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Abstract 

This paper is concerned with a systematic 
approach to the design of receiver for indoor 
optical wireless communication. In particular, 
it is concerned with how one properly chooses 
the front-end preamplifier and biasing 
circuitry for the photodetector; and comparison 
between differences types of amplifier, and 
method of bandwidth enhancement. For most 
photodetector applications, large values of RL 
and CD would severely restrict bandwidth. 
It is shown that a proper front-end design 
incorporates a transimpedance preamplifier 
which tends to integrate the detector output. 
Such a design provides significant reduction in 
photodiode capacitance and increase bandwidth 
when compared to a design which does not 
integrate initially. The theory and design 
obstacles of indoor optical wireless receiver 
delivery in addition to techniques for mitigating 
these effects and shows that infrared is a viable 
alternative to radio for certain application is 
also presented.

Keywords: photodetector,  transimpedance 
preamplifier

I.	 INTRODUCTION

The purpose of this paper is to provide 
insight into the research effort to date in 
optical wireless receiver both in academic 
and industrial contexts. The idea of 
using the optical medium for wireless 
communications is not new, having 
been proposed as a means for indoor 
communications almost two decades ago.
[4][7] However, recent years have seen an 
increasing interest in the potential for free 
space optical systems to provide portable 
data communications. One of the main 
aspects for reconsidering the use of an 
optical carrier in the wireless context 
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is the demand for greater transmission 
bandwidths. The radio frequency 
spectrum is already exceedingly 
congested and frequency allocations of 
sufficient bandwidths are extremely hard 
to obtain. Proponents of optical wireless 
systems argue that the optical medium 
is the only cost-effective way to provide 
high bit-rate mobile services to volume 
markets. In most proposed infrared 
optical wireless communication [4-7], it 
is well known that the signal level in an 
optical wireless receiver is weakest at the 
front end. Weakest front end means that 
it is too noisy, too slow or both. The two 
parameters are not unrelated; it is easy 
to have a fast front end by preparing 
to sacrifice signal to noise ratio. This is 
where the system signal-to-noise ratio 
is determined and system performance 
level established.

II.	 INPUT-OUTPUT 
RELATIONSHIPS FOR 
PHOTODETECTOR

Semiconductor junctions that convert 
photon energy of light into an electrical 
signal by releasing and accelerating 
current-conducting carriers, ultimately 
to produce a baseband voltage for 
regeneration is called a photodiode.[1] 
In order to appreciate its performance 
in practical optical wireless systems, 
we have to characterize the photodiode 
from three points of view : the physical 
viewpoint, the circuit viewpoint and the 
statistical viewpoint. 
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The physical viewpoint

The presence of incident optical power, 
entering a semiconductor device produces 
thermal agitation that release holes-
electron pairs generated at various points 
within the diode as illustrated in Fig 
1.[2] These carriers drift toward opposite 
ends of the device under the influence of 
the applied field. When a carrier passes 
through the high-field region, it may gain 
sufficient energy to generate one or more 
new pairs of holes and electrons through 
collision ionization. These new pairs will 
in turn generate additional pairs by the 
same mechanism. Carriers accumulate 
at opposite ends of the diode, thereby 
reducing the potential across the device 
until they are removed by the biasing and 
other circuitry in parallel with the diode as 
shown in Fig 2. The chances that a carrier 
will generate a new pair when passing 
through the high-field region depends 
upon the type of carrier, the material out 
of which the diode is constructed and 
the voltage across the device. The depth 
and extent of the junction determines 
the location of the depletion region and 
the light wavelengths that produce an 
efficient response. For a given photodiode 
and a given wavelength, a photodiode 
responsivity expresses the resulting 
efficiency through[2]

Ip = rØØe

where rØ – diode’s flux responsivity and 
Øe – radiant flux energy in watts
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The circuit viewpoint 
From the discussion above and more detailed investigation, 
modeling the characteristics of the photodiode with discreet 
circuit components permits analysis of application circuits. Fig 
2 shows the resulting model with an ideal diode, a current 
source and parasitic elements. Cd is the junction capacitance of 
the diode across which voltage accumulates when charges 
produced within the device separate under the influence of the 
bias field. The current generator ip(t) represents the production 
of charges by optical and thermal generation and collision 
ionization in the diode high-field region. Resistance RD 
represents the diode’s dark resistance, which is the resistance 
of the zero-biased diode junction. In order to use the 
photodiode efficiently we must design a circuit which will 
respond to the current ip(t) with as little distortion and added 
noise as possible. In order to derive information from the 
circuit responding to ip(t) we must understand the statistical 
relationship between ip(t) (the equivalent current generator) 
and the incident optical power p(t).[1-2] 
 
