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Abstract— A cloud-based networks offered as new wireless 

architecture, where optimization of radio resources at the base 

station (BS) is moved to a cloud data center for optimization. In 

this paper, we propose to minimize the energy consumption at 

the data center where multiple cloud processors are used for the 

optimization. As the cell size and networks become respectively 

smaller and denser, the number of BS to be optimized grows 

exponentially, resulting in high computational complexity and 

latency at cloud processors. The computation for the schemes is 

distributed across multiple processors and done in parallel using 

belief propagation (BP) method, leading to very low latency with 

increasing number of BS. Simulation results show that the 

network energy efficiency performances at the cloud are close to 

an exhaustive search solution in finding the best configuration. 

 

Index Terms— Belief Propagation; Cloud; Parallel 

Processing; Power Control; Small Cell Networks. 

 

I. INTRODUCTION 

 

Cloud-Based Radio Access Network (C-RAN) for small cell 

networks have emerged as a promising solution to improve 

wireless network energy significantly [1]. In these cloud-

based networks, multiple physical base stations (BSs) 

consists only of radio frequency units and simple processing 

modules. Computation of radio resource allocation and inter-

cell interference management move to a cloud for centralized 

optimization. By centralizing the optimization of radio 

resources for all small cells, optimal dynamic radio resource 

management over many cells can be achieved, leading to 

significantly higher energy efficiency.  

The centralized optimization is performed by using 

multiple processors available at a cloud data center [2]. 

Multiple processors will significantly reduce the latency and 

the computational burden of a single processor as the 

computation can be distributed and performed 

simultaneously in parallel. In a conventional cloud structure, 

each base station (BS) is exclusively allocated to a single 

processor unit in the cloud data center. In other words, the 

numbers of processors and BSs in the network are equal. An 

optimization technique to share the computational resources 

of the processors in the cloud data center across multiple BSs 

when the numbers of processors are not equal with the 

number of deployed BSs is proposed in [3]. This feature 

allows to minimize the number of used processors and 

improve the data center energy efficiency. In the Long-Term 

Evolution Advanced (LTEA)  standard and many published 

papers [4], the allocation of cloud processors and BS powers 

are done separately, leading to inefficient resource utilization. 

Thus, posing challenges for delivering low latency internet-

of-things (IoT) applications in C-RANs. To date, there has 

been no research that investigates a joint allocation of power 

and cloud processors.  

Recently, a distributed computation technique based on 

belief propagation (BP) method that allows the BSs 

cooperation and transmits power computation to be done in 

parallel to increase network spectral efficiency and to reduce 

latency, was proposed in [5], [6]. With the BP method, the 

overall network optimization function that maximizes the 

spectral efficiency [5], [6] is first decomposed into multiple 

optimization functions, solvable in parallel at the BSs level. 

The BSs cooperation then occurs via message exchange 

between the BSs. The message contains information about the 

marginal probability distribution of the objective function for 

network energy efficiency. 

The main contributions of this paper are as follows. First, 

the purpose of this paper is to develop a distributed power 

optimization that optimizes the network energy efficiency. 

The develop network energy optimization is expected 

applicable for both conventional and new cloud structures 

where either each BS is allocated a dedicated cloud processor 

or each cloud processor is shared by multiple BSs, 

respectively. Second, unlike BP scheme in [5], [6] that 

consider an unconstrained network optimization problem, we 

consider the received signal-to-interference-plus-noise ratio 

(SINRs) as the optimization constraints. In [5], [6], all 

messages, coming from adjacent variable nodes at time t, 

regardless whether the SINR constraint is satisfied or not, are 

included in the factor node computation. We offer a sum-

product algorithm and a message passing formulation that 

consider the optimization constraints in their sum-product 

message computations. The developed network energy 

optimization is based on the BP concept. It is executed in 

parallel across multiple cloud processors to reduce the latency 

in cloud-optimization techniques which are critical for new 

IoT applications. The latencies for the proposed schemes in 

fact do not change when we increase the number of BSs, as it 

will be shown later in the paper. Third, we develop a new 

scalable BP algorithm, where each factor node is connected 

to only two variable nodes regardless of the number of 

adjacent interfering BSs in the network. This paper also 

aimed to have very low latency, as the latency no longer 

depends on the number of BSs. Unlike the existing BP 

schemes, [5], [6] the proposed schemes do not allow a BS to 

transmit to users if a minimum received SINR is not satisfied. 

