

 e-ISSN: 2289-8131 Vol. 10 No. 2-5 109

 A Review of Techniques in Automatic

Programming Assessment for Practical Skill Test

Adidah Lajis1, Shahidatul Arfah Baharudin1, Diyana Ab Kadir1 , Nadilah Mohd Ralim1, Haidawati Mohd Nasir1 and

Normaziah Abdul Aziz2
1Universiti Kuala Lumpur Malaysian Institute of Information Technology

2Kulliyah of Information Technology International Islamic University Malaysia

adidahl@unikl.edu.my

Abstract—Computer programming ability is a challenging

competency that requires several cognitive skills and extensive

practice. The increased number of students enrolled in

computer and engineering courses and also the increased of

failure and drop rate in programming subject is the

motivational factor to this research. Due to the importance of

this skill, this paper intends to study the landscape of current

scenario in assisted assessment for hands-on practical

programming focusing on competency-based assessment. The

Bloom Taxonomy is used as a competency-based assessment

platform. The review showed to-date that there are several

automatic assessments for programming skills. However, there

is no common grading being applied. Thus, further research is

required to propose an automatic assessment that grades the

student achievement based on learning taxonomy such as Bloom

Cognitive Competency model.

Index Terms—Cognitive Assessment; Assisted Assessment;

Programming; Competency-Based;

I. INTRODUCTION

Assessment is important for any educational organisation. It

is a process to quantify the student skills and knowledge that

can be implemented via various methods such as project, test,

observation, assignment and others. Assessing computer

programming competency is quite different from the

assessment of other courses neither to math-related courses.

In programming especially when focusing on practical

assessment, every question can be solved in a variety of

methods. It can be considered an individualised assessment,

and this will consume a lot of time. The increased number of

students in Higher Education may also increase the time spent

by the lecturer in marking the assessment [14]. In Malaysia,

the number of student enrollment for the year 2015 is 566,266

in public Higher Education Institutions(HEI) and 608,378 in

private HEI [47].

Computer programming is the ability to produce working

digital artefacts to the standards dictated by industrial best

practice. Renumol et al. [2] quoted as “programming is the

process of writing, testing and debugging of computer

programs using different programming languages. The

former is the knowledge of programming language syntax

and semantics which in turn needs memorisation and

comprehension abilities; whereas the latter is problem-

solving and program design skills which in turn needs

additional skills like abstraction and logical thinking, and

domain knowledge". Therefore, it can be concluded that

programming is a complex task that requires various skills

and knowledge.

It is one of the common subjects taken by most of the

students in higher education who enrol Information

Technology, Computer Science and Engineering and is

commonly known as highly practical subjects with the goal

to develop students’ understanding of the programming

principles. The hard part of teaching computer programming

is for beginners where they need to master the abstract

concepts of programming. The drop-rate and failure rate for

programming subject is relatively high [3] [4].

The assessment of computer programming is different from

the assessment of math-related subjects [46]. It comprises of

the high cognitive task, ranges from low level to high-level

thinking skills. According to [43], a task to the program will

need the skill to learn the language, create and comprehend

new program, reuse and integrate programs, debugging and

testing, and documenting what they code. The tasks

performed during the programming process is a cognitive

task that requires knowledge of syntax and semantics of the

programming language [43]. Others cognitive task involve is

to solve the problem, i.e. understand the problem, analyse and

design the solution.

It has been identified that deficiencies in programming

skills of first-year students are due to failure to recognise the

main source of their difficulties [16]. Novice programmer

often has difficulty in grasping the foundation level of

programming concepts. In 2015, Parson et al. argued that

students performed poorly in the assessment because the

assessment is not testing their programming ability [5]. Some

assessment methods are on paper and focus on assessment of

the programming concept. The ability to solve programming

problems and produce working code is considered the most

important capability for computer science and engineering

students. Besides, the process of manually validating student

source code proves to be quite burdensome, and this may

result in untimely reporting of feedback which also

contributes to the high failure. A number of program

assessment systems on different scales were produced over

the last 15 years are either to assess the performance or the

competency of the students. This paper studies the landscape

of assisted assessment in hands-on practical programming

focusing on cognitive competency based on Bloom

taxonomy.