The statistical viewpoint 
In Fig 2, the current source ip(t) can be considered to be a 
sequence of impulses corresponding to electrons generated 
within the photodiode due to optical or thermal excitation or 
collision ionization. From various physical studies it has been 
concluded that for cases of current interest, the electron 
production process can be modeled as shown in Fig 3. Let the 
optical power falling upon the photon counter be p(t). In 
response to this power and due to thermal effects, the photon 
counter of Fig 3 produces electrons at average rate λ(t) per 
second where 
 

λ(t)  = [(η/hΩ)p(t)] + λo                            (1) 
                                                   
where η – photon counter quantum efficiency 

           hΩ – energy pf a photon 
           λo – dark current “counts” per second 
 
 λ(t) is only the average rate at which electrons are produced. 
p(t) the number of electronic produced in any interval is 
statistically independent of the number produced in any other 
disjoint interval.[1] 
 

Fig.2 Photodiode circuit model 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Model of is(t) generation process 
Each of the primary impulses produced by the photon counter 
enters a random multiplier where, corresponding to collision 
ionization it is replaced by g contiguous “secondary” 
impulses. The number g is governed by the statistics of the 
internal gain mechanism of the photodiode. Each primary 
impulse is “multiplied” in this manner by a value g which is 
statistically independent of the value g assigned to other 
primaries. Thus the current leaving the photodiode consists of 
bunches of electrons. For applications interest here, it will be 
assumed that all electrons in a bunch exit the photodiode at the 
time when the primary is produced. This shows that the 
duration of the photodiode response to a single primary hole-
electron pair is very short compared to the response times of 
circuitry to be used with the photodiode. 
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The circuit viewpoint

From the discussion above and more 
detailed investigation, modeling the 

characteristics of the photodiode with 
discreet circuit components permits 
analysis of application circuits. Fig 2 
shows the resulting model with an ideal 
diode, a current source and parasitic 
elements. Cd is the junction capacitance 
of the diode across which voltage 
accumulates when charges produced 
within the device separate under the 
influence of the bias field. The current 
generator ip(t) represents the production 
of charges by optical and thermal 
generation and collision ionization in the 
diode high-field region. Resistance RD 
represents the diode’s dark resistance, 
which is the resistance of the zero-
biased diode junction. In order to use the 
photodiode efficiently we must design a 
circuit which will respond to the current 
ip(t) with as little distortion and added 
noise as possible. In order to derive 
information from the circuit responding 
to ip(t) we must understand the statistical 
relationship between ip(t) (the equivalent 
current generator) and the incident 
optical power p(t).[1-2]

The statistical viewpoint

In Fig 2, the current source ip(t) can be 
considered to be a sequence of impulses 
corresponding to electrons generated 
within the photodiode due to optical or 
thermal excitation or collision ionization. 
From various physical studies it has 
been concluded that for cases of current 
interest, the electron production process 
can be modeled as shown in Fig 3. Let the 
optical power falling upon the photon 
counter be p(t). In response to this power 
and due to thermal effects, the photon 
counter of Fig 3 produces electrons at 
average rate λ(t) per second where

λ(t)  = [(η/hΩ)p(t)] + λo                             (1)

where η – photon counter quantum 
efficiency

        hΩ – energy pf a photon
         λo – dark current “counts” per second

λ(t) is only the average rate at which 
electrons are produced. p(t) the number 
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of electronic produced in any interval is 
statistically independent of the number 
produced in any other disjoint interval.[1]
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Each of the primary impulses produced 
by the photon counter enters a random 
multiplier where, corresponding to 
collision ionization it is replaced by g 
contiguous “secondary” impulses. The 
number g is governed by the statistics 
of the internal gain mechanism of the 
photodiode. Each primary impulse is 
“multiplied” in this manner by a value 
g which is statistically independent of 
the value g assigned to other primaries. 
Thus the current leaving the photodiode 
consists of bunches of electrons. For 
applications interest here, it will be 
assumed that all electrons in a bunch 
exit the photodiode at the time when the 
primary is produced. This shows that the 
duration of the photodiode response to a 
single primary hole-electron pair is very 
short compared to the response times of 
circuitry to be used with the photodiode.

