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Abstract—This paper presents a circuit design for 16-point 

DFT algorithm with Decimation in Time based on products of 

Rademacher functions. The designed circuit is constructed from 

two 8-point DFT and four 2-point DFT. However, the operation 

of the design circuit is different. It utilised the advantages of the 

similarity of Fourier transforms, and Rademacher functions. 

Therefore, the proposed design is constructed from previously 

designed 8-point DFT which is based on products of 

Rademacher functions. Some analysis of the type of numbers, 

internal connections and the complex conjugate of the results to 

achieve the more efficient circuit has been made. Therefore, 

instead of eight, the proposed design requires only five 2-point 

DFTs. Therefore, six output results of the design 16-point DFT 

have been removed since they are equal regarding magnitude to 

the other results, but six negative circuits are required as 

compensation. Therefore, the previously designed circuit of 8-

point DFT has been replaced with the new circuit design. This 

circuit is specially designed for non-standalone used; the circuit 

must be integrated inside the proposed 16-point DFT. 

 

Index Terms—8-Point DFT; Decimation In Time; Fourier 

Transforms; Walsh Transform. 

 

I. INTRODUCTION 

 

Nowadays, Fourier transforms used ubiquitously. The 

Fourier algorithms for converting the information to 

frequency domain are available concerning both continuous 

and discrete models. The discrete model of Fourier which is 

often called Discrete Fourier Transforms (DFT) is more 

suitable for hardware application since the capability of 

computing machines that limit the ability of calculation. 

Unlike discrete one, the continuous model was challenging to 

be implemented.   

Fourier transforms have been developed since long time 

ago because of the huge number of applications that require 

this model. It is still an attracted work for scientists to develop 

a more efficient and fast algorithm for implementing it in the 

applications. Duhamel and Veterli described a brief history 

and development of the Fourier algorithm in 1990 [1]. They 

presented a detail explanation of advantages and drawbacks 

of each previously proposed algorithm. The most significant 

improvement of the Fourier transform is when Cooley and 

Tukey introduced a method for factorisation of it [2]. After 

that, thousands number of work published for implementing 

Fourier transform in real applications. 

Meanwhile, the calculation process of Walsh transforms 

for converting information to the frequency domain is very 

simple. Even though, in the application, the calculation 

process may be performed using the integer and real number 

only. Therefore, scientists have been developing the 

algorithms of Fourier transforms that combines Walsh and 

Fourier transforms [3]-[5]. The developments are based on 

the simple calculation of Walsh transforms. Those algorithms 

of Walsh transform adopted through factorisation of 

intermediate transforms T for gathering of Fourier 

coefficients [3]. Monir T et al. then proposed the efficient 

combination of Fourier and Walsh calculations. This 

technique is used to perform the Fast Walsh Hadamard 

Transforms (FWHT) by utilising decimation in time (DIT) of 

Radix-4 [4]. Later then, the efficient algorithm for 

determining of both Walsh transforms and DFT transforms 

based on the Radix-2 model was also proposed [5].  

Those previous combination algorithms were designed for 

entering information into the system in parallel and gathering 

the results also in parallel. This model leads to many memory 

resources which are not suitable for embedded realisation. 

Therefore, a method for reducing the usage of the resource 

has been proposed in [6]. The circuit is designed by taking 

information serially, and the results are extracted in parallel. 

The method utilised 4-point DFT that adopts the behaviour of 

how Walsh transforms is performed. Next, the design of 8-

point DFT [7] has been proposed. It is constructed using the 

4-point DFT designed in [6]. This design of 8-point itself is 

very simple; it constructed from two 4-point DFT and three 

2-point DFT. 

The previous DFT model has been designed only for 4-

point and 8-point, which is very simple and rarely used in the 

real application. In the real application, it is required a DFT 

model which able to perform higher than 8-point 

transformation processes. Therefore, in this paper, we 

propose a design of 16-point DFT circuit that is constructed 

by using the previous 8-point DFT model. Two 8-point DFT 

and eight 2-point DFT are required in this design. This paper 

also provides an analysis of the type of number and complex 

conjugate for improvement purpose of the design. 

