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Abstract— Pose recognition is an intriguing and challenging 

problem particularly in surveillance, inspection, etc. that lies in 

computer vision. This paper presents an efficient human 

walking and abnormal poses recognition system based on 

kernel-support vector machine (KSVM) using a novel feature 

set based on polygonal shape generalization on the human 

silhouette. The Shapiro-Wilk test was conducted to assess the 

data distribution and it summarized that the test rejected the 

hypothesis of normality for all features. Therefore, an 

inferential Mann-Whitney U test was performed to evaluate the 

proposed feature set statistically and results showed that all 

features were significantly different between the groups of poses 

(p < 0.001). Three kernel models: linear, polynomial and radial 

based function were adopted for SVM to classify the walking 

and abnormal poses. Results obtained showed that all three 

kernels of the KSVM classifiers performed well with accuracies 

of more than 95%. However, further experiments proved that 

the polynomial KSVM yields the best accuracy of 99.96%. Thus, 

it can be concluded that the proposed polygonal shape-based 

feature set is best paired with the polynomial KSVM for 

abnormal pose detection task.  

 

Index Terms— Feature Extraction; Kernel-Support Vector 

Machine; Polygonal Shape; Pose Recognition. 

 

I. INTRODUCTION 

 

In computer vision, research in pose recognition contributes 

to a major improvement in realizing of smart environments 

that able to provide assistance and analysis of subject’s 

activities. In recent years, various recognition systems in 

many applications particularly in surveillance and monitoring 

have been proposed in which higher recognition accuracy is 

always essential. Those computer-aided systems are crucial 

to being adapted in working spaces or premises to detect 

abnormal activity such as slip and fall action [1][2]. This kind 

of abnormality action is rarely occurring; however, it may 

cause a serious health and safety implications on the subject.    

Although three-dimensional (3D) shape analysis is 

considered as an effective and efficient technique in machine 

vision, however, the major challenge lies in designing 

effective high-level features and minimizing the 

computational time [3]. Many two-dimensional (2D) shape-

based feature extraction (FE) techniques, methods, and 

algorithms have been developed in the past such as chain 

code, centroidal distance, shock graphs, etc. An algorithm for 

human recognition system using centroidal profile features 

was developed by [4] and a good classification rate was 

obtained using Artificial Neural Network Classifier. Whereas 

in [5], they performed human posture classification tasks 

using the Simplified Shock Graph (SSG) technique.  

In this paper, a novel polygonal shape-based feature 

extraction technique is proposed and the framework of the 

human pose recognition system is as shown in Figure 1. The 

main steps include data collection, segmentation, 

normalization, shape generalization, feature extraction, 

feature selection and classification.  

The rest of this paper is organized as follows: Section II 

illustrates the proposed methodology in detail. Results and 

discussion are presented in Section III and finally, Section IV 

presents the conclusion of this paper and future research. 

 

II. METHODOLOGY 

 

In this research, we analysed and classified two human 

poses: walking and other abnormal poses i.e. bending, sitting, 

laying and squatting poses. The human poses datasets were 

acquired from two different databases. The human walking 

dataset was obtained from the CASIA Gait database and the 

abnormal dataset acquired from Laboratoire d’Electronique, 

Informatique et Image (LE2I) database. 

 

A. Data Collection 

The CASIA Gait Database was provided by The Institute 

of Automation, Chinese Academy of Sciences (CASIA) [6]. 

It consists of three datasets: Dataset A, Dataset B (multi-view 

dataset) and Dataset C (infrared dataset). However, only 

Dataset B was considered to be used for the purpose of this 

study. The selected dataset is a large multi-view gait database 

which was acquired from 124 subjects and the gait data was 

captured by several video cameras from 11 views as shown 

in Table 1(a)-2nd and 3rd columns.  

Data Collection

•Segmentation and 
Normalization

•Shape Generalization

•Feature Extraction and 
Selection

•Classification

Figure 1: The framework of human pose recognition system 
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The abnormal database consists of human sitting, bending, 

squatting and laying poses acquired from LE2I, The National 

Center for Scientific Research (CNRS) [7]. The video sets 

contain various illumination setting and typical difficulties 

like occlusions and textured background. The subjects 

performed various normal daily activities (walking, reading 

and standing) and the abnormal action; falling which consists 

of bending, squatting and lying poses as shown in Table 1(a)-

3rd and 4th columns. 

