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Abstract—This article discusses a DFT 8-point design based 

on Rademacher functions.  The design is conducted based on 

previous research, a DFT 4-point model, for hardware. In 

general, the design requires two calculations of DFT 4-point, 

four counting processes of DFT 2-point, and three multiplying 

processes of twiddle factor. The adjustment has been made to 

change the path process from concurrent to sequential in order 

to adapt to the software execution command. The designed 

algorithm is run in MATLAB. The result shows that there is no 

difference between the proposed DFT and the one provided in 

MATLAB. Confidently, this design can be an alternative in 

transforming information signal into frequency domain using 

DFT technique. 

 

Index Terms—Rademacher Functions; Radix-2; Sequential; 

Concurrent. 

 

I. INTRODUCTION 

 

The rapid growth in computation technology requires high 

performance in processing various information. Therefore, it 

is requisite to provide a good signal processing tools. The 

technique used in signal processing called a Digital Signal 

Processing (DSP) applies digital format. In digital process, it 

is required to transform the usual time domain signal to other 

domain to obtain certain characteristics of the processed 

signal.  

Fourier transform holds an important role in transforming 

signal domain. For certain application, a practical 

transformation that is derived from Fourier transform is 

frequently used. The information in digital format is usually 

transformed into frequency domain using Discrete Fourier 

Transform (DFT). This transformation method became 

popular when Cooley and Turkey introduced divide and 

conquer realisation in 1965 [1]. This technique then is known 

as Radix-2. Since that time, thousand paper discussed the 

practice of realisation method had been published [2] 

Fourier transform can be realised by either using software 

or hardware. In the application that proposedly designed for 

Fourier signal processing, the realisation is usually conducted 

in hardware to reduce the selling price. However, in 

multitasking application, it is more efficient to conduct 

Fourier realisation using a software. This multitasking 

application requires a processor that cost the device. In later 

application, it mentioned various software that have been 

developed to calculate the Fourier transform [3]-[9]: Fourier 

calculation method using Sun Performance Libary 

(SUNPERF); Fortran public domain code by T. Ooura 

(1996), C language by J Green (1996), and C language by R. 

H. Krukar (1990); the Fortran FFTPACK library [3]; a 

Fortran split-radix FFT by Sorensen [4]; a Fortran FFT by 

Singleton [5]; Temperton’s Fortran GPFA code [6]; Bailey’s 

“4-step” FFT implementation [7]; Sitton’s QFT code [8]; and 

the four1 routine from (NRF) [9]. 

Then, in 1998, a new algorithm was developed by Martin 

& Frigo [10] to process the Fourier transform calculation. It 

is the fastest technique compared to prior existing technique. 

This technique is used in MATLAB programming until now.  

Another alternative realisation of Fourier Transform is by 

combining the processing technique with Walsh transform. 

The objective is to integrate the simple technique in Walsh 

transformation. Some researchers have developed the 

combination concept of both transformation techniques [11]-

[13]. One of the research is the factoring of T intermediate 

transformation to calculate the DFT coefficient [11]. The 

further integrated technique is Fast Walsh-Hadamard 

Transforms (FWHT) using Radix-4 [12]. Later, joint 

counting technique is developed based on Radix-2 [13]. 

Furthermore, combination technique has also been realised 

with hardware using FPGA. The combination method was 

introduced in 2015 [14]. Hardware realisation using FPGA 

successfully combined both models for 4-point 

transformation. The realisation was conducted based on the 

similarity of Fourier matrix and Walsh matrix. Then, the 

combination of Fourier and Walsh design for 8-point length 

also has been published [15]. The technique was designed for 

hardware realization, therefore real and imaginary numbers 

were stored in the different buffer. The design only required 

one multiplexer with twiddle factor. 

Nevertheless, the combination technique such in [14] and 

[15] has some drawbacks. When the transformation process 

is conducted for a large number of point (for example 32-

point), it requires many multiplying processes with twiddle 

factor. Accordingly, the design of software to simplify the 

multiplication with twiddle factor is needed. This article 

introduces a software design of DFT calculation process by 

combining Fourier and Walsh transformation. This 

calculation method using Rademacher function as this 

function is usually used in Walsh transformation calculation 

process. The proposed DFT 8-point design in this article uses 

decimation in time (DIT) or Radix-2 approach. 

 

II. DESIGN OF DFT 

 

The process of transforming the signal into the frequency 

domain is powerfully done in Fourier transformation. In the 

frequency domain, the acquired data or signal characteristic 

is important information. Thus, the Fourier transformation is 

widely applied in computation device. However, the 

transformation process is very complicated as it requires 

many circuit or program. While transforming signal using 

Walsh transformation is very easy and requires less circuit or 

program. However, there is very few information about 
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characteristic resulted in Walsh transformation [16]. This is 

the reason why Walsh transformation is rarely being used and 

almost being forgotten. 

The proposed DFT 8-point is designed to combine the 

regular Fourier transform technique with that of Walsh 

transformation. The purpose is to extract the simple technique 

to simplify the DFT transform. Walsh transformation is run 

in a simple technique using products of Rademacher 

functions. This technique is adapted to do the calculation 

process of Fourier transformation using DFT. Some 

adjustments are needed to obtain the transformation result 

using the combination technique. 