Photodiode Variations

Two variations of the basic photodiode 
improve the diode’s response. Physical 

study shows that PIN photodiodes 
increase the spectral bandwidth or 
range of light frequencies that produce 
an efficient photo response. Avalanche 
photodiodes increase the magnitude 
of the output current and the response 
speed by permitting diode bias at the 
verge of breakdown. For application 
interest, PIN photodiode is preferably in 
optical wireless communication system.

Noise Contributions : As a photodiode 
amplifier, the current to voltage converter 
exhibits a complex noise behavior. The 
major sources of noise in front ends are 
listed in Table 1, where eN and iN are rms 
values of random fluctuations.[6],[9]

Table 1 Noise source
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(2eId)1/2 

Bright light, 
large load 

resistor 
Load resistor Johnson 

noise 
INth = 

(4kT/R)1/2 
Dim light, small 

R 
Amplifier Input 

current 
noise 

iN = 

R
kT4

 

Ideally, never 

Input 
voltage 
noise 

eN = 
kTR4  

Dim light, large 
RC or a fast 
noisy amp 

 

III. TRANSIMPEDANCE AMPLIFIER THEORY 
This section is an example of how to design a front-end 
amplifier for a visible or near IR photodiode and how to get 
improvement in bandwidth without a big sacrifice of SNR.  
 
Given a detector (Fig 2) whose output is a current, the easiest 
way to form a voltage from it is to have a load resistor (RL). 
The output full swing appears across the detector capacitance 

Cd, rolls off starting at fRC = 
DLCRπ2

1
 . The signal voltage 

Vo(f) = 
fCRj

Rfi

DL

Lp

π21
)(

+
. Reducing RL will reduce the RC 

product and speed up the system, while increasing RL increase 
the bandwidth and dynamic range of the system. Another key 
idea is to reduce the swing across CD, by making the detector 
work into a virtual ground using a transimpedance amplifier 
shown in Fig 4(a).[6],[9] The inverting input of A1 draws no 
current, feedback forces the voltage there to be close to zero at 
all times. A1 senses the voltage across CD and wiggles other 
end of RF to zero it out. Provided that A1 has high loop gain 
AVOL, the swing across CD is greatly reduced and the 
bandwidth greatly improved. The amplifier input adds a 

significant amount of its own capacitance Cin. For a typical 
transimpedance topology using active devices with load 
feedback resistance Rf , the transimpedance gain Az can be 
approximated by : 
 

Az ≈ 

VO

inDf

f

A
CCR

j

R
)(

1
+

+

−

ω
  (2) 

where Avo is the open loop voltage gain of the amplifier and ω 
is the angular frequency. 
The transimpedance rolls off depends on the magnitude of the 
impedance of the feedback elements. Therefore the 
transimpedance amplifier bandwidth is calculated with the 
following equation :[6],[9] 
 

f3dB 
2
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where fT is the unity-gain crossover frequency 
 
Equation 2 shows that the upper 3dB cut-off frequency of the 
preamplifier is a function of the capacitance from the detector, 
feedback resistor and open loop voltage gain. In other words, a 
large detector means a large Cd. Hence, in order to achieve 
large bandwidths either the value of Rf is reduced or Avo is 
increased. Unfortunately, increasing Avo will jeopardize 
amplifier stability and reducing Rf will increase thermal noise 
into the system.  