This paper is organised as follows: a step by step circuit 

design for area efficiency of 16-point DFT is described in 

detail in Section 2. Section 3 views the analysis of results and 

discussions of the proposed design. Finally, the conclusions 

and some suggestions for future works are presented in 

section 4. 

 

II. DESIGN OF A 16-POINT DFT 

 

A. Main Design  

This paper proposes the design of the circuit for 

implementing 16-point DFT based on products of 

Rademacher functions. This function has been appeared in 
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many designs for realising Walsh transforms [8]-[12]. That 

implementation theoretically based upon algorithms of Walsh 

transforms and its application in different ordering [13]. The 

circuit is constructed from the previous work of 4-point DFT 

[6], 8-point DFT [7] combined with the design of 16-point 

DFT decimation in time. Figure 1 shows the 16-point DFT 

based on decimation in time. The structure consists of several 

smaller point of DFTs. The structure also requires some 

arithmetic process such as real multiplication and imaginary 

multiplication. 

 

 
 

Figure 1: Structure of 16-point DFT decimation in time 

 

Input data x[x0, x1, x2,..., x15] will be transformed into 

frequency domain and become X[X0, X1, X2,..., X15]. Even 

inputs [x0, x2, x4, x6, x8, x10, x12, x14] are passed through the 

first (#1) 8-point DFT. Meanwhile, odd input [x1, x3, x5, x7, 

x9, x11, x13, x15] are passed through the second (#2) 8-point 

DFT. The calculation process of both 8-point DFTs is 

performed based on products of Rademacher functions [7]. 

Let’s assume that T10, T11, T12, T13, T14, T15, T16, T17 are 

results of the first 8-point DFT and T20, T21, T22, T23, T24, T25, 

T26, T27 are results of the second 8-point DFT.  

Eight blocks of 2-point DFT are used to transform 

temporary results (Ts) to be the final 16-point DFT result 

X(k). Only inputs of the first block of 2-point DFT are 

connected directly from temporary results; others have to be 

multiplied by twiddle factors. These multiplications process 

will be evaluated next. The multiplication processes have to 

be considered as an additional resource that is used beside the 

main blocks of 8-point DFTs and 2-point DFTs. The internal 

circuit of 8-point DFT will be evaluated next. 

 

B. Type of Number 

The circuit scheme in Figure 1 shows blocks of 8-point 

DFTs, 2-point DFTs and twiddle factors in general view. To 

integrate blocks and components, it requires specific handling 

that may involve real and imaginary numbers. The 

connections between blocks or components that require both 

real and imaginary numbers require more circuit. Figure 2 

views all possible of imaginary (noted "I") and real (noted 

"R") numbers for processing the 16-point DFT. 

It is assumed that inputs of 16-point DFT are all real 

numbers. Then based on the calculation inside 8-point DFT, 

the temporary results (Ts) will be in real, imaginary or might 

contain both real and imaginary numbers. Those type of 

numbers has been derived from the twiddle factor of both 8-

point DFT blocks. For processing the multiplications of some 

output of 8-point DFTs, we should examine all possible 

twiddle factor's type of number. Table 1 lists and derivation 

of the kind of the number of several twiddle factors that 

involve in the calculation. 

 
 

Figure 2: Type of numbers of internal connections of 16-point DFT 

 

 
Table 1 

Types of Numbers of Twiddle Factors 

 

K Twiddle-Factor 

0 W16
0 Cos(0) – j Sin (0) 1 R 

1 W16
1 Cos(2π/16) – jSin (2π/16) 0,924–j0,382 R + I 

2 W16
2 Cos(4π/16) – jSin (4π/16) 0,707–j0,707 R + I 

3 W16
3 Cos(6π/16) – jSin (6π/16) 0,382–j0,924 R + I 

4 W16
4 Cos(8π/16) – jSin (8π/16) - j I 

5 W16
5 Cos(10π/16) – jSin(10π/16) -0,382,–j0,924 R + I 

6 W16
6 Cos(12π/16) – jSin(12π/16) -0,707–j0,707 R + I 

7 W16
7 Cos(14π/16) – jSin(14π/16) -0,924–j0,384 R + I 

 

It can be seen that most of twiddle factors requires 

calculation in real and imaginary. Twiddle factors W160 can 

be ignored since it equal to 1. Some results of the second 8-

point DFT (T21, T22, T23, T24, T25, T26, T27) are multiplied with 

twiddle factors (W16
1, W16

2, W16
3, W16

4, W16
5, W16

6, W16
7). 

