cameras are very important. It means, 
these cameras should have the same 
characteristic. The selections will depend 
on the same size of pixel and manufacturer. 
After that, the installation of these two 
stereo cameras on the stereo application 
such as robot or arm robot, they have to 
be adjusted to get the aligned pictures 
or images. The installation of stereo 
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pair in this paper is setup horizontally 
aligned with the range in between is six 
centimeters. That is, cameras are placed 
at the same elevation. The process of 
stereo vision is then usually defined as 
finding a match between features in left 
and right images as shown in Figure 2. In 
this paper, the horizontal baseline is used 
where the cameras are placed side by side 
of each other. In this case, the stereo vision 
consists of finding match between left 
and right image. In reality, the cameras 
will not have absolutely aligned optical 
axes. So, the images taken with this pair 
of stereo vision cameras will also contain 
some distortions.

 

 Left Image  Right Image  

Figure 2.  Features from left image are matched to features in the 
right image. 

 

 
 

Figure 1.  Horizontally aligned of stereo camera. 
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Figure 2: Features from left image are matched 
to features in the right image.

After stereo cameras installation, these 
cameras have to be calibrated. In order 
for stereo correlation techniques to 
work accurately and for the range 
results that they yield to be accurate 
and representative of the real world, 
the effects of the camera and lens 
distortion must often be accounted for. 
The process of camera calibration is 
generally performed by first assuming 
a simplified model for both the camera 
and the distortion of resulting images 
and then statistically, fitting the distortion 
model to the observed distortion. Once 
the distortion has been modeled, it can be 
applied to the distorted image to correct 
it [3]. The image processing software will 

use this result to get the accurate disparity 
values. Once a model of the camera and 
distortion have been chosen they are fit 
to the real camera and lens by comparing 
where points of accurately know real 
world coordinates appear in the image 
and where they would appear if there 
was no distortion. The error is minimized 
over as many points as is reasonable to 
fit distortion correction function to the 
distortion observed in the test scene [4]. 
This distortion correction function, when 
applied to a raw image, reduces the 
distortion and what appears as a straight 
line in the real world appears as a straight 
line in the image.

A.	M ethod of Camera Calibration

Note that the purpose of camera 
calibration is trying to improve the 
transformations, based on measurements 
of coordinates, where one more often uses 
known transformation to map coordinates 
from one coordinate system to another. 
Tsai’s method for camera calibration 
recovers the interior orientation, the 
exterior orientation, the power series 
coefficients for distortion, and an image 
scale factor that best fit the measured 
image coordinates corresponding to 
known target point coordinates. This is 
done in stages; starting off with closed 
form least squares approximation of some 
parameters and ending with an iterative 
non-linear optimization of all parameters 
simultaneously using these estimates as 
starting values [5]. 

Importantly, it is error in the image plane 
that is minimized. Details of the method 
are different for planar targets than 
for targets occupying some volume in 
space. Accurate planar targets are easier 
to make, but lead to some limitations in 
camera calibration [4]. The flowchart 
Figure 3 below shows the steps of stereo 
pair calibration’s programming in matlab 
[6].
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Figure 4. Stereo geometry of camera calibration 

  
Figure 3.  Flowchart of Tsai method for Extrinsic Parameters 
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shapes into a common coordinate system 
and to integrate them. An accurate 
calibration of the rotation stage gives 
better performance for registration and 
integration of multiple range images. 
A calibration pattern which has several 
control points is used for calibrating the 
stage. Since several stereo images of an 
object are taken at every θ degree interval 
around an object, two consecutive images 
of calibration pattern are also taken with θ 
angle difference. By estimating calibration 
parameters which register two sets of 3D 
control points as close as possible, the 
partial shapes of the object into a common 
coordinate system also can be registered.  
Calibration for each view coordinate 
system is done using Tsai’s algorithm. A 
checkerboard calibration pattern is placed 
on the rotation stage [9]. 