 

B. Segmentation and Normalization 

Moving object segmentation in video frames is the most 

significant step in many computer vision applications 

including human activity/action analysis. Segmentation is 

required to isolate the object of interest i.e. foreground from 

the background image. There are various and robust 

segmentation algorithms [8]-[10], but in this work, the 

common background subtraction technique was chosen to 

detect and segment the moving object i.e. human from a 

background in the video due to its simplicity, fast processing 

time, and reliability of output. 

Using the arithmetic calculations shown in Equation (1), 

the object is segmented by subtracting the corresponding 

gray-scaled pixel values at the same position of the current 

image frame, denoted by P[I(t)] with the background image 

frame denoted as P[B]. In this particular work, all background 

pixels are considered static and object movement in the scene 

is at low speed level. The sample object detection result using 

this method as illustrated in Table 1(c). 

 

𝑃[𝐹(𝑡)] =  𝑃[𝐼(𝑡)] −  𝑃[𝐵] (1) 

 

Typically, the output of background subtraction algorithm 

contains noise. Therefore, appropriate post-processing was 

conducted on the foreground before using them for further 

processing. To diminish the effect of noise on foreground and 

shape enhancement, the morphological process such as 

erosion and dilation were performed. The clean shapes of 

human silhouette samples for two poses are as shown in Table 

1(e). 

All raw data in both databases were captured using different 

stationary video cameras. For the first database, the subjects 

were instructed to walk straight from a starting to end position 

and the scenes were captured by multiple cameras in different 

angle views. Whilst for abnormal scenes, the subjects were 

ordered to act fall actions in a various manner and the scenes 

were recorded by a single camera. Thus, both sets of 

silhouettes may vary in size due to the perspective of the 

scene and the physical size of subjects. Therefore, all datasets 

have to be normalized by rescaling the silhouette size to a 

uniform dimension without changing the original shape. The 

horizontal and vertical dimension of silhouette were 

measured from the minimum to maximum x and y 

coordinates; respectively. Then, the vertical dimension was 

rescaled to 100 pixels, whilst the horizontal dimension was 

proportionally rescaled to the vertical dimension. 

 

C.  Shape Generalization 

In general, 2D geometric shapes are constructed by a set of 

vertices, thus a closed chain lines; connecting the vertices 

forming the interior space. In other words, the lines 

connecting the points can be referred to as the sides of the 

shape and the minimum number of vertices, nv required to 

form a 2D shape is 3; nv  3. Polygon categories, for instance, 

are classified according to their number of edges such as 

triangles, quadrilaterals, pentagons, etc. Each of these major 

categories can be divided into several different shapes. For 
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Table 1 

Object Detection and Post-processing of Walking and Abnormal Dataset 

 

Figure 2: Quadrilaterals families with properties [15] 
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instance in Figure 2, a quadrilateral or quadrangle can be 

formed as rectangles, rhombus, trapezoid or squares. 

 Obviously, a 2D human silhouette shape is a non-polygon 

shape where the silhouette outline is composed of infinite sets 

of straight line segments and corners as shown in Table 1(e). 

In addition, these properties differ in every human shape even 

though they are categorized under the same pose. Therefore, 

a generalization of shape should be imposed on the silhouette 

outline. 

An algorithm of contour tracing was performed to extract 

the closed chain outline of silhouettes from the foreground 

regions [11] and the samples of contour tracing are shown in 

Table 4(f). The contour length was then equally divided into 

nv parts; thus, the location of appropriation points will 

represent the vertices of polygon shape, Vi = (xi, yi). The initial 

vertex, V1 was defined at the topmost left of the contour and 

the sequence order of the next vertices, Vi+1 is in clock-wise 

rotation. Then, each pair of vertices points were virtually 

connected in sequence to form a 2D nv-gon shape. Table 2 

shows the polygonal shape generalization of the silhouette to 

various numbers of vertices, i.e. triangle (3 vertices), 

quadrilateral (4 vertices), pentagon (5 vertices), hendecagon 

(11 vertices) and pentacontagon (50 vertices) shapes. 

