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Abstract—OpenACC is a directive based parallel 

programming library that allows for the easy acceleration of 

existing C, C++ and Fortran based applications with minimal 

code modifications. By annotating the bottleneck causing a 

section of the code with OpenACC directives, the acceleration of 

the code can be simplified, leading for high portability of 

performance across different target Graphic Processing Units 

(GPUs). In this work, the portability of an implemented 

parallelizable chi-square based pixel similarity measurement 

algorithm has been evaluated on two consumer and professional 

grade GPUs. To our best knowledge, this is the first 

performance evaluation report that utilizes the OpenACC 

optimization clauses (collapse and tile) on different GPUs to 

process a less workload (low resolution image of 581x429 pixels) 

and a heavy workload (high resolution image of 4500 x 3500 

pixels) to demonstrate the effectiveness and high portability of 

OpenACC. 

 

Index Terms—chi-square; OpenACC, pixel similarity 

measurement; tile and collapse clauses. 

 

I. INTRODUCTION 

 

Over the last decade, researchers and developers have been 

increasingly using General Purpose Graphics Processing Unit 

(GPGPU) to accelerate the computation of scientific 

applications and simulations, by offloading a section of the 

code that contains the heaviest and parallelizable computation 

on the thousands of computation cores within the GPU [1]. 

To make use of GPGPU, special application programming 

interfaces (APIs) are required to extend the functionality of 

the widely used programming languages such as C/C++ and 

Fortran, with CUDA library being an example of such APIs 

[2]. 

The acceleration of applications with CUDA results in low 

portability of performance for applications, that is the ability 

to accelerate applications on different GPUs without 

sacrificing performance due to optimization issues, as CUDA 

is only compatible with Nvidia GPUs and is unsupported on 

GPUs from other vendors. 

Using OpenCL, an alternative to CUDA addresses the low 

portability issue, however, both CUDA and OpenCL require 

a lot of effort to port and re-write existing applications.  

To overcome these two hurdles, several companies 

including Nvidia and PGI have collaborated to develop 

OpenACC [3], an API that uses directive based programming 

to simplify the acceleration of newly written and legacy 

applications, with studies showing promising potential and 

good performance as demonstrated in [4], [5] and [6]. 

Image processing is one field of study that can benefit 

greatly from the acceleration on GPUs, due to the variety in 

image sizes, with one of the widely used algorithms in image 

processing being the Pixel Similarity Measurement 

algorithm, which is widely used in implementing image 

processing techniques including feature extraction and image 

segmentation [11], [12], [17], [18], [19], [20], [21], [22]. 

One method for implementing a pixel similarity 

measurement algorithm is by using the Chi-Square test to 

compute the dis-similarity of each pixel with the 8 

neighborhood pixels, followed by comparing the computed 

values to find the smallest dis-similarity value which 

represents the most similar pixel value. 

In this work, the benefits of combining the OpenACC API 

with image processing applications are presented in the form 

of accelerating a developed chi-square based pixel similarity 

measurement algorithm on two different GPUs. 

The contributions of this paper are as follows: 

 The GPU kernel implementation of the parallelizable 

chi-square based pixel similarity measurement 

algorithm. 

 The evaluation of the kernel portability by accelerating 

the kernel on a consumer grade (GTX 1060) and 

professional data center grade (Tesla K40c) GPUs. 

The remainder of this paper is structured as follows. 

Section II is the literature review that explains the architecture 

of OpenACC. Section III is the methodology section that 

discusses the kernel implementation and how the utilization 

of GPU resources could affect the acceleration performance. 

Section IV discusses the hardware specifications and the 

OpenACC-aware PGI compiler. Section V discusses the 

experimental results obtained from profiling the kernel 

execution. Finally, Section VI concludes the paper findings.  

 

II. LITERATURE REVIEW 

 

OpenACC is a directive based programming library 

developed by Nvidia, PGI, CAPS and CRAY in an effort to 

create an API standard that provides ease of use and 

portability across different devices and compilers. The API 

allows developers to utilize the high-level directive language 

to specify which sections of the Host (CPU) code are to be 

offloaded onto the Device (GPU) and accelerated, by using 

two sets of directives [7], [8]. 