II. COMPETENCY-BASED EDUCATION AND BLOOM

TAXONOMY

Competency-based education (CBE), the smaller concept

of outcome-based education (OBE) is a measure of learning

where student progress by demonstrating their competence

while the educator guides them. Here competence is referring

to the ability of the student to solve the problem. Competent

students are those who can and want to, interact effectively

Journal of Telecommunication, Electronic and Computer Engineering

110 e-ISSN: 2289-8131 Vol. 10 No. 2-5

with three kinds of environments posed by the socially-

ascribed, self-selected, and self-developed roles they face

upon graduation [17]. Therefore, CBE is based on a set of

outcome that is derived from an analysis of student task.

OBE has been implemented at all levels of tertiary

education since the year 2008 [1]. It covers three learning

domains; Psychomotor, cognitive, and effective domain and

has been implemented in various modalities. Cognitive

outcomes include a demonstrable acquisition of specific

knowledge and skills in solving problems. An effective

educational outcome is defined as learning outcomes that

focus on "individual disposition, willingness, preferences,

enjoyments …..." [6]. While psychomotor includes physical

movement, coordination, and use of the motor-skill areas

[18]. Evidence of the outcome is required to fulfil the

shortage of the soft skill of an employee in the workplace [7]

[8].

Bloom’s (1956) Taxonomy of Educational Objectives

relating to the cognitive domain has influenced many

educationists over the years – more so than the companion

volumes relating to the effective and psychomotor domains

respectively [9] [19]. Bloom has defined six levels of

cognitive domain: knowledge, comprehension, application,

analysis, synthesis, and evaluation. Figure 1 shows the

different level of Bloom Taxonomy with its behaviour.

Figure 1: Bloom Taxonomy and its behaviour

This taxonomy has been taken as a basis for analysing the

students’ learning competence. It has been applied to

structuring assessment for the computer science [20], to

compare the difficulty of the cognitive level for computer

science subjects [21] and also to plan of the assessment of

programming [23]. In the year 2010, Alaoutinen and

Smolander [50] also have studied a simple student self-

assessment tool that uses Bloom’s Revised Taxonomy as the

base scale. This tool has help student in their learning and

provides the teacher with the level of knowledge gained by

the student. Thompson et al. [24] have discussed in detail in

the cognitive domain in programming. The summary on the

cognitive level, the programming assessment competence and

the task in programming subject are shown in Table 1.

III. REVIEWS OF TECHNIQUES IN AUTOMATIC

PROGRAMMING ASSESSMENT

In general, there are two approaches to automate

assessment in programming subjects; static and dynamic.

Static approach checks and analyses the source code without

executing the program [25] and being used to assess the

programming style, syntax and semantic error, software

metric analysis, structural similarity analysis, keyword

detector, plagiarism detection and also diagram analysis.

Dynamic analysis is an assessment based on the execution of

the program. It is used to assess the programming errors, the

design of the program, the software metrics and also to assess

the style of programming. Further explanation can be found

in the following topics.

Table 1
Cognitive Assessment for Programming Subjects

Cognitive

Level

Competence

[35]

Task in Programming [24]

Knowledge

Able to list related
command or

concepts

Identify a particular
construct in the codes,

recognise the

implementation and recall
any learning material

learned earlier.

Comprehension

Able to explain

what the

command/concepts

mean and able to

apply an example

similar problem

Able to translate an

algorithm form one to

another and to explain and

present the concept

Application Able to list cases
when the

command/concept

can be used.

The algorithm and process
is known and can apply to a

familiar problem that has

not been solved in the same
data or context, or it is

applied to an unfamiliar

problem
Analysis Able to explain the

meaning of the

command/concept
in its context

The code is divided into

parts and organise to

achieve an objective. The
critical component and

unimportant component are

identified.
Synthesis Able to ensure the

correct use of the

command/concept.

Testing is performed to

determine whether the code

satisfies the requirements
and able to suggest or

produce better code in

performing the task

Evaluation Able to use the

command/concept
in problem-solving

without an

example.