Unlike Walsh transformation that uses input only integer 

numbers, Fourier transformation includes non-integer 

numbers too. In this way, the calculation based on hardware 

is not easy to process. DFT 4-point design and realisation 

based on Rademacher functions into FPGA has been 

published [14]. The design only processed the real and integer 

numbers. Even though the transformation generates 

imaginary numbers, in the calculation process, both numbers 

are stored in the separated buffer. DFT 8-point design for 

hardware implementation was published [15]. The design 

constraint the calculation both on integer and non-integer 

numbers so that it required broad circuit. 

Figure 1 shows the diagram block of calculation process in 

Fourier transformation for a discrete model known as 

Discrete Fourier Transformation (DFT) for 8-point [2]. The 

figure displays the design of DFT 8-point with two DFTs 4-

point, four DFTs 2-point, and three multiplication processes 

with twiddle factor. The first DFT 4-point (the upper part) is 

used to calculate the even data input (x0, x2, x4, x6). Whereas, 

the odd data input (x1, x3, x5, x7) will be processed through 

the second DFT 4-point (the lower part). Both calculation 

results become the input to four DFTs 2-point. In other words, 

all input into DFT 2-point is a joint output of DFT 4-point. 

However, some output of DFT 4-point at the lower part (L1, 

L2, L3) have to be multiplied by twiddle factors. The output of 

DFT 2-point in sequence (X0, X1, X2, X3, X4, X5, X6, X7) is 

considered as the transformation result of DFT 8-point. 

 

 
 

Figure 1: The design of DFT 8-point in general [2] 

 

In order to simplify the calculation, the designed software 

run in MATLAB will be called from the smaller functions. It 

requires two calculation functions of DFT 4-point and that of 

4 counting of DFT 2-point. 

A. Design of 4-point DFT 

DFT 4-point design refers to the algorithm that has been 

published previously [14]. The algorithm is designed to 

imitate Walsh transformation approach. Input data is 

multiplied by a matrix to obtain the transformation outcome. 

In calculation process of Walsh transformation, the matrix 

contains +1 or -1. While in DFT calculation process, the 

matrix contains +1, -1, +j, dan –j. The following are the 

matrices in both transformation methods. 
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There are similarities in both matrices. First, all elements 

in the first row of both matrices consist of +1. Second, both 

matrices are composed of integers. Third, rows other than the 

first row contains positive and negative numbers in the same 

amount (two positive numbers and two negative numbers). 

The challenge is the position of the positive and negative 

numbers are not at the same point. Another challenge is there 

are four imaginary numbers in DFT matrix.  

Figure 2 describes the flow chart of calculation program in 

the proposed DFT 4-point. Part of the designed flowchart 

adopts the calculation process published previously [14]. 

Some modifications are needed as the previous design based 

on hardware works concurrently while here the DFT 4-point 

exerts sequentially. 

The program is started by giving a matrix to hold the 

calculation result. The output is separated into two-part, 

imaginary (Im) and real (Real). Then, the initialisation of Rad 

variable that represents the Rademacher function and i 

variable that counts the total loop to be executed is 

determined. Because there are four numbers of data input, 

then there will be four looping processes. To simplify the 

multiplication process of Rademacher functions, which 

usually operates with logic exclusive-or (xor), Rad has to be 

changed into the binary number (R variable), and the value 

will be added by 1 for every undertaken looping. The 

following step is the multiplication process of Rademacher 

functions. The multiplication process is represented by XOR 

variable which is the multiplication product of R(0) and R(1). 

Every time the looping occurs, one number will be inserted 

from data input D for calculation. Then, F variable is used to 

accommodate the input number temporarily. The variable 

will take in the positive or negative values from data input 

depends on the Rademacher R function. F(1) mainly holds the 

positive values from each data input because the elements in 

the first row from the  Fourier or Walsh matrix are all 

positive. Later F variable is accumulated into a Real matrix.  
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Figure 2. The flow chart of designed DFT 4-point based on Rademacher 

multiplying functions 

 

The next flow is decision process that is the process of 

deciding which input values are to be considered (positive or 

negative). Three conditions are used as the reference, either 

R(1) = 0, R(0) = 0, or XOR = R(0)R(1) = 0. If the Rademacher 

function R(1) is equal to logic 0, then F(4) variable will hold 

the positive value from data input D. Otherwise, it will take 

in negative value (–D). The second decision is whether the 

XOR variable has a logic 1 or 0. If the variable has logic 0, 

then F(2) variable will take in the positive data input, or else 

it will hold negative data input. 

The last decision is whether R(0) has logic 1 or not. If the 

variable has logic 1, then variable F(3) will take in the 

negative value temporarily, accumulate F(2) in Real(2) 

variable, and accumulate F(4) in Real(4) variable. If R(0) 

condition is not in logic 1, then the F(3) variable will keep the 

positive data input value. The temporary value stored in F(2) 

and F(4) will be accumulated in Im(2) variable and Im(4) 

variable, respectively.  