The first set contains the data management directives, 

which allows developers to create a data region that 

automatically manages the transmission of input/output data 

between the Host and Device, while also allowing for manual 

control over how to implement the data region.  

The second set contains the parallelism directives, that 

consists of two directives, the first is the kernels directive 

which has been designed for easy acceleration on the GPU by 

having the compiler to automatically specify the number of 
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blocks and threads allocated for the code execution. 

While the second is the parallel directive, which enables 

the developers to manually specify the allocated number of 

blocks and threads, thereby allowing for finer-grained control 

over the parallelization of the kernel on the thousands of GPU 

computing cores. 

Each of the parallelism directives can be optimized with 

one of two optimization clauses, the Tile and Collapse 

clauses. The tile (M, N) clause breaks the specified loop into 

tiles of (M, N) loops, with “M” being the size of the inner loop 

while (N) is the size of the outer loop [15], [16]. 

While collapse (x) clause transforms the subsequent 

specific number of loops into a single loop thereby creating a 

single iteration space across all the nested loops which 

increase execution parallelization of the loop with an 

increased iteration per GPU computing core.  

Meaning when collapse (2) clause is used, 2 of the 

subsequent nested loops with trip counts of X and Y will be 

transformed into a single loop of X*Y [14], [16]. 

Currently, there are only three compilers that are OpenACC 

aware, the PGI compiler which will be used, the CRAY 

compiler which only works on CRAY systems, and the GCC 

compiler though only offering partial support with full 

support of OpenACC is currently being implemented. 

 

III. METHODOLOGY 

 

A. Kernel implementation of parallelized pixel similarity 

measurement algorithm 

The chi-square based similarity measurement algorithm 

consists of two parts as can be seen in Figure 1. The first part 

is the computation of the dis-similarity between the central 

pixel and its 8 neighbors by using the chi-square formula seen 

in (1), in which x2 is the dis-similarity value, with higher 

values x2 mean the more unlikely that the two pixels in 

comparison are similar, while Pc and Pn represents the values 

of the central and the neighboring pixels respectively. 

 

𝑥2 =
(𝑃𝐶 − 𝑃𝑁)

2

(𝑃𝐶 + 𝑃𝑁)
 (1) 

 

The second part is the computation of the most similar 

neighboring pixels, and is achieved by comparing the 

computed dis-similarity values of the 8 neighbors to find the 

smallest value that represents the most similar neighboring 

pixel.  

To achieve full parallelizability of the code, eight 2-D 

arrays are utilized to store the results of the dis-similarity 

computation between the central pixel with the one of the 

neighboring pixels as seen on Figure 2; this also improves the 

memory utilization by allowing the GPU to achieve a 

coalesced memory access that improves the acceleration 

performance [13], while allowing for data reusability if 

needed (modern GPU comes with large memory, therefore, it 

is acceptable to sacrifice the memory usage to improve the 

computation). 

The code implementation of the GPU kernel seen in Figure 

3, shows that each array has been named after the 

corresponding neighbor that is compared to the central pixel, 

i.e. the dis-similarity between the central pixel and the bottom 

left pixel is stored in a bot_left array. 

The kernel is then annotated using the “#pragma acc 

kernels loop” without the quotation marks, and optimized 

using either “collapse (2)” or “tile (32,4)” clauses rather than 

manually specifying the number of blocks and threads to be 

allocated for the kernel execution to improve the 

performance. 

The values of tile (32,4) were chosen to ensure that all 

threads within a warp are allocated to the same row (warp = 

32 threads, 64 warps per SM), thereby improving the 

performance of the kernel; the same goes for the use of 

collapse (2) due to the code containing two loops. 

The data region is implemented lastly to manage the 

transmission of input and output data between the Host and 

Device, which limits the transmission of data to only what the 

Device requests from the Host, thereby improving the 

performance. 

 
Figure 1 Computation task of the pixel similarity measurement (graphical 

illustration). 

 
Figure 2 The use of multiple arrays as temporary storage to enable parallel 

code execution. 

 

B. Using Nvidia Visual Profiler to obtain the insight of 

GPU utilization 

The acceleration performance of the parallelized kernel 

depends greatly on the utilization of the GPU resources 

(number of computing cores per GPU, memory and GPU-
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Host data transaction bandwidth), which can be obtained by 

profiling the kernel execution with Nvidia Visual Profiler.  