Suggest a new algorithm or

hypothesis to solve the
problem

A. Static Approach

The semantic similarity-based approach is one of the static

approaches being used to overcome drawbacks of the

dynamic-based approach. The student program and the expert

program are compared to calculate the semantic similarities.

It evaluates how close a student's source code to an expert

solution. However, it is not cost-effective when the size and

the problem complexity increased, as it will consume higher

processing time and memory requirement. Some examples of

systems applying these approaches are FDA [55], ELP [12],

SSBG [11] and AutoLEP [50], PETCHA [52].

 Another static approached is the graph-based techniques.

The code is represented as a graph with edges representing

dependencies between different components of the program.

The graph representation will provide abstract information

that enables to assess the code quality by applying the

software metrics. This approach has been applied in two

different ways: graph transformation such as in [12][54] and

graph similarity such as in [27][53].

Structural similarity analysis also uses this approach. The

code is converted into pseudocode abstract. Pseudocode

abstract is a representation of the basic algorithmic structure

of the program. The student’s abstract representation then is

compared to the expert abstract representation [10].

A Review of Techniques in Automatic Programming Assessment for Practical Skill Test

 e-ISSN: 2289-8131 Vol. 10 No. 2-5 111

 However, in Non-structural similarity analysis, it is done

by translating the students’ and expert’s code into the pseudo-

codes, and they are compared to find similarity percentage

[32].

Moodle extension developed by Slovak University of

Technology Bratislava [51] evaluates the submission of an

assignment by compilation and static analysis. It also

compares the functionality of the program with a model.

Machine learning algorithm such as Support Vector

Machines and the decision tree are also used to classify code

properties that lead to error [42]. In 2009, MacNish [38]

applied breath-first search, clustering and neural network to

identify logic errors of the program. Later, Matloobi [37]

applied fuzzy logic to grade algorithm complexity and

meaningful comments. Latest, Srikant and Aggarwal [36],

developed a system to grade a programming skill by this

algorithm based on assessment rubrics. The system will

provide two scores on program-ability and program practices.

Automata is an example of one system that is based on the

hybrid approach of semantic analysis and machine learning

algorithm and incorporated a taxonomy indicating basic,

advanced and edge [45] in its programming assessment.

Besides all the mentioned techniques, software quality

metrics also being employed in the assessment. It can be raw

metric or computed metric. Raw metrics are simple counts of

things like lines of code and inheritance depth. Computed

metrics take one or more raw metrics and combine them to

form another measurement. Table 2 shows the software

quality metrics employed in the analysis.

Table 2

Software Quality Metrics in Static Analysis Approach

Computed
Metric

Raw Metrics

Typographic

metrics [33,64]

Percentage of the following item; blank

lines, average white space per line,
names with good length, comment lines,

characters in comments.

Average characters per line and average
identifier length.

Program

complexity [33]

Reserved words, assignment statements,

library and function calls, operators,
loops and conditional statements,

maximum depth of braces and brackets.

Program
structure [33]

[34][49]

Unused variables, re-declared variables,
the variable used before set, used of value

return by a function, unused statement,

unused pointer, incorrect declaration of a
variable, comments compared to some

functions, valid variable declaration

locally or globally and some denotations
that should be declared as constant.

Comments [37] Meaningful comments reflect the code.

Algorithms [37] Some iterations, iteration, assignments,
inline comments, and arrays.

McCabe’s

Cyclomatic
Complexity [39]

Measures and controls the number of

paths through a program

Halstead

Complexity
Measures [40]

Some unique operators, unique operands,

the total number of operators and
operands.

Reference Code

Value [48]

It compares the CAM, LCOM3, RFC,

and CC metrics of the assignments and
reference code for deviations.

B. Dynamic Approaches

Dynamic analysis is the assessment based on executing the

program used to assess style, programming errors, software

metrics, and even design. On top of that, the assessment

process can be done by looking into a code structure (white-

box) or simply based on a functional behaviour of a program

(black-box) [30]. It is the most well-known approach being

employed in many programming assessment techniques [31].