This eliminates waste of BS transmission, which happens 

when the received signal is below the minimum received 

SINR. The simulation results also show that the network 

energy efficiency and latency performances of the two 

proposed algorithms outperform similar schemes in the open 

literature [6]; and the network energy efficiency are very 

close to the optimal exhaustive search solution. 
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II. SYSTEM MODEL AND OPTIMIZATION FORMULATION 

 

In this section, we propose a parallel optimization to 

allocate BS transmit power in C-RAN for small cell networks 

to address the above-mentioned problems. In C-RAN, the 

power allocation optimization for BSs is done in the cloud 

processors. We consider a downlink transmission for a C-

RAN with N BSs. Each BS is assumed to transmit by using 

the same spectrum for its downlink transmissions. The BSs 

are connected to the cloud via high-speed optical fiber cables. 

The computation of radio resources for each BS moves to the 

cloud. We consider the cloud processors are shared by 

multiple BSs, we could improve the energy consumption at 

the cloud data center by minimizing the number of used 

processors [9]. The resource computation is done in parallel 

across multiple cloud processors. We assume users are 

randomly located and connected to the closest BS.  

We let user j be the closest user to BS j∈N, such that 

N={1,2,...,N}. We further define the set of adjacent BSs to BS 

j, as Nj ={i j|i∈N}.The transmit power for BS j is denoted as 

jq  and selected from W possible transmit power values 

jj Wq  , jW ={ jwq |w = 1,...,W}. The wireless channel between 

BS j and user k is modelled as ),( jkjkjk hFhg  . jkh and

),( jkdF  represent the wireless channel coefficient 
that

 

depends on the distance jkd between BS j and user k and path 

loss exponent β. The received signal at user j is given as 

 

jkjkjkk

jΝk
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where jx is the symbol transmitted by BS j to user j, drawn 

from M-ary Quadrature Amplitude Modulation symbols with 

a symbol energy E[| jx |2]=1 and ),0( 2Nz j  represents the 

additive white Gaussian noise. By using (1), the received 

SINR at user j, is given as 
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To ensure the transmissions to all users in N cells satisfy 

the minimum quality of service, we develop an indicator 

function for BS j, where BS j transmits only if the received 

SINR at user j is above the minimum SINR required to deliver 

the service, j . An indicator function for each BS j, )(qjI , 

that computes the energy efficiency at the cloud data center, 

is defined as the ratio between the transmission rate and the 

number of processors needed to support the transmissions of 

BS j, where q={ kj qq  } is the overall transmit power state 

of the system such that j,k∈N and j k. We let )(qj  

represents the portion of cloud processors for processing BS 

j transmission and defined as  

s

j

j

))(1(log
)( 2

q
q





  (3) 

where ς, κ and s represent the overhead for the required 

instructions for setting up the cloud processor, the 

relationship between cloud processor instructions and j (q), 

and the amount of instructions that can be executed by a 

single cloud processor per channel transmission, respectively. 

We use κ and ς that are estimated by using data logs of real-

world traffic in a wireless cellular network across 21 cell sites 

in a dense cellular network as an input to the hardware 

experiments in [3], [10].   