Depending on the acquired utilization levels, there are 3 

likely reasons why the kernel performance is being limited 

[10] which are tabulated and shown in Table 1, the first being 

the latency, which causes a low utilization for both to 

compute resources and memory bandwidth, while the second 

reason is the insufficient compute resources in the GPU 

which causes high compute utilization and low memory 

bandwidth utilization. 

While the third reason results in high memory bandwidth 

utilization with low compute utilization, and is caused by the 

insufficient memory bandwidth, or the kernel implementation 

containing too many dependencies. 

 
Table 1 

Kernel performance limiters 
 

Compute Utilization Memory Utilization Likely limitation 

Low (less than 40%) Low (less than 40%) Latency Bound 

High (more than 70%) Memory Bound 

High (more than 70%) Low (less than 40%) Compute Bound 

High (more than 70%) - 

 

IV. EXPERIMENTAL SETUP 

 

A. Acceleration Devices 

Two GPUs of different architectures are used to perform 

the performance and portability evaluation for the kernel, the 

is a consumer grade GTX 1060 GPU based on the Pascal 

architecture, and consists of 1280 single precision computing 

cores and 40 double precision cores distributed on 10 Stream 

Multiprocessors (SM) with compute capability 6.1  

While the second GPU is a professional grade Tesla K40c 

GPU, based on the Kepler architecture and is designed 

primarily for GPGPU appliances. The Tesla K40c contains 

2880 single precision computing cores and 960 double 

precision computing cores distributed on 15 SMs with 

compute capability 3.5 [8], [9]. 

The performance and memory bandwidth of both GPUs 

seen in Figure 4 shows that both GPUs capable of achieving 

similar single precision FLOPs performance, with a 

significant advantage for the Tesla K40c over the GTX 1060 

in both double precision FLOPs and memory bandwidth.  

 
Figure 4 Single precision and Dobule precision FLOPs and memory 

bandwidth performances for both GPUs obtained from Nvidia’s visual 

profiler (measured in Tera FLOP/s for the compute and Gigabytes/s for the 

memory). 

 

B. PGI Compiler 

This compiler is created by Portland Group inc. which is a 

part of Nvidia as of 2013, and supports C/C++ and Fortran 

programming languages as well as two directive based 

parallel processing modules, the first being the OpenACC 2.5 

standard with the support of acceleration on GPUs, Multi-

core CPUs and Coprocessors. While the second parallel 

processing module is OpenMP 3.1 that allows for the 

acceleration on multi-core CPUs only. 

The compiler initiates the acceleration of the code by 

analyzing the application and data structures and scans for the 

annotated sections of the code in order to implement the 

optimization required in order utilize the hardware threading 
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 1  #pragma acc data copyout(left[:height+1][-1:width+2],bot[:height+1][-1:width+2]) 
 2  #pragma acc data copyout(thresh_array[:height-1][:width]) 
 3  #pragma acc data copyin(array[:height+1][-1:width+2]) 
 4  #pragma acc data copyout(bot_left[:height+1][-1:width+2],bot_right[:height+1][-1:width+2],top_right[:height+1][-

1:width+2],top_left[:height+1][-1:width+2],top[:height+1][-1:width+2],right[:height+1][-1:width+2]) 
 5  { 
 6  #pragma acc kernels loop collapse (2) independent 
 7     for (int i=1; i<(height); i++) 
 8      { 
 9          for (int j=0; j <( width); j++) 
10          { 
11              if(array[i][j] >0) 
12              { 
13                  top_left[i-1][j] = (pow((array[i][j]-array[i-1][j-1]),2.0)) / (array[i][j]+array[i-1][j-1]); 
14   

15                  top[i-1][j] =  (pow((array[i][j]-array[i-1][j]),2.0)) / (array[i][j]+array[i-1][j])); 
16   

17                  top_right[i-1][j] = (pow((array[i][j]-array[i-1][j+1]),2.0)) / (array[i][j]+array[i-1][j+1]); 
18   

19                  left[i-1][j] =  (pow((array[i][j]-array[i][j-1]),2.0)) / (array[i][j]+array[i][j-1]); 
20   

21                  right[i-1][j] =  (pow((array[i][j]-array[i][j+1]),2.0)) / (array[i][j]+array[i][j+1]); 
22   