Several systems apply this approach, such as Ceilidh[60],

Mooshak [61], HoGG[62], PSGE [63] to name a few.

C. Hybrid Approaches

This approach is a combination of static and dynamic to

improve and overcome the drawbacks of both approaches.

Some systems that hybrid are PECHA[52], Scheme-Robe

[58], WebBot[57] and Web-CAT[56]. More recent ones are

AutoLEP [50] and Quimera[59].

IV. CONCLUSION

Several studies have applied Bloom for assessment but not

focusing on hands-on or practical programming test. Bloom

Taxonomy has been proved to help in to guide learning as it

categorises thinking skills ranging from knowledge, the most

basic skills up to creating, the highest thinking skills. It

enables to identify the skill level of the student being assessed

which thus help to improve his/her learning. The ability to

solve programming problems and produce working code is

very important, especially for computer and engineering

students. With the increased number of students taking these

courses, automated programming assessment helps to reduce

the burden of manual assessment by the teachers, and at the

same time able to improve the students’ programming skills

[64].

Based on the review focusing on the practical or hands-on

assessment of programming subject, presently, most of the

automatic assessment do not have a common grading model

that refers to the learning taxonomy. This issue also has been

argued by Caiza and De Alamo [65]. Therefore, further

research must be done with the focus on the assessment of

practical programming skill based on the learning taxonomy

such as Bloom Cognitive Competency as a grading model.

ACKNOWLEDGEMENT

This research is supported by the Fundamental Research

Grants Scheme (FRGS/1/2015/ICT02/UNIKL/02/2)

financed by Ministry of Higher Education Malaysia.

REFERENCES

[1] Mohayidin, Mohd Ghazali (2008). "Implementation of Outcome-Based

Education in Universiti Putra Malaysia: A Focus on Students' Learning

Outcomes". International Education Studies. 1(4). Retrieved 23

October 2014.
[2] G, R.V., & Jayaprakash (2009). Classification of Cognitive Difficulties

of Students to Learn Computer Programming.

[3] A. McGettrick program-ability, (2005). "Grand challenges in
Computing: Education – A Summary", The Computer Journal Vol. 48

[4] A. Robins et al., (2003). “Learning and Teaching Programming: A

Review and Discussion”, Computer Science Education Journal, Vol.
13

[5] Parson, D., Wood, K. & Haden, Patricia, (2015). What are we doing

when we assess programming?. Proceedings of the 17th Australasian
Computing Education Conference (ACE 2015), Sydney, Australia, 27

- 30 January 2015

[6] Gronlund, N.E. (2000). How to write and use instructional objectives.
Toronto: Prentice-Hall

[7] Clark, D. (2005) Softskills and E-learning. London: Epic Performance

Improvement Limited.
[8] MacLeod, A. (2000). The importance of soft skills in the current

Canadian labour market. Sectoral and Occupational Studies Division
of Human Resources Development Canada, April.

Journal of Telecommunication, Electronic and Computer Engineering

112 e-ISSN: 2289-8131 Vol. 10 No. 2-5

[9] Krathwohl, D. R., Bloom, B. S. & Masia, B. B. (1964). Taxonomy of
Educational Objectives. [Handbook 2: Affective Domain]. London:

Longman

[10] Nghi Truong, Paul Roe, & Peter Bancroft. (2004). "Static Analysis of
Students’ Java Programs". Paper read at 6th Australian Computing

Education

[11] T. Wang, X. Su, Y. Wang and P. Ma, (2007). ” Semantic Similarity-
Based Grading of Student Programs,” Information and Software

Technology, Vol. 49, No. 2, 2007, pp. 99-107.

doi:10.1016/j.infsof.2006.03.001
[12] N. Truong, P. Bancroft and P. Roe, (2002). “ELP-A Web Environment

for Learning to Program,” Proceeding of the 19th Annual Conference

of the Australasian Society for Computers in Learning in Tertiary
Education, Vol. 19, Auckland, 8-11 December 2002, pp. 661-670.

[13] Khirulnizam Abd Rahman, Syarbaini Ahmad & Md Jan Nordin (2007).