After the decision process completed, the next step is 

accumulation process of F(3) into Real(3) variable. 

Concurrently, i variable will be added by 1. The value of i 

variable will be the reference in doing the looping, whether 

the looping process will be repeated. If the program has taken 

four looping, then the accumulated numbers (stored in Real 

and Im matrix) will be pulled out and considered as the output 

of the DFT 4-point transformation. 

 

B. Design of 8-point DFT 

Figure 3 shows the programming flow of executing 

functions in DFT 4-point, DFT 2-point, and multiplication 

process with twiddle factor to form the transformation 

process of data input into the frequency domain. In the 

designed program, DFT 4-point will be executed twice, and 

DFT 2-point will be executed four times corresponding to the 

design of DFT 8-point that is shown in Figure 1. 

The program flows as follows. First, the program starts by 

reading data input x in matrix size 8x1. The data will divide 

into two parts, even (U) and odd (L). Next, the program calls 

DFT4 function with matrix U as the input to the function. The 

calculation output processed by DFT4 holds in UR variable 

for real number and UI for the imaginary number. It follows 

by retrieving DFT4 function to process data input from matrix 

L. The output of this process will be saved in LR and LI 

variables for real number and the imaginary number, 

respectively. 

Afterwards, the DFT2 function is executed four times for 

calculation process in DFT 2-point. The input for each DFT2 

function is the output from DFT4 which processed formerly. 

For example, UR(1), UI(1), LR(1), and LI(1) will be the input 

of DFT2 function (DFT2#1 process). However, the numbers 

stored in the second, third, and fourth column in matrix LR 

and LI are not inserted directly as the input data to DFT2. The 

numbers have to be multiplied with twiddle factor. 

 

 
 

Figure 3: The flow of calculation process in DFT 8-point 
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The numbers in the second column of matrix LR and LI are 

multiplied by twiddle factor W8
1. Then the outcome is kept in 

LRW81 and LIW81. Both of the value, as well as the numbers 

on the second column from matrix UR dan UI, becomes the 

input into DFT2 (DFT2#2 process). The result of the function 

is stored in X1 and X5 variables. The following step is 

multiplying LR(3) and LI(3) by twiddle factor W8
2. The 

output of this multiplications (LRW82 and LIW82) along with 

UR(3) and UI(3) becomes the data input for calculation 

function in DFT2 representing DFT2#3 process. The 

numbers in the fourth column of matrix LR and LI are 

multiplied by twiddle factor W8
3, and the output is taken in 

LRW83 and LIW83. Both of the values including the numbers 

in column four from matrix UR and UI becomes the input to 

DFT2 (DFT2#4 process). 

The result of four executions of the DFT2 function is the 

final output of the transformation using DFT 8-point. 

However, the result has to be rearranged to form a correct 

sequence of DFT 8-point output. The output of each DFT2 

function has been arranged in appropriate order, which is [X0, 

X1, X2, X3, X4, X5, X6, X7] as shown in the last process of 

the flowchart in Figure 3. 

 

III. RESULTS AND DISCUSSIONS 

 

The designed algorithm of DFT 8-point based on 

Rademacher function is programmed on MATLAB. The 

execution result has been analysed and some of them shown 

in Figure 4.  Some data input is used to figure out the truth of 

program compilation. 

 

 
 

Figure 4: The screenshot of the execution result of DFT 8-point program 
 

Figure 4 shows MATLAB display of programming 

execution of two different input data. The first given data is x 

= [1, 2, 3, 4, 5, 6, 7, 8] (marked in red circle) and the second 

is x = [-15, -10, -1, 6, 9, 15, 21, 24] (marked in yellow circle). 

The program is executed by a simple command; 

[Output]=DFT_8_Point(x). The figure represents the exact 

result of proposed program execution. 

Then, the program is compared to the result of discrete 

Fourier transform provided in MATLAB library. The 

program is stored in a file named fft.m. The program 

algorithm is just like the one in the method published by 

Martin and Frigo [10]. Figure 5 shows the comparison of 

execution result using designed DFT 8-point program and the 

program provided in MATLAB. Both of the program have 

the same input which is x = [1, 5, 2, 6, 3, 1, 4, 3]. The output 

of both executions is exactly the same. This concludes that 

the design of DFT 8-points based on Rademacher function 

has successfully been conducted and the output produced by 

the compiled program resembling the expected result. 

 

 
 

Figure 5: The screenshot of the execution result of the designed DFT 8-

point and provided a program in MATLAB library 

 

IV. CONCLUSIONS 

 

DFT 8-point design based on Rademacher function has 

been constructed formed on DFT 4-point model for hardware 

realisation which has been published in [14]. Some 

adjustment has been made to revise the execution pattern 

from concurrent to sequential. The algorithm design is run 

under MATLAB programming. The output is resembling the 

one resulted in DFT program provided in MATLAB. 

Potentially, this design can be an alternative in calculating the 

Fourier transform. Further study should be done to enhance 

DFT algorithm with more input, such as 16-point, 32–point, 

etc. 
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