We define an indicator function, )(qjI that calculates the 

network energy efficiency per channel transmission for BS j 

for j=1,2,...,N. This function has q as its variables and is 

defined as 
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where the numerator of (4) is the number of cloud processing 

instructions related to the transmission rate of BS j in a single 

channel, if BS power allocations q used. The maximization 

for the average values of the network energy efficiency at the 

cloud data centre for N BSs with jq ,j =1,...,N as variables, 

can be written as 

.,subject to
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,...,
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Here, once the jq  is obtained from (5), we compute the total 

number of used cloud processors, η, as 






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where ⌈υ⌉ denotes an integer round up operation for υ. Note 

that the global optimal solution for (5) can be obtained by 

exhaustively searching all possible transmit power 

combinations for all BSs and selecting the one that gives the 

maximum of (5). However, although this approach is optimal, 

it requires a very high computational complexity.  

 

III. CLOUD BASED NETWORK ENERGY EFFICIENCY 

 

In this section, we propose a distributed power optimization 

algorithm for solving (5) in a parallel manner. We have 

derived an optimization function that minimizes the energy 

consumption at the cloud data center when each cloud 

processor is shared by multiple BSs, subject to the received 

SINR requirements of the users with the BSs transmit power 

as variables. We then propose a scalable BP algorithm with 

low latency, by assuming that the interference component in 

each of the modified SINR constraints comes only from a 

single adjacent BS. 

 

A. Parallel Network Energy Efficiency 

We first write the probability distribution function (pdf) 

representations for (5) following [11] that results in a 

maximum network energy value given by  


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Next, we decompose (7) into multiple power optimization 

problems. Thus, the decomposed network energy functions 

with transmit powers as their variables can be computed in 

parallel across multiple cloud processors.  
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Algorithm 1 Parallel Network Energy Efficiency (BPEE) 

1: Input: User j, j∈N;  
2: Output: Required transmit power for BS j 
3: Initialize all messages  

i.e. 
0

jam  ( jq )=[0]   a,j∈N 

4: Set iteration index t= 0. 
5: Increase t   
6: if t < tMAX , then 
7: for each BS j, do 

8: Compute  a∈N 

 
t
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11: end for 
12: end if 
13: Find the transmit power for BS j using 

jWjq 
max [





Na

t

jam~ ( jq )] 

 

 

Algorithm 2 Low Latency Parallel Network Energy 

Efficiency (BPLowEE) 
1: Input: User j, j∈N; 
2: Output: Required transmit power for BS j 
3: Initialize all messages  

i.e. 
0

),( ikjm  ( iq )=[0]   j∈N, k∈Nj,i∈{j,k} 

4: Set iteration index t= 0. 
5: Increase t   
6: if t < tMAX , then 
7: for each BS j, do 

8: Compute   k∈Nj, 
t
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11: end for 
12: end if 
13: Select the transmit power for BS j using 

)( jj qb =
jWjq 

max [
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A factor graph representation of the decomposed 

optimization problems, based on the concept described in [7] 

is then developed. The factor graph describes the relationship 

between the network energy objectives, )(qjI  and transmit 

power, jq  represented by factor nodes j and variable nodes j, 

respectively for each BS j. Each cloud processor has a single 

factor node and a single variable node and cooperates with 

other cloud processors by exchanging messages containing 

the marginal distribution estimates of the network energy 

functions.  

A BP method based on the sum-product approach [8], is 

used over the factor graph that enables cloud processors to 

cooperate by exchanging the estimates of the marginal 

distribution of (5) and to optimize a network energy functions 

in parallel. Each cloud processor computes the marginal 

estimate of energy efficiency at data center functions in 

parallel and exchanges the estimates with other cloud 

processors. The process is repeated until the message values 

at each cloud processor no longer change.  

We denote t
ajn  ( jq ) and t

jam  ( jq ) as the messages sent 

from/to the variable node j to/by the factor node a at iteration 

t, respectively, for any j,a∈N such that jj Wq  . Each cloud 

processor then computes the estimates of the energy 

efficiency functions for each possible transmit power at BS j. 