The Design of an Automated C Programming Assessment Using
Pseudo-code Comparison Technique. National Conference on

Software Engineering and Computer Systems 2007, organized by

Universiti Malaysia Pahang, Pahang, Malaysia.
[14] Stephens D., Bull, J. E. and Wade, W. (2011). Computer-assisted

assessment: suggested guideline for an institutional strategy. Online

Learning. Part V: Online Assessment. London: Sage
[15] Aizyl Azlee (2016). Coding to be in school curricula next year, says

MDEC CEO, MalayMail Online, Retrieved: 20 July 2017,

http://www.themalaymailonline.com/malaysia/article/coding-to-be-in-
school-curricula-next-year-says-mdec-ceo

[16] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D.,
Kolikant, Y. B.-D., Laxer, C., Thomas, L., Utting, I., and Wilusz, T.,

(2001). A multi-national, multi-institutional study of assessment of

programming skills of first-year CS students. SIGCSE Bulletin 33(4),
125–180

[17] James H. Block., (1978), ‘The ‘C’ in CBE’, Educational Researcher,

7(5), pp. 13-16.
[18] Simpson E.J. (1972). The Classification of Educational Objectives in

the Psychomotor Domain. Washington, DC: Gryphon House.

[19] Harrow, A. (1972) A Taxonomy of Psychomotor Domain: A Guide for
Developing Behavioral Objectives. New York: David McKay.

[20] Lister, R. and Leaney, J. (2003), Introductory programming,

criterion-referencing, SIGCSE ‘03: Proceedings of the 34th SIGCSE
technical symposium on Computer science education , 143-147, ACM

Press

[21] Oliver, D., Dobele, T., Greber, M. and Roberts, T. (2004),
This course has a Bloom Rating of 3.9. in Proceedings of the

sixth conference on Australasian computing education - Volume

30 , Dunedin, New Zealand, 227-231, Australian Computer Society
Inc

[22] Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm,

M., McCartney, R., Moström, J.E., Sanders, K., Seppälä, O.,
Simon, B. and Thomas, L. (2004) A multi-national study of reading

and tracing skills in novice programmers. Inroads - The SIGCSE

Bulletin, 36(4). 119-150.
[23] Shneider, E. and Gladkikh, O. (2006) Designing questioning

strategies for information technology courses. Mann, S. and

Bridgeman, N. eds. The 19th Annual Conference of the
National Advisory Committee on Computing Qualifications:

Preparing for the Future — Capitalising on IT , Wellington, 243-

248, National Advisory Committee on Computing Qualifications.
[24] Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu, M. and Robbins,

P. (2008), Bloom's taxonomy for CS assessment. Proceedings of the

Tenth Conference Australasian Computing Education (Wollongong,
NSW, Australia, January 20-23, 2008), 155-161.

[25] Ala-Mutka, K. M. (2005). A survey of automated assessment

approaches for programming assignments. Computer science
education, 15(2), 83-102.

[26] N. Truong, P. Roe and P. Bancroft, (2004), “Static Analysis of

Students’ Java Programs,” Proceedings of the 6th Conference on
Australasian Computing Education, Vol. 30, p. 325.

[27] K. A. Naude, J. H. Greyling and D. Vogts, (2010), “Marking Student

Programs Using Graph Similarity,” Computers & Education, Vol. 54,
No. 2, pp. 545-561

[28] Shuhida, Shuhida, Hamilton, M., D’Souza, D. (2009). A Taxonomic

Study of Novice Programming Summative Assessment, Eleventh
Australasian Computing Education Conference (ACE2009),

Wellington, New Zealand, January 2009

[29] Alaoutinen, S, & Smolander, K. (2010). Student self-assessment
in a programming course using bloom's revised taxonomy. In

Proceedings of the fifteenth annual conference on Innovation and
technology in computer science education (pp. 155-159). ACM,

New York, NY, USA.

[30] Romli, R., Sulaiman, S., Zamli, K. Z. (2010). Automatic Programming
Assessment and Test Data Generation a Review on its Approaches.