 

D. Feature Extraction 

Each 2D nv-gons shape has different properties such as the 

distance, Ci in between the center of mass, Cm and the vertex, 

Vi. Another potential feature that able to discriminate the 

shape is the distance in between vertices, Vi to Vi+1 a.k.a. side 

length, Si and the angle in between each vertex, Ai. All of 

these features have unique properties to differentiate the 

polygonal shapes, thus able to contribute a promising 

classification result for object recognition. Thus, three main 

feature groups, G were extracted to differentiate the human 

silhouette shapes as shown in Figure 3. 

 

where:  Ci   = Distance in between center of mass and vertex 

Si   = Length of side 

Ai   = Vertex angle 

 

Si and Ci features are defined as the distance in pixels and 

angle in degree for Ai. The total number of features, nf is 

proportionally depending on the chosen nv as shown in 

Equation (2).  

 

nf  = nv X G (2) 

 

Cm is an object physical and geometric property in the 

image, where it is measured based on the assumption that the 

pixels have equal masses [12]. Thus, it is favorable to choose 

Cm as a reference point where it will consistently be computed 

based on the region of silhouette, Os. The center of mass,  

𝐶𝑚 = (𝑥𝑐  , 𝑦𝑐) is computed as follows: 

 

𝑥𝑐 =
∑ 𝑥𝑗

𝑘
𝑗

𝑘
   ,    𝑦𝑐 =

∑ 𝑦𝑗
𝑘
𝑗

𝑘
 (3) 

Where, k is the number of pixels in silhouette region, Os. Each 

Euclidean distance from the Cm to Vi are computed as in 

Equation (4), thus: 

 

𝐶𝑖 = √(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 (4) 

 

The second feature group, Si is simply calculated as below:  

 

𝑆𝑖 =  𝑉𝑖 −  𝑉𝑖+1        ∀  𝑖 ∈ {1, 2, … , 𝑛𝑣 − 2} (5) 

 

It is defined as the 2D Euclidean distance between 

points 𝑉𝑖 and 𝑉𝑖+1 or the length of the virtual line connecting 

them, (𝑉𝑖𝑉𝑖+1
̅̅ ̅̅ ̅̅ ̅). If 𝑉𝑖 = (𝑥𝑖  , 𝑦𝑖) and 𝑉𝑖+1 = (𝑥𝑖+1 , 𝑦𝑖+1) in 

cartesian coordinates are the two vertices in Euclidean two-

space, then the distance, Si from 𝑉𝑖 to 𝑉𝑖+1, or vice versa, 

from 𝑉𝑖+1 to 𝑉𝑖 is given by the Pythagorean formula as in 

Equation (6). 

 

       𝑆𝑖 = √(𝑥𝑖 − 𝑥𝑖+1)2 + (𝑦𝑖 − 𝑦𝑖+1)2  (6) 

 

The third feature group, Ai is the interval angle of Vi, 

measured in between each two sides of nv-gons. This feature 

is calculated from the law of cosines in Equation (7) where 

one knows the two sides’ distances: Si and Si+1 as previously 

computed in Equation (4). 

 

𝐴𝑖 = arccos (
𝑆𝑖

2 + 𝑆𝑖+1
2 − (𝑉𝑖 − 𝑉𝑖+2)2

2𝑆𝑖𝑆𝑖+1

) (7) 

 

E. Feature Selection 

This process is to identify and remove the irrelevant and 

redundant variables from the dataset that may decrease the 

accuracy of the predictive model [13]. Thus, it will help by 

the same time, requiring less data. A small number of 

variables is essential because it may reduce the complexity of 

the model and overfitting. Therefore, it will improve the 

classifier performance; besides, provide faster and cost-

effective predictors.  

In our study, we are going to analyse whether there is 

statistical evidence that the associated polygon shape-based 

features are significantly different by comparing the means of 

the two independent pose groups, walking and abnormal.  

The normality test was conducted as the prerequisites to 

ensure the data is suitable to be analysed using a particular 

statistical examination. The Shapiro-Wilk (SW) test was 

conducted to validate the normality assumption [14]. All 

interpretations of the statistical results are set at significance 

level, α = 0.05.    