23                  bot_left[i-1][j] = (pow((array[i][j]-array[i+1][j-1]),2.0)) / (array[i][j]+array[i+1][j-1]); 
24   

25                  bot[i-1][j] =  (pow((array[i][j]-array[i+1][j]),2.0)) / (array[i][j]+array[i+1][j]); 
26   

27                  bot_right[i-1][j] = (pow((array[i][j]-array[i+1][j+1]),2.0)) / (array[i][j]+array[i+1][j+1]); 
28   

29                  thresh_array[i-1][j] = min(top_left[i-1][j],min(top[i-1][j],min(top_right[i-1][j],min(right[i-1][j], 
30      min(left[i-1][j], min(bot_left[i-1][j],min(bot[i-1][j],bot_right[i-1][j]))))))); 
31              } 
32          } 
33      } 
34  }  

Figure 3 C++ implementation with OpenACC pragma of the chi-square based pixel similarity measurement kernel (with collapse clause of 2 loops) 
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capabilities and SIMD vector features available in modern 

accelerators. 

For the setup, PGI compiler v.17.4 (community edition) 

and CUDA 8.0 are being used for both GPUs, with GTX 1060 

running on Ubuntu 16.04 with Linux kernel 4.11, while the 

Tesla K40c is running on Ubuntu 14.04 with Linux kernel 

4.4, while the other hardware specifications do not affect the 

kernel performance. 
 

V. RESULTS 

 

The kernel is compiled with the PGI compiler using the 

terminal command line “pgc++ -fast -acc -Minfo=accel -

ta=tesla,ccXY,maxregcount:32 source.cpp -o output” with 

XY referring to the compute capability for the GPU (cc60 for 

GTX 1060, cc35 for Tesla K40c). The performance 

evaluation tests are conducted by profiling the execution of 

the kernel optimized with both collapse and tile clauses 

during the processing of two images on both GPUs; the first 

image has a low resolution of 581x429 pixels, while the 

second image has a high resolution of 4500x3500 pixels. 

 

A. Evaluation of the kernel optimized with OpenACC’s 

collapse clause 

Figure 5 shows the compute and memory resources 

utilization of kernel optimized with collapse clause, obtained 

by profiling the kernel performance limiters with Nvidia’s 

visual profiler, during the processing of the large image in 

Tesla K40c. The compute and memory resource utilization of 

Tesla K40c together with GTX 1060 is tabulated and shown 

in Table 2.  

 
Figure 5 Utilization of Tesla K40c resources during the execution of the 

kernel optimized with collapse clause to process the high-resolution image 

 

From Figure 5, it can be concluded that the kernel is heavily 

making use of the computing resources (double precision 

computing cores) and does not make full use of the available 

memory bandwidth. This comes as a result of using multiple 

arrays in the kernel, allowing for a coalesced memory access, 

thus reducing the memory bandwidth required of accessing 

the global memory. 

On the other hand, the same kernel running in GTX 1060 

has saturated all the available compute resources (GTX 1060 

has 40 double precision compute cores as compared to 960 

double precision compute cores in Tesla K40c) and therefore 

is considered as computing bound. 

The achieved execution times of the kernel optimized with 

collapse clause, obtained with Nvidia Visual Profiler, are 

presented in Table 3 (see a sample of kernel execution 

timeline of GTX 1060 in Figure 6 when processing the image 

with the resolution of 581 x 429). The effects of having an 

insufficient number of computing cores can be clearly seen 

with the large difference in execution time between GTX 

1060 and Tesla K40c when processing both images, as seen 

in Table 3. 
 

Table 2 

Compute and memory resources utilization of both GPUs when 

processing both images with collapse-optimized kernel (collapse (2)). 

 

GPU Image 
Size 

Compute 
Utilization 

Memory 
Utilization 

Kernel 
classification 

GTX 

1060 

Small 95% 35% Compute 

Bound Large 95% 35% 

Tesla 

K40c 

Small 75% 55% - 

 Large 80% 55% 

 
Table 3 

 Execution times for test images on both GPUs with collapse (2) clause 
 

Image Size GTX 1060 Tesla K40c 

Small 0.6769ms 0.172ms 

Large 32.099ms 7.227ms 

 

B. Evaluation of the kernel optimized with OpenACC’s 

tile clause 

The GPU utilization for GTX 1060 and Tesla K40c when 

processing both small and large images using the kernel 

optimized with tile clause and their kernel execution time is 

shown in Table 4 and Table 5, respectively.  