The transmit power that yields the maximum estimate is then 

used by BS j. The complete optimization process of the 

proposed parallel power control performed by multiple cloud 

processors in a cloud. The process is repeated in parallel until 

the number of iterations hits its maximum, defined tMAX. The 

complete algorithm for BP based parallel network energy 

efficiency, referred to as BPEE scheme, is summarized in 

Algorithm 1. Furthermore, the convergence of (7) has been 

proven mathematically in [11]. 

B. Low Latency Parallel Network Energy Efficiency 

We also propose a simplified BP algorithm, namely a 

BPLowEE scheme as summarized in Algorithm 2. The SINR 

constraints in (3), j (q) ≥ j  and the optimization objective 

for each BS are decomposed into multiple linear constraints. 

We assume that the interference component in each of these 

new constraints comes only from a single adjacent BS and we 

denote each BS j constraints as jk ( kj qq , ) for k∈Nj. The 

original SINR constraint in (2) can be expressed as  
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Now, we redefine the indicator function jkI ( kj qq , ), 

computed by using new N − 1 SINR definitions in (8) for each 

BS j, jk ( kj qq , ), as )(qjI = jkjNk I ( kj qq , ). If cloud 

processors are shared by multiple BSs, the indicator function 

for the energy efficiency at the data center will depend on the 

transmission rate that in turn depends on jk ( kj qq , ). By 

following the same approach above for deriving (7), we can 

express  
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that depends only on two variables jq and kq . To compute (9) 
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we use a similar BP approach as described above. We let i∈{j, 

k} and Ni\(j,k) denote all the adjacent nodes in the network to 

node i except for factor node (j,k), respectively. The message 

to/from factor node (j,k) from/to variable node j at iteration t 

is now denoted as t
ijkm )( ( iq ) and t

kjjn ),( ( jq ), respectively. 

The process above is repeated in parallel for all cloud 

processors until t = tMAX. The transmit power for each cloud 

processor j is selected as shown in Algorithm 2. 

 

IV. LATENCY COMPARISON 

 

In this section, we compare the latency of BPEE and 

BPLowEE with the non-cooperative scheme in [4] and other 

power allocation schemes based on a BP approach in [6] and 

an optimal exhaustive search method. The latency is defined 

as the average number of iterations needed to converge and 

the delay due to BS computational processing in each 

iteration. The iteration delay for BPEE and BPLowEE and the 

iterative schemes in [4] and [6] are denoted as tMAX,BPEE, 

tMAX,BPLowEE, tMAX,NC, and tMAX,BPA, respectively. We assume 

that the time needed to compute one possible combination of 

transmit powers, jq ={qi∈Wi ∀ i∈Nj} in one iteration is the 

same for BPEE, BPLowEE, [4] and [6]. Thus, the delay in 

each iteration depends on the number of possible 

combinations of jq  that need to be searched.  

When the scheme in [4] is used, the global network energy 

optimization problem is decomposed and solved at each 

cloud processor, allocated exclusively for one BS. The energy 

optimization is then done in a serial manner where each cloud 

processor takes a turn in updating its transmit power decision 

and interference information. When BP approach for the 

scheme in [6] and the proposed BPEE and BPLowEE are 

used, cloud processors updates its decisions on BS resource 

allocation in a parallel manner. As a result, the delay due to 

the BSs computational processing in each iteration is reduced 

by N times. Yet, as the number of BSs in the network energy 

increases, the latency will grow exponentially. When 

BPLowEE is used, each factor node is connected only to two 

rather than N variable nodes as in the scheme [6] and BPI. 

Therefore, the latency per iteration used in BPLowEE is 

further reduced by WN−3 times as compared to [6] and BPEE.  

 

V. SIMULATION RESULTS AND DISCUSSION 

 

In this section, we compare the latency of BPEE and 

BPLowEE for energy efficiency performance relative to the 

schemes in [4] and [6] and with the exhaustive search-based 

schemes. In the simulations, we consider a two-dimensional 

urban macrocell model from the LTEA standards [12], where 

9 BSs are positioned on a 3×3 rectangular grid, operating at 

frequency 2.14GHz. The parameters used in the paper are 

summarized in Table 1. All results are evaluated over 500 

independent trials.  

