

 e-ISSN: 2289-8131 Vol. 10 No. 2-6 167

Evaluation of Image Pixels Similarity Measurement

Algorithm Accelerated on GPU with OpenACC

Ibrahim Mundher Abdulqader, Kim Chuan Lim
Centre for Telecommunication Research & Innovation (CeTRI), Faculty of Electronic & Computer Engineering,

Universiti Teknikal Malaysia Melaka

kimchuan@utem.edu.my

Abstract—OpenACC is a directive based parallel

programming library that allows for the easy acceleration of

existing C, C++ and Fortran based applications with minimal

code modifications. By annotating the bottleneck causing a

section of the code with OpenACC directives, the acceleration of

the code can be simplified, leading for high portability of

performance across different target Graphic Processing Units

(GPUs). In this work, the portability of an implemented

parallelizable chi-square based pixel similarity measurement

algorithm has been evaluated on two consumer and professional

grade GPUs. To our best knowledge, this is the first

performance evaluation report that utilizes the OpenACC

optimization clauses (collapse and tile) on different GPUs to

process a less workload (low resolution image of 581x429 pixels)

and a heavy workload (high resolution image of 4500 x 3500

pixels) to demonstrate the effectiveness and high portability of

OpenACC.

Index Terms—chi-square; OpenACC, pixel similarity

measurement; tile and collapse clauses.

I. INTRODUCTION

Over the last decade, researchers and developers have been

increasingly using General Purpose Graphics Processing Unit

(GPGPU) to accelerate the computation of scientific

applications and simulations, by offloading a section of the

code that contains the heaviest and parallelizable computation

on the thousands of computation cores within the GPU [1].

To make use of GPGPU, special application programming

interfaces (APIs) are required to extend the functionality of

the widely used programming languages such as C/C++ and

Fortran, with CUDA library being an example of such APIs

[2].

The acceleration of applications with CUDA results in low

portability of performance for applications, that is the ability

to accelerate applications on different GPUs without

sacrificing performance due to optimization issues, as CUDA

is only compatible with Nvidia GPUs and is unsupported on

GPUs from other vendors.

Using OpenCL, an alternative to CUDA addresses the low

portability issue, however, both CUDA and OpenCL require

a lot of effort to port and re-write existing applications.

To overcome these two hurdles, several companies

including Nvidia and PGI have collaborated to develop

OpenACC [3], an API that uses directive based programming

to simplify the acceleration of newly written and legacy

applications, with studies showing promising potential and

good performance as demonstrated in [4], [5] and [6].

Image processing is one field of study that can benefit

greatly from the acceleration on GPUs, due to the variety in

image sizes, with one of the widely used algorithms in image

processing being the Pixel Similarity Measurement

algorithm, which is widely used in implementing image

processing techniques including feature extraction and image

segmentation [11], [12], [17], [18], [19], [20], [21], [22].

One method for implementing a pixel similarity

measurement algorithm is by using the Chi-Square test to

compute the dis-similarity of each pixel with the 8

neighborhood pixels, followed by comparing the computed

values to find the smallest dis-similarity value which

represents the most similar pixel value.

In this work, the benefits of combining the OpenACC API

with image processing applications are presented in the form

of accelerating a developed chi-square based pixel similarity

measurement algorithm on two different GPUs.

The contributions of this paper are as follows:

 The GPU kernel implementation of the parallelizable

chi-square based pixel similarity measurement

algorithm.

 The evaluation of the kernel portability by accelerating

the kernel on a consumer grade (GTX 1060) and

professional data center grade (Tesla K40c) GPUs.

The remainder of this paper is structured as follows.

Section II is the literature review that explains the architecture

of OpenACC. Section III is the methodology section that

discusses the kernel implementation and how the utilization

of GPU resources could affect the acceleration performance.

Section IV discusses the hardware specifications and the

OpenACC-aware PGI compiler. Section V discusses the

experimental results obtained from profiling the kernel

execution. Finally, Section VI concludes the paper findings.