 
Table 4 

Compute and memory resources utilization of both GPUs when 
processing both images with tile-optimized kernel (tile (32,4)). 

 

GPU Image 
Size 

Compute 
Utilization 

Memory 
Utilization 

Kernel 
classification 

GTX 

1060 

Small 95% 35% Compute 

Bound Large 95% 35% 

Tesla 

K40c 

Small 78% 55% - 

 Large 79% 65% 

 

 

 

 
 

 

Figure 6 Execution timeline for the kernel optimized with collapse clause on GTX 1060 

Compute Utilization 80% Memory Utilization 55% 

0.6769ms 
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Table 5 

Execution times for test images on both GPUs with tile (32,4) clause 
 

Image Size GTX 1060 Tesla K40c 

Small 0.693ms 0.168ms 

Large 32.192ms 7.769ms 

 

The execution of the kernel optimized with tile clause in 

GTX 1060 is also compute bound due to an insufficient 

number of the double precision compute cores. However, the 

same kernel did not saturate the GPU resources of Tesla 

K40c.  

Using the obtained kernel execution time in both Table 3 

and Table 5, the absolute kernel processing time difference 

(in percentage) of pixel similarity measurement kernel 

optimized with both collapse and tile clause were calculated 

and as shown in Table 6. The difference of kernel execution 

time small image (less workload) varied around 2.3% for 

GTX 1060 and 0.2% for Tesla K40c, however, a significant 

difference was observed for large image (heavy workload).  

 
Table 6 

Comparing of kernel optimized with tile and collapse clause (absolute 

difference of kernel execution time in percentage) 

 

Image Size GTX 1060 Tesla K40c 

Small 2.37% 0.2% 

Large 2.90% 7.49% 

 

Further analysis, profiling the memory operations 

conducted by the kernel during the processing of the large 

image on Tesla K40c, is conducted to understand the 

performance difference between the two optimizations. The 

results of profiling, which can be seen on Table 7, shows that 

the collapse optimization uses a higher L1 cache/shared 

memory bandwidth and less transactions than the tile 

optimization, while using less global memory bandwidth 

(device memory) and transactions. 

These results mean that the collapse achieves a much better 

cache utilization by achieving high bandwidth speeds and 

requiring less transactions to finish the operations, and at the 

same time, not requiring many accesses to the global 

memory, which is the slowest memory in the GPU. 

 
Table 7 

Achieved memory/cache bandwidth and transactions of tile and collapse 
on Tesla K40c when processing the large image. 

 

 Collapse (7.227ms) Tile (7.769ms) 

Memory 
Type 

Number of 
Transactions 

Bandwidth 
GB/s 

Number of 
Transactions 

Bandwidth 
GB/s 

L1/Shared 

Memory 
16,240,643 272.056 22,515,034 267.874 

L2 Cache 65,693,876 292.178 70,687,198 292.198 

Device 

Memory 
38,199,354 169.894 46,750,138 193.25 

 

VI. CONCLUSION 

 

In this work, a chi-square based pixel similarity 

measurement algorithm has been implemented, optimized 

and accelerated with OpenACC using kernels directive and 

optimized with both tile and collapse clauses. 

Two different GPUs have been used to evaluate the 

performance and portability of the algorithm, the first is a 

consumer grade Nvidia GTX 1060 GPU, while the second is 

a professional datacenter grade Nvidia Tesla K40c 

accelerator GPU. 

The performance evaluation has been conducted by 

profiling the kernel execution on both GPUs during the 

processing of two images of small and large sizes 

respectively, with the results showing a bottleneck of 

performance on GTX 1060 due to the insufficient compute 

resources (double precision computing cores), while the 

Tesla K40c faced no bottleneck of performance. 

The results also showed similar performance for both 

optimization clauses on both GPUs, with collapse clause 

performing slightly faster that tile in all but one test, while the 

cause for the performance difference is the better GPU cache 

memory utilization for the collapse clause. 

From the obtained results, it can be concluded that the 

proposed kernel implementation of the chi-square based 

similarity measurement algorithm is highly portable. 
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