Information Technology (ITSim), 2010 International Symposium, pp.

1186-1192
[31] Fatima Al Shamsi, Ashraf Elnagar (2012). An Intelligent Assessment

Tool for Students’ Java Submissions in Introductory Programming

Courses. Journal of Intelligent Learning Systems and Applications,
2012, 4, 59-69

[32] Rahman, K. A., & Nordin, M. J. (2007). A review on the static analysis

approach in the automated programming assessment systems.
[33] Athanasios Tsintsifas. (2002). A Framework for the Computer Based

Assessment of Diagram-Based Coursework. PhD thesis.

[34] Michael Blumenstein, Steve Green, Ann Nguyen, and Vallipuram
Muthukkumarasamy, (2004), GAME: A generic automated marking

environment for programming assessment. In Proceedings of the

International Conference on Information Technology: Coding and
Computing (ITCC’04) Volume 2, pages 212–, Washington, DC, USA,

2004. IEEE Computer Society.

[35] Alaoutinen, S, & Smolander, K. (2010). Student self-assessment
in a programming course using bloom's revised taxonomy. In

Proceedings of the fifteenth annual conference on Innovation and

technology in computer science education (pp. 155-159). ACM,
New York, NY, USA

[36] Srikant, S., and Aggarwal, V. (2014). A system to grade computer

programming skills using machine learning. In Proc. 20th ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (Aug.

2014), 1887–1896
[37] Roozbeh Matloobi, Michael Myer Blumenstein, and Steven Green.

(2009), Extensions to generic automated marking environment: Game-

2+.
[38] Cara MacNish (2007). Longitudinal Syntactic Analysis of Laboratory

Submission for Examining Problem – Solving Behavior, Advanced

Learning Technologies , 2007, ICALT 2007, Seventh IEEE
International Conference.

[39] Susan A. Mengel and Vinay Yerramilli. (1999). A case study of the

static analysis of the quality of novice student programs. SIGCSE Bull.,
31:78–82, March 1999

[40] Verifysoft Technology GmbH. Verifysoft (2010), Halstead metrics.

http://www.verifysoft.com/en_halstead_metrics.html, June 2010.
[41] Deek, F.P., & McHugh, J. (2000), Problem-solving methodologies and

the development of critical thinking skills. Journal of Computer

Science Education, 14(1-2), 6-12.
[42] Brun, Y., & Ernst, M. D. (2004, May). Finding latent code errors via

machine learning over program executions. In Proceedings of the 26th

International Conference on Software Engineering (pp. 480-490). IEEE
Computer Society.

[43] Deek F. P., McHugh J. A. (1998), "A survey and critical analysis of

tools for learning programming". Computer Science Education, Vol.8,
n°2, p. 130-178

[44] Secretary’s Commission on Achieving Necessary Skills (SCANS).

What work requires of schools A SCANS Report for America (2000).
Washington DC: US Labor Department.

http://wdr.doleta.gov/SCANS/whatwork/whatwork.pdf.

[45] ASPIRINGMINDS (2017). AUTOMATA. Retrieved 23 July 2017 at
http://www.aspiringminds.com/technology/automata

[46] Brusilovsky, P. & Sosnovsky, S. (2005). Individualized Exercises for

Self-Assessment of Programming Knowledge: An Evaluation of
QuizPACK, Journal on Educational Resources in Computing (JERIC),

5(3), Article 6

[47] Ministry Higher Education (2016). Malaysia Higher Education
Blueprint 2015-2025, available at

https://www.acu.ac.uk/events/perspectives/datin-siti-hamisah-

presentation, 21 September 2017
[48] Koyya, P., Lee, Y, & Yang, J. (2013). Feedback for Programming

Assignments Using Software-Metrics and Reference Code, ISRN

Software Engineering Volume 2013 (2013), Article ID 805963, 8 pages
[49] Higgins, C. A., Gray, G., Symeonidis, P., Tsintsifas, A. (2005).

Automated Assessment and Experiences of Teaching Programming.