II. LITERATURE REVIEW

OpenACC is a directive based programming library

developed by Nvidia, PGI, CAPS and CRAY in an effort to

create an API standard that provides ease of use and

portability across different devices and compilers. The API

allows developers to utilize the high-level directive language

to specify which sections of the Host (CPU) code are to be

offloaded onto the Device (GPU) and accelerated, by using

two sets of directives [7], [8].

The first set contains the data management directives,

which allows developers to create a data region that

automatically manages the transmission of input/output data

between the Host and Device, while also allowing for manual

control over how to implement the data region.

The second set contains the parallelism directives, that

consists of two directives, the first is the kernels directive

which has been designed for easy acceleration on the GPU by

having the compiler to automatically specify the number of

Journal of Telecommunication, Electronic and Computer Engineering

168 e-ISSN: 2289-8131 Vol. 10 No. 2-6

blocks and threads allocated for the code execution.

While the second is the parallel directive, which enables

the developers to manually specify the allocated number of

blocks and threads, thereby allowing for finer-grained control

over the parallelization of the kernel on the thousands of GPU

computing cores.

Each of the parallelism directives can be optimized with

one of two optimization clauses, the Tile and Collapse

clauses. The tile (M, N) clause breaks the specified loop into

tiles of (M, N) loops, with “M” being the size of the inner loop

while (N) is the size of the outer loop [15], [16].

While collapse (x) clause transforms the subsequent

specific number of loops into a single loop thereby creating a

single iteration space across all the nested loops which

increase execution parallelization of the loop with an

increased iteration per GPU computing core.

Meaning when collapse (2) clause is used, 2 of the

subsequent nested loops with trip counts of X and Y will be

transformed into a single loop of X*Y [14], [16].

Currently, there are only three compilers that are OpenACC

aware, the PGI compiler which will be used, the CRAY

compiler which only works on CRAY systems, and the GCC

compiler though only offering partial support with full

support of OpenACC is currently being implemented.

III. METHODOLOGY

A. Kernel implementation of parallelized pixel similarity

measurement algorithm

The chi-square based similarity measurement algorithm

consists of two parts as can be seen in Figure 1. The first part

is the computation of the dis-similarity between the central

pixel and its 8 neighbors by using the chi-square formula seen

in (1), in which x2 is the dis-similarity value, with higher

values x2 mean the more unlikely that the two pixels in

comparison are similar, while Pc and Pn represents the values

of the central and the neighboring pixels respectively.

𝑥2 =
(𝑃𝐶 − 𝑃𝑁)

2

(𝑃𝐶 + 𝑃𝑁)
 (1)

The second part is the computation of the most similar

neighboring pixels, and is achieved by comparing the

computed dis-similarity values of the 8 neighbors to find the

smallest value that represents the most similar neighboring

pixel.

To achieve full parallelizability of the code, eight 2-D

arrays are utilized to store the results of the dis-similarity

computation between the central pixel with the one of the

neighboring pixels as seen on Figure 2; this also improves the

memory utilization by allowing the GPU to achieve a

coalesced memory access that improves the acceleration

performance [13], while allowing for data reusability if

needed (modern GPU comes with large memory, therefore, it

is acceptable to sacrifice the memory usage to improve the

computation).

The code implementation of the GPU kernel seen in Figure

3, shows that each array has been named after the

corresponding neighbor that is compared to the central pixel,

i.e. the dis-similarity between the central pixel and the bottom

left pixel is stored in a bot_left array.

The kernel is then annotated using the “#pragma acc

kernels loop” without the quotation marks, and optimized

using either “collapse (2)” or “tile (32,4)” clauses rather than

manually specifying the number of blocks and threads to be

allocated for the kernel execution to improve the

performance.

The values of tile (32,4) were chosen to ensure that all

threads within a warp are allocated to the same row (warp =

32 threads, 64 warps per SM), thereby improving the

performance of the kernel; the same goes for the use of

collapse (2) due to the code containing two loops.

The data region is implemented lastly to manage the

transmission of input and output data between the Host and

Device, which limits the transmission of data to only what the

Device requests from the Host, thereby improving the

performance.