Fig. 4(a) Transimpedance amplifier circuit  

 
Fig. 4(b) Transimpedance amplifier noise model 
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large bandwidths either the value of Rf is reduced or Avo is 
increased. Unfortunately, increasing Avo will jeopardize 
amplifier stability and reducing Rf will increase thermal noise 
into the system.  
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the bandwidth and dynamic range 
of the system. Another key idea is to 
reduce the swing across CD, by making 
the detector work into a virtual ground 
using a transimpedance amplifier shown 
in Fig 4(a).[6],[9] The inverting input of 
A1 draws no current, feedback forces 
the voltage there to be close to zero at 
all times. A1 senses the voltage across CD 
and wiggles other end of RF to zero it out. 
Provided that A1 has high loop gain AVOL, 
the swing across CD is greatly reduced 
and the bandwidth greatly improved. The 
amplifier input adds a significant amount 
of its own capacitance Cin. For a typical 
transimpedance topology using active 
devices with load feedback resistance 
Rf , the transimpedance gain Az can be 
approximated by :
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III. TRANSIMPEDANCE AMPLIFIER THEORY 
This section is an example of how to design a front-end 
amplifier for a visible or near IR photodiode and how to get 
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where Avo is the open loop voltage gain of the amplifier and ω 
is the angular frequency. 
The transimpedance rolls off depends on the magnitude of the 
impedance of the feedback elements. Therefore the 
transimpedance amplifier bandwidth is calculated with the 
following equation :[6],[9] 
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where Avo is the open loop voltage gain of the amplifier and ω 
is the angular frequency. 
The transimpedance rolls off depends on the magnitude of the 
impedance of the feedback elements. Therefore the 
transimpedance amplifier bandwidth is calculated with the 
following equation :[6],[9] 
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where Avo is the open loop voltage gain of the amplifier and ω 
is the angular frequency. 
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where Avo is the open loop voltage gain of the amplifier and ω 
is the angular frequency. 
The transimpedance rolls off depends on the magnitude of the 
impedance of the feedback elements. Therefore the 
transimpedance amplifier bandwidth is calculated with the 
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large detector means a large Cd. Hence, in order to achieve 
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Fig. 4(b) Transimpedance amplifier noise 
model

Noise in transimpedance amplifier : From 
Fig 4(b), it is obvious that all the current 
sources are in parallel : id, iNSHOT, iNth and 
iamp. The Johnson noise iNth appears across 
Rf but since the op amp output impedance 
is low and the currents add linearly, the 
other end of iNth is at ground for noise 
purpose. The rolloff in the frequency 
response does not degrade the signal to 
current noise ratio. The amplifier’s voltage 
noise, eNamp is treated differently because 
A1 is a differential amplifier. Therefore 
eNamp is multiplied by A1’s noninverting 
gain.[6],[9]
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If eNamp is very low or if we are not trying to get a huge 
bandwidth improvement through (fT*fRC)1/2 mechanism, this 
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In order that op amp do not dominate the noise according to 
Hobbs[9], we should choose it by the following rules : 
 
iNamp < 0.5iNth (Noise of Rf dominates iNamp) 
eNamp < 0.5 Rf iNth  (eNamp should be the same in flatband) 
eNamp < 0.5iNth / (2πf3dB (CD + Cin) (Noise peak should not 
dominate anywhere in the frequency band) 
fT > 2f3dB

2/ fRC (The amplifier has to raise enough bandwidth) 
fT < 10f3dB

2 / fRC (Speed too fast risks trouble with ringing and 
oscillation) 
 
The transimpedance amplifier does not improve the SNR of 
the photodiode it just changes the frequency response. There’s 
nothing inherent or inescapable about noise peak in system, it 
comes from a poor choice of circuit topology that can be 
amended. 
 

 
Fig. 5 High impedance amplifier with equalizer 

 

High impedance amplifier theory :  Fig 5 shows a typical 
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are negligible.  
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operation[1]. The detector output is effectively integrated over 
a large time constant and must be restored by differentiation. 
This is performed with the correct equalization. Therefore the 
high impedance front end gives a better improvement in 
sensitivity over the low impedance front end design, but 
eventually creates a heavy demand for equalization and has 
problem of limited dynamic range. The limited dynamic range 
is because of the attenuation from the low frequency signal 
components by the equalization process which causes the 
amplifier to saturate at high level signals. If the amplifier is 
saturated before equalization has occurred the signal will be 
heavily distorted, thus reducing the dynamic range which is 
dependent upon the amount of integration and subsequent 
equalization employed. 
 

 
 

iNth and iamp. The Johnson noise iNth appears across Rf but since 
the op amp output impedance is low and the currents add 
linearly, the other end of iNth is at ground for noise purpose. 
The rolloff in the frequency response does not degrade the 
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eNamp is treated differently because A1 is a differential 
amplifier. Therefore eNamp is multiplied by A1’s noninverting 
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In order that op amp do not dominate the noise according to 
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oscillation) 
 
The transimpedance amplifier does not improve the SNR of 
the photodiode it just changes the frequency response. There’s 
nothing inherent or inescapable about noise peak in system, it 
comes from a poor choice of circuit topology that can be 
amended. 
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are negligible.  
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This is performed with the correct equalization. Therefore the 
high impedance front end gives a better improvement in 
sensitivity over the low impedance front end design, but 
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the low frequency signal components by 
the equalization process which causes 
the amplifier to saturate at high level 
signals. If the amplifier is saturated before 
equalization has occurred the signal will 
be heavily distorted, thus reducing the 
dynamic range which is dependent upon 
the amount of integration and subsequent 
equalization employed.