The Mann-Whitney U (MWU) test was used to compare 

the data distribution between the two unrelated groups on the 

same continuous-level. MWU is a non-parametric alternative 

test to the parametric test; independent sample t-test. Unlike 

the t-test, it does not assume any assumptions related to the 

Figure 3: Si, Ci and Ai features extracted from Polygonal shape  

Cm 
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distribution of data. The MWU is significantly more efficient 

than the t-test by considering a larger sample size and 

distributions sufficiently far from normal [14]. The test is 

used to compare the medians of two samples as shown in 

Equation (8) that come from the same population whether the 

equality exists between them; the null hypothesis (H0). 

 

𝑈 = 𝑁1𝑁2 +
𝑁2(𝑁2 + 1)

2
− ∑ 𝑅𝑖

𝑁2

𝑖=𝑁1+1

 (8) 

 

where: U   = Mann-Whitney U test 

 N1  = 1st sample size 

 N2   = 2nd sample size 

 Ri   = Sample size rank 

 

F. Classification 

Generally, the Support Vector Machine (SVM) family was 

used as the classifier as it promises a high accuracy result and 

good processing time. In addition, the sequential minimal 

optimization (SMO) was selected as the solver to train the 

SVM. In principle, this type of classifier is a linear machine 

that creates a hyperplane as a level of decision-making, 

thereby enabling it to separate between the positive and the 

negative samples.  Recently, multiple improvements on the 

traditional SVM had been achieved; among which the kernel 

SVM (KSVM) is the most popular and effective. This 

extended SVM allows us to fit the maximum-margin 

hyperplane in a transformed feature space. The kernel 

mappings, such as linear (Lin-KSVM), polynomial (Pol-

KSVM) and radial basis function (RBF-KSVM) are able to 

classify both linear and non-linear data. These kernels can be 

attained by the following models: 

 

Lin-KSVM: (𝑥𝑚 , 𝑥𝑛) =  𝑥𝑚
𝑇 𝑥𝑛 (9) 

Pol-KSVM: (𝑥𝑚 , 𝑥𝑛) =  (𝑥𝑚
𝑇 𝑥𝑛 + 𝑐)𝑑 (10) 

RBF-KSVM: (𝑥𝑚, 𝑥𝑛) = 𝑒𝑥𝑝 (−
‖𝑥𝑚−𝑥𝑛‖

22 ) (11) 

 

where:               = Kernel function 

    = Scaling factor 

  𝑥𝑚, 𝑥𝑛  = Vectors in the input space 

  d    = Degree of polynomial 

  c     = Soft margin constant 

 

Based on these three kernels, we trained and validated the 

KSVM classifiers with the proposed feature set and seek the 

best KSVM classifier that can provide the highest accuracy, 

Acc of classification. The Acc can be derived using Equation 

(12). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∶ 𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 x 100% (12) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∶ 𝑃𝑟 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 x 100% (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ∶ 𝑆𝑝 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 x 100% (14) 

 

where:  

True positives (TP) = number of walking pose correctly 

detected; 

False positives (FP) = number of walking pose detected as 

abnormal; 

True negatives (TN) = number of abnormal pose correctly 

detected; 

False negatives (FN) = number of abnormal pose detected as 

walking. 

 

The k-fold cross-validation was employed on each KSVM 

models where the dataset was randomly divided into k 

approximately equal size subsets. The training and validation 

sets were comprised of k-1 subsets and the remaining subset; 

respectively. This procedure was repeated k times, so that 

each subset was used once for validation. Then, a single 

estimation of the whole dataset was calculated from the 

combination of k folds result. In our case, k=10 which is 

considered as the best compromise value in computational 

cost and reliable estimates. 

 

III. RESULTS AND DISCUSSION 

 

All tasks were done in MATLAB® R2015a and Statistical 

Package for the Social Science (SPSS) V22 software, which 

are embedded in a notebook computer: Intel i7 processor, 

running Windows 10 OS, with 16GB of RAM.   