Figure 1 shows the average latency for tMAX,BPEE, 

tMAX,BPLowEE, tMAX,NC and tMAX,BPA. As the number of BSs 

increases, tMAX,NC increase exponentially with the number of 

BSs. On the other hand, regardless of the network objectives, 

the average tMAX,BPEE, tMAX,BPLowEE and tMAX,BPA remains at 4, 

6 and 7 iterations, respectively, as the number of BSs 

increases. The proposed BPLowEE scheme reduces the 

latency time even further as its latency is 100 times less than 

the scheme in [6] which has the lowest latency among 

cooperative schemes. Furthermore, its latency time is also 48 

times less than the scheme in [4]. 

Figure 1 also shows the average latency when energy 

efficiency at the cloud data center is used as the optimization 

objective for BPI and BPII schemes, referred to as tMAX,BPEE 

and tMAX,BPLowEE. As their latencies are the same when other 

optimization objectives are used, we can conclude that the 

latency of the proposed BP schemes is insensitive to 

optimization objectives. 

 
Table 1 

Simulation Parameters and Value 

 

Symbol Description Value 

B System bandwidth 20MHz 

r Cell radius 500m 

β path loss coefficient 3.76 

χ log normal shadowing coefficient 8dB 

σ thermal noise power density -174dBm/Hz 

qj,4 4 power levels with maximum power 43dBm 

s Processor speed [3] 2GHz 

ς Constant coefficient of s 7 × 108 

κ Rate varying coefficient of s [3] 35 

 
Figure 1: Latency for various methods with j =5dB and W =4. 

 

Figure 2 shows that the number of used cloud processors 

for BPEE and BPLowEE schemes with various SINR 

thresholds can be reduced by 30% over the existing schemes 

[4] and [6]. We now compare the performance of BPEE and 

BPLowEE with [4] and [6] and exhaustive search-based 

schemes in terms of their energy efficiencies of the cloud data 

center. When compared with the exhaustive search with 

spectral efficiency as objectives we could see that there is a 

spectral efficiency degradation of 10% and 13% for BPEE 

and BPLowEE schemes, respectively.  

Note that we cannot guarantee that the BPEE and 

BPLowEE schemes will converge to the global optimal 

solution of (5) and (7), respectively. The interdependency in 

the transmit power decisions between multiple BSs results in 

a full cycle graph. This leads to a non-optimal transmit power 

configuration q as shown in Figure 3 where the two proposed 

schemes on average are shown to be within 5% (for BPEE 

scheme) and 10% (for BPLowEE scheme) from an 

exhaustive search scheme in terms of the energy efficiency at 

the cloud data center, respectively. 
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Figure 2: Cloud Processors consumption,   in C-RAN using various 

methods with j =5dB and 9dB 

 
Figure 3: Total spectral efficiency for 9 BSs using various methods with 

j  = 5dB and 9dB 

 

VI. CONCLUSION 

 

We have proposed a power allocation scheme for C-RAN 

to maximize the network energy efficiency at the cloud data 

center and computed in parallel, resulting in low latency. A 

BP algorithm, based on the sum-product approach is used in 

the optimization process, where each BS computes a BP 

belief, that represents the estimate of the network energy 

functions for each possible BS transmit power. Each BS uses 

the transmit power given by the maximum estimate of the 

energy efficiency at the cloud data center. We have also 

presented a scalable BP algorithm with very low latency. The 

simulation results show that the proposed schemes 

significantly outperform other best-known schemes in terms 

of latency and energy efficiency. The proposed algorithm 

outperforms the best known existing scheme by at least 15% 

and 13% in terms of the energy efficiency at the cloud data 

center. 
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