IV.	 BANDWIDTH 
ENHANCEMENT METHOD

The majority of optical wireless 
receivers proposed [3][5][7][8][10][11] 
or demonstrated to date have employed 
transimpedance amplifier, due to the 
fact this configuration largely overcomes 
the drawbacks of high impedance front 
end by utilizing a low noise, high input 
impedance amplifier with positive 
or negative feedback. Bandwidth 
enhancement techniques are required 
that do not affect low frequency behavior, 
so that both high dc gain and large 
bandwidth can be obtained. Several of 
these techniques have been proposed in 
the literature in order to maximize the 
gain-bandwidth product of an amplifier 
stage. 

One of the method is a transimpedance 
amplifier is built up with two capacitive 
coupled voltage dividers (R1-R2, R3-R4) 
instead of a single feedback resistor[10]. 
The basic concept of this network is 
its different behavior at low and high 
frequencies. At low frequencies the 
transimpedance of the transimpedance 
amplifier is approximately the sum of 
R1 and R2. For higher frequencies the 
parasitic capacitance of resistor R2 has 
no effect owing to the low resistance of 
R4, which has no effect on the bandwidth 
of the transimpedance amplifier.  Only 
parasitic capacitance of resistor R1 has an 
influence on the bandwidth of the circuit 
at a nine times higher frequency than 
before. 

Cascading and capacitance neutralization 
compensate the input Miller capacitance 

thus expanding the bandwidth if the 
input pole is dominant. Unfortunately 
these techniques are less effective in low 
power amplifiers that use high speed 
bipolar transistors, if the output pole 
becomes dominant. 

Another well known method to increase 
bandwidth of amplifiers uses peaking 
capacitors[8] or inductors. This method 
usually places inductors or capacitors 
in a strategic location of the amplifier 
circuit, resulting in a resonance with 
parasitic capacitances, which broadens 
the bandwidth of the amplifier. Although 
inductive peaking do increase the 
amplifier bandwidth, stray capacitances 
of the inductor often causes bandwidth 
degradation rather than an improvement. 
Capacitive peaking design is preferable, 
but this technique is extremely sensitive 
to process variations and could cause 
large peaking.

Therefore, a much improved version 
of a front-end, incorporated within a 
transimpedance amplifier, is shown in 
Fig 6, the topology being known as the 
bootstrapped transimpedance amplifier 
(BTA)[11]. The BTA is an attractive 
design as it reduces the effective detector 
capacitance, Cd, seen by the signal. The 
output of the emitter follower stage 
is feedback to the photodetector by a 
bootstrapping capacitor, C3. Fig 7 proposes 
a combination of bootstrapped technique 
with a capacitive peaking technique by 
placing a capacitor, C4, in series with 
the emitter resistor in the second gain 
stage, with a feedback resistor R8 [12]. By 
varying the capacitor, the bandwidth of 
the circuit can be controlled. The output 
results of Fig 6 and Fig 7 are shown in 
Fig 8 and Fig 9. In each case the amplifier 
output is taken from the collector at Q3. 
Assuming that the gain stages and the 
emitter follower can be approximated by 
a simplified hybrid-π model, as shown in 
Figure 10,   and we consider frequencies 
where C1, C2 and C3 are short circuits, the 
transimpedance gain, Az for the circuit is 
approximated by equation (8):
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Equation (8) shows that the receiver bandwidth is determined 
not only by the R8Cd time constant but by a complex function 
of gm3, r3, R7 , R6 and C4. The circuit effectively operates in 
between the low and the high frequency range. Thus, the 
modified circuit shows that varying capacitor C4, thus 
modifying the second stage gain can vary the bandwidth. The 
lower the value of C4, the higher the bandwidth becomes. This 
technique permits a bandwidth adjustment from 350MHz to 
2.5MHz for a capacitance range of 100µF to 100pF. 
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Fig. 9 Frequency response bootstrapped with capacitor peaking transimpedance amplifier 

 
 