 

A. Feature Analysis 

Generally, the total number of features; Ci, Si and Ai is 

based on the number of vertices (nv  3) selection. The 

consequence of this factor may affect the generalized shape 

of the silhouette (refer to Table 2). Each generalized shape of 

silhouette will contribute 3nv features i.e. C1-Cnv, S1-Snv and 

A1-Anv. For features analysis, we examined all groups of 

features. However, only features extracted from the minimum 

nv, i.e. 3 vertices will be highlighted in this paper. All features 

were measured on 10,000 walking pose samples, N1 and 

10,000 abnormal pose samples, N2.  

The difference in means, 
{𝐶,   𝑆,   𝐴}

 were measured, and 

generally defined as the absolute difference between the 

mean value,  in two different groups. Figure 4 summarized 

the 
{𝐶,   𝑆,   𝐴}

 between walking and abnormal groups’ 

features for the triangle shape; which composing nine 

features in total. In general, it will shows the distinction of 


{𝐶,   𝑆,   𝐴}

 between corresponding features in both groups.

Figure 4: Means different between walking and abnormal features 
groups for nv=3 i.e. C1-3, S1-3 and A1-3 
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Table 2 

Human Silhouette Polygonal Shape Generalization 

 
 

By feature groups, the average of  for C, S and A groups 

are 32.15, 57.66 and 24.57 pixels; respectively. Thus, the S 

group contributes the highest  and gives a good impact in 

distinguishing the poses, rather than feature C and A groups. 

Whereas, the average of mean different, 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

 for all 

features, regardless to feature groups is 38.13 pixels. 

Therefore, the mean difference results show a significant 

value to differentiate the pose groups in a descriptive sense 

for all features. The side by side box plots; grouped by feature 

typed-C in Figure 5 shows the alternative way to visualize the 

distribution of data in discriminating between the two pose 

groups and to observe the outliers. This descriptive statistic 

results show that most of the features might be prominent in 

distinguishing the two different groups.  But it does not, 

however, allow us to make a decision beyond this preliminary 

data analytic to reach a conclusion regarding the hypotheses 

mentioned above. Therefore, an inferential statistic is 

performed for judgments of probability that the observed 

samples between groups are different in this study and be 

prominent features in classification.  

 

 
Figure 5: Graphical rendition of C feature group for walking and abnormal 

dataset  

 The SW test was conducted as numerical means of 

assessing normality. The normality test results for all features 

are summarized in Table 3 and the it shows that all probability 

result, p-value (Sig. row) to correspond features are less than 

0.001 (N = 10,000). Therefore, the test rejects the hypothesis 

of normality for all features due to the conducted test resulting 

p-value is less than 0.05 and failing the normality test states 

with 95% confidence, the data significantly deviates from a 

normal distribution. Therefore, the non-parametric MWU test 

was conducted to compare differences between the two 

independent groups. 

The MWU test is based on ranks or medians, where the 

ranks represent the relative position of an individual in 

comparison to others and robust to outliers. The selected test 

is to analyse all corresponding features extracted from the 

generalized triangle shape of walking pose should be distinct 

from those abnormal pose features.  

The detailed statistical results of MWU are shown in Table 

4. It shows the actual significance value of the test; 

specifically, U statistic as well as the asymptotic significance 

(2-tailed), p-value. From this table, it shows all probabilities 

values, p were below 0.001, rejecting the null hypotheses for 

all features ( < 0.05). Thus, the mean rank between the 

groups for all nine features were associated statistically 

significantly different median latencies in groups of walking 

and abnormal (N1 = N2 = 10,000). 

 

B. Pose Classification 

The dataset for classification consists of 10,000 samples for 

each pose groups. We performed the classification of walking 

and abnormal poses using three selected kernel SVM models; 

namely Lin-KSVM, Pol-KSVM and RBF-KSVM. The 

evaluation was made on all attributes C, S and A; extracted 

from the range of three to 25 vertices. Table 5 presents the 

classification accuracy performance of our proposed features 

based on different numbers of vertices. 

From the range of vertices number undertaken, all highest 

average classification accuracy (highlighted in red font) were 

obtained from the Pol-KSVM, with the minimum accuracy 

rate, Accmin=98.16% (vertex-3) and the maximum accuracy 

rate, Accmax=99.96% (vertex-20). However, all KSVM 

models performed well (Acc > 95%) with a minimum of 

95.98% accuracy rate (Lin-KSVM at vertex-3). The average 

performance rate for Pol-KSVM was 99.65% and the 

classifiers performance were saturated at vertex-20 onwards 

(refer to Figure 6). Therefore, in the selection of 20 vertices, 

particularly for Pol-KSVM was sufficiently good to gain the 

optimum classification rate (99.96%).  