These multiplications can be examined as follow, 

 

(T21) (W16
1) = (R+I) (R+I)= R+I (1) 

(T22) (W16
2) = (R+I) (R+I)= R+I (2) 

(T23) (W16
3) = (R+I) (R+I)= R+I (3) 

(T24) (W16
4) = (R) (I)= I (4) 

(T25) (W16
5) = (R+I) (R+I)= R+I (5) 

(T26) (W16
6) = (R+I) (R+I)= R+I (6) 

(T27) (W16
7) = (R+I) (R+I)= R+I (7) 

 

As a result, after performing all of 2-point DFT processes, 

the output of 16-point DFT contains real and imaginary 

number except for X0 and X8 which include only real 

numbers. This is because both inputs of the first 2-point DFT 

include real numbers only. These analyses play an essential 

thing in choosing the number of buffers required for 

implementing the circuit since the real and imaginary 

numbers will be placed or stored in different buffers. This 

design will be further analysed for determining the exact 

amount of required buffer. The connections that involve both 

real and imaginary requires a two-fold amount of buffer for 

storing data temporarily. 

 

C. Interconnect Configuration  

The designed 16-point DFT mainly requires two 8-point 

DFTs and eight 2-point DFTs. These number of DFTs will 

need huge numbers of the circuit. However, regarding circuit 

perspective, there is a space to reduce it. A depth analysis is 

required for determining which part of the whole circuit that 

might be removed. In the previous section, the type of 

numbers used for connecting blocks has been determined. 

Here, we provide the detailed analysis of those figures. 
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The results of 16-point DFT shows the unique phenomena, 

because some of them complex conjugate to the other result 

[14], [15]. For example, given input data x={1, 2, 3, 4, 5, 6, 

7, 8, 11, 4, 1, 3, 5, 6, 2, 9}, the DFT results are X={77, -12.6-

4.7i, 4.8+16.3i, -9.1-1.7i, 9+6i, -6.5+8.1i, -0.8+6.3i, -

11.5+5.1i, -7, -11.5-5.1i, -0.8-6.3i, -6.5-8.1i, 9-6i, -9.1+1.7i, 

4.8-16.3i, -12.6+4.7i}. Where, X1 is complex conjugate with 

X15, X2 is complex conjugate with X14 and so on. In general, 

this is according to equation (8). 

 

𝑋 (
𝑁

2
− 𝑘) = 𝑋 (

𝑁

2
+ 𝑘)

∗
, 𝑓𝑜𝑟 𝑘 = 1,2, … ,

𝑁

2
− 1    (8) 

 

where N=4, 8, 16 ….. This behaviour was also similar to the 

8-point DFT results, where T11=T17*, T12=T16*, T13=T15*, 

T21=T27*, T22=T26*, and T23=T25*. Figure 3 shows the 

mapping of all possible complex conjugate results of the 

designed 16-point DFT. By determining complex conjugate 

of some DFT results, the circuit can be optimised. 

 

 

 
 

Figure 3: Complex conjugate results of 16-point DFT 

 

III. CIRCUIT COMPLEXITY 

 

In the previous section, analysis of number's type and the 

complex conjugate of the results has been made. Therefore, 

the designed circuit may now be optimised by reducing 

unneeded components or blocks. However, there is a cost for 

this improvement. 