Figure 1 Computation task of the pixel similarity measurement (graphical

illustration).

Figure 2 The use of multiple arrays as temporary storage to enable parallel

code execution.

B. Using Nvidia Visual Profiler to obtain the insight of

GPU utilization

The acceleration performance of the parallelized kernel

depends greatly on the utilization of the GPU resources

(number of computing cores per GPU, memory and GPU-

33 32 28

33 30 28

32 29 29

33 32 28

33 30 28

32 29 29

0.1428 0.0645 0.0689

0.1428
Central

pixel
0.0689

0.0645 0.0169 0.0169

Chi Square

(b) Second Part: Computing the most similar pixels by finding

the smallest dis-similarity value of the 8 neighbors.

Chi Square

(a) First Part: Computing the dis-similarity between the
neighboring pixels and the central pixel with chi-square.

top_left

array

top

array

top_right

array

left

array

 right

array

bot_left

array

bot

array

bot_right

array

Evaluation of Image Pixels Similarity Measurement Algorithm Accelerated on GPU with OpenACC

 e-ISSN: 2289-8131 Vol. 10 No. 2-6 169

Host data transaction bandwidth), which can be obtained by

profiling the kernel execution with Nvidia Visual Profiler.

Depending on the acquired utilization levels, there are 3

likely reasons why the kernel performance is being limited

[10] which are tabulated and shown in Table 1, the first being

the latency, which causes a low utilization for both to

compute resources and memory bandwidth, while the second

reason is the insufficient compute resources in the GPU

which causes high compute utilization and low memory

bandwidth utilization.

While the third reason results in high memory bandwidth

utilization with low compute utilization, and is caused by the

insufficient memory bandwidth, or the kernel implementation

containing too many dependencies.

Table 1

Kernel performance limiters

Compute Utilization Memory Utilization Likely limitation

Low (less than 40%) Low (less than 40%) Latency Bound

High (more than 70%) Memory Bound

High (more than 70%) Low (less than 40%) Compute Bound

High (more than 70%) -

IV. EXPERIMENTAL SETUP

A. Acceleration Devices

Two GPUs of different architectures are used to perform

the performance and portability evaluation for the kernel, the

is a consumer grade GTX 1060 GPU based on the Pascal

architecture, and consists of 1280 single precision computing

cores and 40 double precision cores distributed on 10 Stream

Multiprocessors (SM) with compute capability 6.1

While the second GPU is a professional grade Tesla K40c

GPU, based on the Kepler architecture and is designed

primarily for GPGPU appliances. The Tesla K40c contains

2880 single precision computing cores and 960 double

precision computing cores distributed on 15 SMs with

compute capability 3.5 [8], [9].

The performance and memory bandwidth of both GPUs

seen in Figure 4 shows that both GPUs capable of achieving

similar single precision FLOPs performance, with a

significant advantage for the Tesla K40c over the GTX 1060

in both double precision FLOPs and memory bandwidth.

Figure 4 Single precision and Dobule precision FLOPs and memory

bandwidth performances for both GPUs obtained from Nvidia’s visual

profiler (measured in Tera FLOP/s for the compute and Gigabytes/s for the

memory).

B. PGI Compiler

This compiler is created by Portland Group inc. which is a

part of Nvidia as of 2013, and supports C/C++ and Fortran

programming languages as well as two directive based

parallel processing modules, the first being the OpenACC 2.5

standard with the support of acceleration on GPUs, Multi-

core CPUs and Coprocessors. While the second parallel

processing module is OpenMP 3.1 that allows for the

acceleration on multi-core CPUs only.