 

 
 

Figure 6: Classification accuracy performance correspond to various vertex 
number 

 

C. Feature Extraction Techniques Comparison 

For further performance evaluation of our proposed FE 

technique, we designed an extra experiment to compare them 

with other shape-based FE techniques: [4] and [5]. The 

experiment was following the same framework as shown in 

Figure 1 except we neglected the feature selection process. 

The performance was evaluated base on three criteria: 

accuracy (Acc), precision (Pr) and specificity (Sp) as derived 

in Equation (12)-(14). From the classification performance 

results in Table 6, our proposed FE technique outperformed. 

 

Pose nv = 3 nv = 4 nv = 5 nv = 11 nv = 50 

Walking: 

     

Abnormal: 
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Table 3 

 Shapiro-Wilk test result for all features extracted from triangle shape (N=10,000) 

 

Feature: C1 C2 C3 S1 S2 S3 A1 A2 A3 
Pose: W A W A W A W A W A W A W A W A W A 

Statistic: .062 .106 .121 .137 .104 .119 .086 .199 .105 .127 .080 .176 .087 .076 .039 .158 .073 .101 

Sig.: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

     W: Walking    A: Abnormal 

 

Table 4 
Statistical result of Mann Whitney U Test (N=10,000) 

 

Feature: C1 C2 C3 S1 S2 S3 A1 A2 A3 

U: 17946019.500 10481969.000 15026983.00 17431236.000 2487242.000 22623075.000 2280210.000 20887694.00 46097398.000 

Asymp. Sig. 

(2-tailed): 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Table 5 

The KSVMs’ Accuracy Rate Performance (%)  
 

No of Vertices: 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Lin-KSVM: 95.98 98.43 98.66 98.53 98.71 98.90 99.14 99.48 99.62 99.60 99.66 99.70 99.66 99.65 99.69 99.72 99.71 99.71 99.68 99.69 99.63 99.65 99.68 

Pol-KSVM: 98.16 98.93 98.88 99.25 99.26 99.54 99.62 99.76 99.81 99.88 99.88 99.91 99.90 99.88 99.87 99.93 99.94 99.96 99.92 99.92 99.93 99.93 99.94 

RBF-KSVM: 97.93 98.75 98.84 99.00 99.07 99.30 99.44 99.69 99.73 99.76 99.75 99.82 99.76 99.81 99.78 99.80 99.85 99.85 99.79 99.77 99.85 99.82 99.85 

 
Table 6 

Average Percentage (%) Performance of Different Feature Extraction 
Techniques on POL-KSVM classifier 

 

Feature Extraction Techniques Acc  Pr Sp 

Centroidal profile [4] 99.94 99.89 99.89 

SSG [5] 97.18 95.04 94.81 

Polygonal shape-based features 

(proposed method) 
99.96 99.94 99.94 

 

both earlier techniques with above 99.94%.                         

 

IV. CONCLUSION AND FUTURE RESEARCH 

 

We have proposed new features to be extracted from the 

polygonal shape generalization on the human silhouette. The 

Shapiro-Wilk test was conducted to assess the normality of 

data distribution and it summarized that the test rejected the 

hypothesis of normality for all features (p < 0.001). Thus, to 

analyse whether all corresponding features of walking pose 

are statistically significantly different with abnormal pose 

features, the Mann-Whitney U test was conducted. The 

results showed that all proposed features could discriminate 

the human walking and abnormal poses at the significant 

level of p < 0.05. Based on classification accuracy, the Pol-

KSVM performed well (Accmax = 99.96%) at vertex-20 than 

Lin-KSVM and RBF-KSVM for all range of vertices number 

i.e. three to 25 vertices. Overall, all KSVMs were giving high 

achievement performance (Acc > 95%). In the future, we are 

keen to evaluate our proposed features on other types of 

supervised classifiers such as Discriminant analysis and 

Naïve Bayes. Such that the best classification model will be 

tested on other online databases and real-time application; 

particularly in surveillance system. 
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