 
Fig.10 Model hybrid-pi of bootstrapped with capacitor 

peaking transimpedance amplifier circuit 

 
A better proposed topology using a composite amplifier 
provides high bandwidth as shown in Fig 11.  The 
bootstrapped transimpedance amplifier is connected in series 
with a voltage feedback amplifier and a RC filter. By varying 

the capacitor, C6 between 50pF to 1nF the bandwidth of the 
circuit can be controlled in the frequency range of 6MHz to 
60MHz as shown in Fig 12. There is a trade-off between gain 
and bandwidth compared to Fig 9. As the bandwidth is 
increased the gain of the circuit is reduced. If we assume that 
the gain stages, the emitter follower and second stage 
amplifier can be approximated by a simplified hybrid-π 
model, as shown in Figure 13. The transimpedance gain, Az1 
for the circuit can be approximated by equation (9) 
considering frequencies where C1, C2 and C3 are short circuits : 
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where A is the voltage gain of the first stage amplifier and A1 
is the voltage gain of the second stage amplifier. 
 
Bootstrapping transimpedance amplifier effectively allows for 
a higher transimpedance gain and a lower Rf thermal noise 
contribution. Composite configuration of transimpedance 
amplifier effectively allows for a higher bandwidth with a 
trade-off of 10dB – 20dB gain, while maintain its noise 
contribution. 
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where A is the voltage gain of the first 
stage amplifier and A1 is the voltage gain 
of the second stage amplifier.

Bootstrapping transimpedance 
amplifier effectively allows for a higher 
transimpedance gain and a lower Rf 
thermal noise contribution. Composite 
configuration of transimpedance 
amplifier effectively allows for a higher 
bandwidth with a trade-off of 10dB 
– 20dB gain, while maintain its noise 
contribution.
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Fig. 13 Model hybrid-pi of composite transimpedance 
amplifier 

V. APPLICATION 
In application wise, it is suggest to use the composite amplifier 
receiver to accommodate the high frequency range bandwidth 
adjustment, where a variable switching capacitor circuit would 
be use to vary the capacitance from the range of 50pF to 1nF. 
The propose switching circuit which is design to be 
incorporated together with the receiver will automatically 
select the right capacitance value based on the received signal 
quality and adjust the receiver to the required bandwidth. 

VI. CONCLUSION 
Infrared wireless had yet to exploit fully all the potential 
benefits offered by the medium. There is still a great deal of 
work to be done in the adaptation and optimization of 
coverage areas, especially with unknown receiver orientation. 
Receiver design is particularly challenging because not only 
dynamic range and bandwidth criteria has to be met, but also 
significant problems of high ambient light levels noise has to 
be dealt with.  This paper has provided an insight issues 
associated with the front-end design of a wireless infrared 
communication. It has highlighted the significant maxims on 
choosing the biasing circuitry. To summarize, high impedance 
amplifier with a large Rf diminish the effects of thermal noise. 
However the receiver bandwidth is then usually smaller then 
the signal bandwidth, which require an equalization stage 
following the preamplifier as discussed. The circuit will be 
tricky, as the equalizer effect reduces the overall dynamic 
range of the receiver. The transimpedance front ends resolve 
these issues by using a large feedback resistor and an inverting 
amplifier, which boots the bandwidth without thermal noise 
and dynamic range problems. In addition, infrared application 
dominant source of noise is due to background radiation, not 

thermal and circuit noise, which makes the sensitivity of the 
transimpedance front end more attractive.  
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VI.	 CONCLUSION

Infrared wireless had yet to exploit fully 
all the potential benefits offered by the 
medium. There is still a great deal of 
work to be done in the adaptation and 
optimization of coverage areas, especially 
with unknown receiver orientation. 
Receiver design is particularly challenging 
because not only dynamic range and 
bandwidth criteria has to be met, but 
also significant problems of high ambient 
light levels noise has to be dealt with.  
This paper has provided an insight issues 
associated with the front-end design of 
a wireless infrared communication. It 
has highlighted the significant maxims 
on choosing the biasing circuitry. To 
summarize, high impedance amplifier 
with a large Rf diminish the effects of 
thermal noise. However the receiver 
bandwidth is then usually smaller then 
the signal bandwidth, which require 
an equalization stage following the 
preamplifier as discussed. The circuit will 
be tricky, as the equalizer effect reduces the 
overall dynamic range of the receiver. The 
transimpedance front ends resolve these 
issues by using a large feedback resistor 
and an inverting amplifier, which boots 
the bandwidth without thermal noise and 
dynamic range problems. In addition, 
infrared application dominant source of 
noise is due to background radiation, not 
thermal and circuit noise, which makes 
the sensitivity of the transimpedance 
front end more attractive. 
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