The compiler initiates the acceleration of the code by

analyzing the application and data structures and scans for the

annotated sections of the code in order to implement the

optimization required in order utilize the hardware threading

4.276 TFLOPs
4.291 TFLOPs

0.133

TFLOPs

1.430

TFLOPs

192.192 GB/s

288.384 GB/s

10.0 GB/s

20.0 GB/s

40.0 GB/s

80.0 GB/s

160.0 GB/s

320.0 GB/s

0.100 TFLOPs

0.200 TFLOPs

0.400 TFLOPs

0.800 TFLOPs

1.600 TFLOPs

3.200 TFLOPs

6.400 TFLOPs

12.800 TFLOPs

25.600 TFLOPs

51.200 TFLOPs

GTX 1060 Tesla K40c

FLOPs and Memory Bandwidth speeds for

both GTX 1060 and Tesla K40c

SP TFLOPs DP TFLOPs

Memory Bandwidth

 1 #pragma acc data copyout(left[:height+1][-1:width+2],bot[:height+1][-1:width+2])
 2 #pragma acc data copyout(thresh_array[:height-1][:width])
 3 #pragma acc data copyin(array[:height+1][-1:width+2])
 4 #pragma acc data copyout(bot_left[:height+1][-1:width+2],bot_right[:height+1][-1:width+2],top_right[:height+1][-

1:width+2],top_left[:height+1][-1:width+2],top[:height+1][-1:width+2],right[:height+1][-1:width+2])
 5 {
 6 #pragma acc kernels loop collapse (2) independent
 7 for (int i=1; i<(height); i++)
 8 {
 9 for (int j=0; j <(width); j++)
10 {
11 if(array[i][j] >0)
12 {
13 top_left[i-1][j] = (pow((array[i][j]-array[i-1][j-1]),2.0)) / (array[i][j]+array[i-1][j-1]);
14

15 top[i-1][j] = (pow((array[i][j]-array[i-1][j]),2.0)) / (array[i][j]+array[i-1][j]));
16

17 top_right[i-1][j] = (pow((array[i][j]-array[i-1][j+1]),2.0)) / (array[i][j]+array[i-1][j+1]);
18

19 left[i-1][j] = (pow((array[i][j]-array[i][j-1]),2.0)) / (array[i][j]+array[i][j-1]);
20

21 right[i-1][j] = (pow((array[i][j]-array[i][j+1]),2.0)) / (array[i][j]+array[i][j+1]);
22

23 bot_left[i-1][j] = (pow((array[i][j]-array[i+1][j-1]),2.0)) / (array[i][j]+array[i+1][j-1]);
24

25 bot[i-1][j] = (pow((array[i][j]-array[i+1][j]),2.0)) / (array[i][j]+array[i+1][j]);
26

27 bot_right[i-1][j] = (pow((array[i][j]-array[i+1][j+1]),2.0)) / (array[i][j]+array[i+1][j+1]);
28

29 thresh_array[i-1][j] = min(top_left[i-1][j],min(top[i-1][j],min(top_right[i-1][j],min(right[i-1][j],
30 min(left[i-1][j], min(bot_left[i-1][j],min(bot[i-1][j],bot_right[i-1][j])))))));
31 }
32 }
33 }
34 }

Figure 3 C++ implementation with OpenACC pragma of the chi-square based pixel similarity measurement kernel (with collapse clause of 2 loops)

Journal of Telecommunication, Electronic and Computer Engineering

170 e-ISSN: 2289-8131 Vol. 10 No. 2-6

capabilities and SIMD vector features available in modern

accelerators.

For the setup, PGI compiler v.17.4 (community edition)

and CUDA 8.0 are being used for both GPUs, with GTX 1060

running on Ubuntu 16.04 with Linux kernel 4.11, while the

Tesla K40c is running on Ubuntu 14.04 with Linux kernel

4.4, while the other hardware specifications do not affect the

kernel performance.

V. RESULTS

The kernel is compiled with the PGI compiler using the

terminal command line “pgc++ -fast -acc -Minfo=accel -

ta=tesla,ccXY,maxregcount:32 source.cpp -o output” with

XY referring to the compute capability for the GPU (cc60 for

GTX 1060, cc35 for Tesla K40c). The performance

evaluation tests are conducted by profiling the execution of

the kernel optimized with both collapse and tile clauses

during the processing of two images on both GPUs; the first

image has a low resolution of 581x429 pixels, while the

second image has a high resolution of 4500x3500 pixels.