Two sets of stereo images are taken with 
θ degree angle difference. Let V0 and V1 
denote the coordinate systems of the two 
views of directions and Vw denote the 
world coordinate system. Let a control 
point in Vk br Pk, where k=0 and 1, 
and Pw be the same point represented 
by the world coordinate system. Then 
transformations 
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Figure 9. Raw image from stereo camera 
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III. 3D TRANSFORMATION MATRIX 
The basic element of the stereo vision theory is 

triangulation [11](Wong, 1975).  As shown in Figure 8, a 3D 
point can be reconstructed from its two projections by 
computing the intersection of the two space rays 
corresponding to it.  The 3D location of that point is 
restricted to the straight line that passes through the center of 
projection and the projection of the object point.  Binocular 
stereo vision determines the position of a point in space by 
finding the intersection of the two lines passing through the 
center of projection and the projection of the point in each 
image. In this section, this paper describes a calibration 
technique of a vision camera. It can be considered as an 
estimation of a projective transformation matrix from the 
world coordinate system to the camera's image coordinate 
system. For example the ( of a 3D point in space 
and coordinates (xc, yc,1) of its projection on the 2D image 
plane, a 3X4 matrix M can be written according to the 
equation: 
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The matrix M is defined up to an arbitrary scale factor 

and has only 11 independent entries. Therefore it needs at 
least 6 world image points and their matching points in the 
image plane. If the calibration pattern is used, for example a 
checkerboard pattern, it have more correspondences and M 
can be estimated through least squares techniques. 
 

IV. EXPERIMENT RESULT 
From the experiment of stereo camera calibration, twenty 

images are captured from left camera and twenty images 
from right camera at the same time every capturing process. 
This is shown by Figure 9 the raw images in sequence. 
Figure 10 is the re-projection error mapping with the 
example of image 15 that randomly taken with its pixel 
(green color) coordinate (162.38, 87.43) and the pixel error is 
about (0.63324,-0.41004). Figure 11 is the 3D view of image 
plane with twenty chessboard position. It is split analysis of 
left and right camera. The third figure of Figure 11 is the 
whole 3D image with twenty different positions of targets. 
For Figure 12, first figure shows the impact of the complete 
distortion model (radial + tangential) on each pixel of the 
image. Each arrow represents the effective displacement of a 
pixel induced by the lens distortion. The second figure shows 
the impact of the tangential component of distortion. On this 
plot, the maximum induced displacement is 0.26, 023 pixel 
(at the upper left corner of the image). Finally, the third 
figure shows the impact of the radial component of 
distortion. On the three figures, the cross indicates the center 
of the image, and the circle the location of the principal 
point. Table 1 is the result of extrinsic parameters for camera 
calibration which contains of rotation and translation of 
images. 
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third figure of Figure 11 is the whole 3D 
image with twenty different positions of 
targets. For Figure 12, first figure shows 
the impact of the complete distortion 
model (radial + tangential) on each pixel 
of the image. Each arrow represents the 
effective displacement of a pixel induced 
by the lens distortion. The second figure 
shows the impact of the tangential 
component of distortion. On this plot, the 
maximum induced displacement is 0.26, 
023 pixel (at the upper left corner of the 
image). Finally, the third figure shows 
the impact of the radial component of 
distortion. On the three figures, the cross 
indicates the center of the image, and the 
circle the location of the principal point. 
Table 1 is the result of extrinsic parameters 
for camera calibration which contains of 
rotation and translation of images.
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V.	 DISCUSSION

With two cameras for extrinsic 
parameters, each camera gives a special 
3D back projection line. These two back 
projection lines usually match up at 
exactly one point (rectification process). 
So, given a stereo setup it is possible 
to find the 3D position of a point by 
observing its position in two different 
cameras. It is possible that the point is 
infinitely far away and if the cameras are 
looking in the same direction separated 
only by a translation like binoculars, then 
the back projection lines are parallel, 
and will not (strictly speaking) intersect. 
However, if homogenous points are used 
carefully, an “infinite point” of the form 
will be recovered, which can be used to 
compute the direction of the point [11].

VI.	 CONCLUSION

The image plane works as a reference 
to the position of calibration target. 
This plane produces the rotation and 
translation vector for rectification of 
images in stereo vision analysis. The 3D 
image of target plane especially using the 
chess board will ensure the plane is well 
organized or in structured between the 
two cameras during a calibration process. 
The position for each other is ideally 
identical. 
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