Journal on Educational Resources in Computing (JERIC), vol. 5, pp. 5.
[50] Wang, T., Su, X., Ma, P., Wang, Y., Wang, K. (2011). Ability-training-

oriented Automated Assessment in Introductory Programming Course.

Computer. Education, Elsevier, vol. 56, pp. 220-226
[51] Jelemenská, K. Čičák, (2012). Improved Assignments Management in

MOODLE Environment. INTED2012 Proceedings, pp. 1809-1817.

[52] Queirós, R. A. P., Leal, J. P. (2012). PETCHA: A Programming
Exercises Teaching Assistant. Proceedings of the 17th ACM Annual

Conference on Innovation and Technology in Computer Science
Education, pp. 192-197

[53] Milena Vujoˇsevi´c-Janiˇci´c · Mladen Nikoli´c · Duˇsan Toˇsi´c ·

Viktor Kuncak (2012). Software Verification and Graph Similarity for

A Review of Techniques in Automatic Programming Assessment for Practical Skill Test

 e-ISSN: 2289-8131 Vol. 10 No. 2-5 113

Automated Evaluation of Students’ Assignments. Information and
Software Technology Volume 55, Issue 6, June 2013, Pages 1004-1016

[54] Rivers, K. & Kenneth R. Koedinger (2013). Automatic Generation of

Programming Feedback: A Data-Driven Approach, AIED 2013
Workshops Proceedings Volume 9

[55] Fonte, D., Daniela da Cruz, Alda Lopes Gancarski, && Henriques, P.

R. (2013). A Flexible Dynamic System for Automatic Grading of
Programming Exercise. 2nd Symposium on Languages, Application and

Technologies (SLATE 13)

[56] Anuj Shah. (2003), Web-CAT: A Web-based Center for Automated
Testing. Technical report, Virginia Polytechnic Institute and State

University, Blacksburg, VA, USA, 2003

[57] Don Colton, Leslie Fife, and Andrew Thompson. (2006), A Web-based
Automatic Program Grader. Information Systems Education Journal

(ISEDJ), 4(114), November 2006.

[58] Riku Saikkonen, Lauri Malmi, and Ari Korhonen. (2001), Fully
automatic assessment of programming exercises. In Proceedings of the

6th annual conference on Innovation and technology in computer

science education, ITiCSE ’01, pages 133–136, New York, USA, 2001.
ACM

[59] Daniela Fonte, Ismael Vilas Boas, Daniela da Cruz, Alda Lopes

Gançarski, and Pedro Rangel Henriques. (2012), Program analysis and
evaluation using quimera. In ICEIS’2012 — 14th International

Conference on Enterprise Information Systems, pages 209–219.

INSTICC, June 2012.

[60] S D Benford, E K Burke, E Foxley, and C A Higgins. (1995), The
Ceilidh system for the automatic grading of students on programming

courses. In Proceedings of the 33rd annual on Southeast regional

conference, ACM-SE 33, pages 176–182, New York, NY, USA, 1995.
ACM.

[61] José Paulo Leal and Fernando Silva. (2003), Mooshak: aWeb-based

multi-site programming contest system. Software: Practice and
Experience, 33(6):567–581, May 2003.

[62] D.S. Morris. (2002), Automatically grading Java programming

assignments via reflection, inheritance, and regular expressions. In
Frontiers in Education, 2002. FIE 2002. 32nd Annual, volume 1, pages

T3G–22, 2002.

[63] Edward L. Jones. (2000), Grading student programs - a software testing
approach. In Proceedings of the second annual CCSC on Computing in

Small Colleges Northwestern conference, pages 185–192, USA, 2000.

Consortium for Computing Sciences in Colleges.
[64] Emma Enstr¨om, Gunnar Kreitz, Fredrik Niemela, Pehr Soderman, and

Viggo Kann. (2011), Five Years with Kattis – Using an Automated

Assessment System in Teaching. In Frontiers in Education Conference
(FIE), 2011. Institute of Electrical and Electronics Engineers,

Piscataway, NJ, T3J–1.

[65] Caiza, J. C., & Ramiro, Á. (2013). Programming assignments
automatic grading: review of tools and implementations