A. Evaluation of the kernel optimized with OpenACC’s

collapse clause

Figure 5 shows the compute and memory resources

utilization of kernel optimized with collapse clause, obtained

by profiling the kernel performance limiters with Nvidia’s

visual profiler, during the processing of the large image in

Tesla K40c. The compute and memory resource utilization of

Tesla K40c together with GTX 1060 is tabulated and shown

in Table 2.

Figure 5 Utilization of Tesla K40c resources during the execution of the

kernel optimized with collapse clause to process the high-resolution image

From Figure 5, it can be concluded that the kernel is heavily

making use of the computing resources (double precision

computing cores) and does not make full use of the available

memory bandwidth. This comes as a result of using multiple

arrays in the kernel, allowing for a coalesced memory access,

thus reducing the memory bandwidth required of accessing

the global memory.

On the other hand, the same kernel running in GTX 1060

has saturated all the available compute resources (GTX 1060

has 40 double precision compute cores as compared to 960

double precision compute cores in Tesla K40c) and therefore

is considered as computing bound.

The achieved execution times of the kernel optimized with

collapse clause, obtained with Nvidia Visual Profiler, are

presented in Table 3 (see a sample of kernel execution

timeline of GTX 1060 in Figure 6 when processing the image

with the resolution of 581 x 429). The effects of having an

insufficient number of computing cores can be clearly seen

with the large difference in execution time between GTX

1060 and Tesla K40c when processing both images, as seen

in Table 3.

Table 2

Compute and memory resources utilization of both GPUs when

processing both images with collapse-optimized kernel (collapse (2)).

GPU Image
Size

Compute
Utilization

Memory
Utilization

Kernel
classification

GTX

1060

Small 95% 35% Compute

Bound Large 95% 35%

Tesla

K40c

Small 75% 55% -

 Large 80% 55%

Table 3

 Execution times for test images on both GPUs with collapse (2) clause

Image Size GTX 1060 Tesla K40c

Small 0.6769ms 0.172ms

Large 32.099ms 7.227ms

B. Evaluation of the kernel optimized with OpenACC’s

tile clause

The GPU utilization for GTX 1060 and Tesla K40c when

processing both small and large images using the kernel

optimized with tile clause and their kernel execution time is

shown in Table 4 and Table 5, respectively.

Table 4

Compute and memory resources utilization of both GPUs when
processing both images with tile-optimized kernel (tile (32,4)).

GPU Image
Size

Compute
Utilization

Memory
Utilization

Kernel
classification

GTX

1060

Small 95% 35% Compute

Bound Large 95% 35%

Tesla

K40c

Small 78% 55% -

 Large 79% 65%

Figure 6 Execution timeline for the kernel optimized with collapse clause on GTX 1060

Compute Utilization 80% Memory Utilization 55%

0.6769ms

Evaluation of Image Pixels Similarity Measurement Algorithm Accelerated on GPU with OpenACC

 e-ISSN: 2289-8131 Vol. 10 No. 2-6 171

Table 5

Execution times for test images on both GPUs with tile (32,4) clause

Image Size GTX 1060 Tesla K40c

Small 0.693ms 0.168ms

Large 32.192ms 7.769ms

The execution of the kernel optimized with tile clause in

GTX 1060 is also compute bound due to an insufficient

number of the double precision compute cores. However, the

same kernel did not saturate the GPU resources of Tesla

K40c.

Using the obtained kernel execution time in both Table 3

and Table 5, the absolute kernel processing time difference

(in percentage) of pixel similarity measurement kernel

optimized with both collapse and tile clause were calculated

and as shown in Table 6. The difference of kernel execution

time small image (less workload) varied around 2.3% for

GTX 1060 and 0.2% for Tesla K40c, however, a significant

difference was observed for large image (heavy workload).

Table 6

Comparing of kernel optimized with tile and collapse clause (absolute

difference of kernel execution time in percentage)

Image Size GTX 1060 Tesla K40c

Small 2.37% 0.2%

Large 2.90% 7.49%

Further analysis, profiling the memory operations

conducted by the kernel during the processing of the large

image on Tesla K40c, is conducted to understand the

performance difference between the two optimizations. The

results of profiling, which can be seen on Table 7, shows that

the collapse optimization uses a higher L1 cache/shared

memory bandwidth and less transactions than the tile

optimization, while using less global memory bandwidth

(device memory) and transactions.