From the Figure 3, it can be seen that the results of 2nd, 

3rd, 4th and 8th, 7th, 6th of 2-point DFTs are complex 

conjugate to each other. Therefore, half of these blocks can 

be removed. As a consequence of removing the block, it is 

required a negative circuit. Another advantage of removing 

the DFT blocks twiddle factors W16
1 or W16

7, W16
2 or W16

6, 

W16
3 or W16

5 are not necessary anymore. Let us remove the 

last three blocks of 2-point DFT. As a result, twiddle factor 

W16
5, W16

6, W16
7, can also be deleted. These leave 

connections from T15, T16, T17, T25, T26, and T27 disconnected.  

The multiplication process in the W16
4 also can be removed 

because the magnitude of W16
4 is -1. Based on previous 

analysis of twiddle factors multiplication indicated in 

Equation (6). The result 8-point DFT T24 may now be 

connected directly to the input of the fifth 2-point DFT block 

and assumed it as an imaginary number. Three negative 

circuits are required for compensation of removing three 

blocks of 2-point DFT. These circuits can be realised based 

on second complement system using an adder. The first 

negative circuit is used to create a negative imaginary part of 

X5 and considered as imaginary part of X11. The second one 

is used to provide a negative imaginary part of X6 and 

considered as imaginary part of X10. The third one is used to 

create a negative imaginary part of X7 and considered as 

imaginary part of X9.  

Another efficiency can be applied in both blocks of 8-point 

DFT due to the unconnected of result T15, T16, T17, T25, T26, 

and T27. Figure 4 shows the efficient circuit design of 8-point 

DFT. There is no reduction can be applied to the complex 

conjugate of X4=X12*, since they are an output of the same 2-

point DFT block. 

 

 

 
 

Figure 4: Propose efficient 16-point DFT 

 

In the previous design [7], the efficient 8-point DFT has 

been proposed. However, the circuit will not suit the proposed 

16-point DFT here, since it requires only five results of 8-

point DFT (X0, X1, X2, X3, X4). Therefore, in this design, the 

modified 8-point DFT for integrating together with the design 

16-pint DFT will be introduced. Figure 5 shows a more 

efficient 8-point DFT that can be used for calculating the 

proposed 16-point DFT. For circuit simplicity, the result of 

X3 is taken from complex conjugate of X5, since X3=X5*. 

Therefore, we can remove the last 2-point DFT. Based on this 

simplicity, in the output part of the modified 8-point DFT 

consist of only two 2-point DFT, one adder and one negative 

circuit for performing complex conjugate of X5 (not shown). 

 

 

 
 

Figure 5: Propose modified 8-point DFT 
 

In this design, the 2-point DFT can be realised using the 

same circuit used in [7]. The circuit consists of two adders 

and one inverter as can be seen in Figure 6. Real and 

imaginary values will be processed in the separate different 

circuits. Therefore, a double circuit is required when 

performing 2-point DFT that containing both real and 

imaginary data. 
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Figure 6: Circuit of 2-point DFT [7] 

 

Figure 7 shows internal circuit that forms the calculation 

process of 4-point DFT [7]. This circuit performs the DFT 

based on the products of Rademacher functions. In the figure, 

primary circuit plays a crucial role in selecting whether 

positive or negative of x that will be passed through buffers. 

This selection is similar to the process of performing Walsh 

transforms. The circuit also determines which buffer will be 

used to store the selected input data (x or –x) temporarily. The 

last action is similar to the process of calculating Fourier 

transforms.  

 

 
 

Figure 7: 4-point DFT [7] 

 

IV. CONCLUSIONS 

 

The designed circuit of 16-point DFT based on products of 

Rademacher functions has been done. Initially, the circuit 

consists of smaller DFT blocks which are two 8-point DFTs 

and eight 2-point DFTs. The analysis of type number, internal 

connections and the complex conjugate of the connections 

has been accomplished. Based on these, the efficient 16-point 

DFT has been gathered. The active circuit involved two 

modified 8-point DFTs and five 2-point DFTs. Moreover, the 

design of the modified 8-point DFT has been constructed. 

This circuit can be used in the hardware application that 

requires small circuit and fast computation. 
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