These results mean that the collapse achieves a much better

cache utilization by achieving high bandwidth speeds and

requiring less transactions to finish the operations, and at the

same time, not requiring many accesses to the global

memory, which is the slowest memory in the GPU.

Table 7

Achieved memory/cache bandwidth and transactions of tile and collapse
on Tesla K40c when processing the large image.

 Collapse (7.227ms) Tile (7.769ms)

Memory
Type

Number of
Transactions

Bandwidth
GB/s

Number of
Transactions

Bandwidth
GB/s

L1/Shared

Memory
16,240,643 272.056 22,515,034 267.874

L2 Cache 65,693,876 292.178 70,687,198 292.198

Device

Memory
38,199,354 169.894 46,750,138 193.25

VI. CONCLUSION

In this work, a chi-square based pixel similarity

measurement algorithm has been implemented, optimized

and accelerated with OpenACC using kernels directive and

optimized with both tile and collapse clauses.

Two different GPUs have been used to evaluate the

performance and portability of the algorithm, the first is a

consumer grade Nvidia GTX 1060 GPU, while the second is

a professional datacenter grade Nvidia Tesla K40c

accelerator GPU.

The performance evaluation has been conducted by

profiling the kernel execution on both GPUs during the

processing of two images of small and large sizes

respectively, with the results showing a bottleneck of

performance on GTX 1060 due to the insufficient compute

resources (double precision computing cores), while the

Tesla K40c faced no bottleneck of performance.

The results also showed similar performance for both

optimization clauses on both GPUs, with collapse clause

performing slightly faster that tile in all but one test, while the

cause for the performance difference is the better GPU cache

memory utilization for the collapse clause.

From the obtained results, it can be concluded that the

proposed kernel implementation of the chi-square based

similarity measurement algorithm is highly portable.

ACKNOWLEDGEMENT

This work was supported by the research grant no.

GLuar/MIROS/2017/FKEKK-CeTRI/I00026.

REFERENCES

[1] Fermi Compute Architecture Whitepaper, “NVIDIA’s Next Generation

CUDA Compute Architecture: Fermi”, [online] available at
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_F

ermi_Compute_Architecture_Whitepaper.pdf [accessed 15 August

2017].
[2] Nvidia CUDA documentation, [online] available at

http://docs.nvidia.com/cuda/ [accessed 15 August 2017].

[3] J. Larkin, ”Introduction to OpenACC”, [online] http://on-
demand.gputechconf.com/gtc/2015/presentation/S5192-Jeff-

Larkin.pdf [accessed 15 August 2017].

[4] J. Kraus, M. Schlottke, A. Adinetz, and D. Pleiter, “Accelerating a C++
CFD code with OpenACC,” Proc. WACCPD 2014 1st Work. Accel.

Program. Using Dir. - Held Conjunction with SC 2014 Int. Conf. High

Perform. Comput. Networking, Storage Anal., pp. 47–54, 2014.
[5] I. K. Ikeda, F. Ino, and K. Hagihara, “An OpenACC Optimizer for

Accelerating Histogram Computation on a GPU,” Proc. - 24th

Euromicro Int. Conf. Parallel, Distrib. Network-Based Process. PDP
2016, pp. 468–477, 2016.

[6] K. Komatsu, R. Egawa, S. Hirasawa, H. Takizawa, K. Itakura, and H.

Kobayashi, “Migration of an Atmospheric Simulation Code to an
OpenACC Platform Using the Xevolver Framework,” Proc. - 2015 3rd

Int. Symp. Comput. Networking, CANDAR 2015, pp. 515–520, 2016.
[7] S. Lee and J. S. Vetter, “OpenARC: Extensible OpenACC compiler

framework for directive-based accelerator programming study,” Proc.

WACCPD 2014 1st Work. Accel. Program. Using Dir. - Held
Conjunction with SC 2014 Int. Conf. High Perform. Comput.

Networking, Storage Anal., pp. 1–11, 2015.

[8] NVIDIA Kepler Architecture Whitepaper, “NVIDIA’s Next
Generation CUDA Compute Architecture: Kepler GK110” [online]

https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-

GK110-Architecture-Whitepaper.pdf [accessed 15 August 2017].

[9] Tesla K40 GPU active accelerator [online]

https://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-

Board-Spec-BD-06949-001_v03.pdf [accessed 15 August 2017].
[10] Guided Performance Analysis with the NVIDIA Visual Profiler,

[online] http://on-demand.gputechconf.com/gtc/2013/webinar/gtc-

express-guided-analysis-nvidia-visual-profiler.pdf [accessed 15
August 2017].

[11] A. N. Selvan, “Boundary Extraction in Images Using Hierarchical

Clustering-based Segmentation”, Sheffield Hallam University
Research Archive (SHURA), 2011, [online] http://shura.shu.ac.uk/4050

[accessed 15 August 2017].

[12] J. Lin, D. A. Adjeroh, B. H. Jiang, and Y. Jiang, “K2: Efficient
alignment-free sequence similarity measurement using the Kendall

statistic,” Proc. - 2016 IEEE Int. Conf. Bioinforma. Biomed. BIBM

2016, no. 2, pp. 1128–1132, 2017.
[13] Peng Wang, “Introduction to OpenACC, 2017”, [online]

http://web.stanford.edu/class/cme213/files/lectures/Lecture_14_opena

cc2017.pdf [accessed 15 August 2017].

Journal of Telecommunication, Electronic and Computer Engineering

172 e-ISSN: 2289-8131 Vol. 10 No. 2-6

[14] OpenACC Programming and Best Practices Guide - June 2015,

[online]http://www.openacc.org/sites/default/files/inline-
files/OpenACC_Programming_Guide_0.pdf [accessed 15 August

2017].

[15] S. Sawadsitang, J. Lin, S. See, F. Bodin, and S. Matsuoka,
“Understanding Performance Portability of OpenACC for

Supercomputers,” Proc. - 2015 IEEE 29th Int. Parallel Distrib.

Process. Symp. Work. IPDPSW 2015, pp. 699–707, 2015.
[16] J. Larkin, “Introduction to compiler directives with OpenACC”, Nvidia

Developer Technologies, [online] http://on-

demand.gputechconf.com/gtc/2015/presentation/S5192-Jeff-
Larkin.pdf [accessed 15 August 2017]

[17] X. Chen and C. Qi, “Document image super-resolution using structural

similarity and Markov random field,” IET Image Process., vol. 8, no.
November 2013, pp. 687–698, 2014.

[18] M. Wael and A. S. Fahmy, “Classification of Cardiac Magnetic

Resonance Image Type and Orientation” Int. Conf. Image Process.,
vol. 978, no. 1, pp. 2232–2235, 2014.

[19] C. Jian, Y. Bin, J. Hua, Z. Lei, and T. Li, “Interactive image

segmentation by improved maximal similarity based region merging,”
2013 IEEE Int. Conf. Med. Imaging Phys. Eng., no. c, pp. 279–282,

2013.

[20] E. Golkar, A. A. Abd. Rahni, and R. Sulaiman, “Comparison of Image
Registration Similarity Measures for an Abdominal Organ

Segmentation Framework”, Conference on Biomedical Engineering

and Sciences, 8-10 December, Miri, Sarawak, Malaysia, 2014 IEEE,
pp. 442-445.

[21] E. Fida, J. Baber, M. Bakhtyar, and M. J. Iqbal, “Automatic Image

Segmentation Based on Maximal Similarity Based Region Merging,”
Digit. Image Comput. Tech. Appl. (DICTA), 2015 Int. Conf., pp. 1–8,

2015.

[22] W. Song, M. Li, P. Zhang, Y. Wu, L. Jia, and L. An, “Unsupervised
PolSAR Image Classification and Segmentation Using Dirichlet

Process Mixture Model and Markov Random Fields With Similarity

Measure” pp. 1–13, 2017.

