

 e-ISSN: 2289-8131 Vol. 10 No. 2-5 39

MATLAB based Design for an 8-point DFT formed

on Products of Rademacher Functions

Roslidar Roslidar and Zulfikar Zulfikar
Department of Electrical and Computer Engineering, Syiah Kuala University, Banda Aceh 23111, Indonesia

roslidar@unsyiah.ac.id

Abstract—This article discusses a DFT 8-point design based

on Rademacher functions. The design is conducted based on

previous research, a DFT 4-point model, for hardware. In

general, the design requires two calculations of DFT 4-point,

four counting processes of DFT 2-point, and three multiplying

processes of twiddle factor. The adjustment has been made to

change the path process from concurrent to sequential in order

to adapt to the software execution command. The designed

algorithm is run in MATLAB. The result shows that there is no

difference between the proposed DFT and the one provided in

MATLAB. Confidently, this design can be an alternative in

transforming information signal into frequency domain using

DFT technique.

Index Terms—Rademacher Functions; Radix-2; Sequential;

Concurrent.

I. INTRODUCTION

The rapid growth in computation technology requires high

performance in processing various information. Therefore, it

is requisite to provide a good signal processing tools. The

technique used in signal processing called a Digital Signal

Processing (DSP) applies digital format. In digital process, it

is required to transform the usual time domain signal to other

domain to obtain certain characteristics of the processed

signal.

Fourier transform holds an important role in transforming

signal domain. For certain application, a practical

transformation that is derived from Fourier transform is

frequently used. The information in digital format is usually

transformed into frequency domain using Discrete Fourier

Transform (DFT). This transformation method became

popular when Cooley and Turkey introduced divide and

conquer realisation in 1965 [1]. This technique then is known

as Radix-2. Since that time, thousand paper discussed the

practice of realisation method had been published [2]

Fourier transform can be realised by either using software

or hardware. In the application that proposedly designed for

Fourier signal processing, the realisation is usually conducted

in hardware to reduce the selling price. However, in

multitasking application, it is more efficient to conduct

Fourier realisation using a software. This multitasking

application requires a processor that cost the device. In later

application, it mentioned various software that have been

developed to calculate the Fourier transform [3]-[9]: Fourier

calculation method using Sun Performance Libary

(SUNPERF); Fortran public domain code by T. Ooura

(1996), C language by J Green (1996), and C language by R.

H. Krukar (1990); the Fortran FFTPACK library [3]; a

Fortran split-radix FFT by Sorensen [4]; a Fortran FFT by

Singleton [5]; Temperton’s Fortran GPFA code [6]; Bailey’s

“4-step” FFT implementation [7]; Sitton’s QFT code [8]; and

the four1 routine from (NRF) [9].

Then, in 1998, a new algorithm was developed by Martin

& Frigo [10] to process the Fourier transform calculation. It

is the fastest technique compared to prior existing technique.

This technique is used in MATLAB programming until now.

Another alternative realisation of Fourier Transform is by

combining the processing technique with Walsh transform.

The objective is to integrate the simple technique in Walsh

transformation. Some researchers have developed the

combination concept of both transformation techniques [11]-

[13]. One of the research is the factoring of T intermediate

transformation to calculate the DFT coefficient [11]. The

further integrated technique is Fast Walsh-Hadamard

Transforms (FWHT) using Radix-4 [12]. Later, joint

counting technique is developed based on Radix-2 [13].

Furthermore, combination technique has also been realised

with hardware using FPGA. The combination method was

introduced in 2015 [14]. Hardware realisation using FPGA

successfully combined both models for 4-point

transformation. The realisation was conducted based on the

similarity of Fourier matrix and Walsh matrix. Then, the

combination of Fourier and Walsh design for 8-point length

also has been published [15]. The technique was designed for

hardware realization, therefore real and imaginary numbers

were stored in the different buffer. The design only required

one multiplexer with twiddle factor.

Nevertheless, the combination technique such in [14] and

[15] has some drawbacks. When the transformation process

is conducted for a large number of point (for example 32-

point), it requires many multiplying processes with twiddle

factor. Accordingly, the design of software to simplify the

multiplication with twiddle factor is needed. This article

introduces a software design of DFT calculation process by

combining Fourier and Walsh transformation. This

calculation method using Rademacher function as this

function is usually used in Walsh transformation calculation

process. The proposed DFT 8-point design in this article uses

decimation in time (DIT) or Radix-2 approach.

II. DESIGN OF DFT

The process of transforming the signal into the frequency

domain is powerfully done in Fourier transformation. In the

frequency domain, the acquired data or signal characteristic

is important information. Thus, the Fourier transformation is

widely applied in computation device. However, the

transformation process is very complicated as it requires

many circuit or program. While transforming signal using

Walsh transformation is very easy and requires less circuit or

program. However, there is very few information about

Journal of Telecommunication, Electronic and Computer Engineering

40 e-ISSN: 2289-8131 Vol. 10 No. 2-5

characteristic resulted in Walsh transformation [16]. This is

the reason why Walsh transformation is rarely being used and

almost being forgotten.

The proposed DFT 8-point is designed to combine the

regular Fourier transform technique with that of Walsh

transformation. The purpose is to extract the simple technique

to simplify the DFT transform. Walsh transformation is run

in a simple technique using products of Rademacher

functions. This technique is adapted to do the calculation

process of Fourier transformation using DFT. Some

adjustments are needed to obtain the transformation result

using the combination technique.

Unlike Walsh transformation that uses input only integer

numbers, Fourier transformation includes non-integer

numbers too. In this way, the calculation based on hardware

is not easy to process. DFT 4-point design and realisation

based on Rademacher functions into FPGA has been

published [14]. The design only processed the real and integer

numbers. Even though the transformation generates

imaginary numbers, in the calculation process, both numbers

are stored in the separated buffer. DFT 8-point design for

hardware implementation was published [15]. The design

constraint the calculation both on integer and non-integer

numbers so that it required broad circuit.

Figure 1 shows the diagram block of calculation process in

Fourier transformation for a discrete model known as

Discrete Fourier Transformation (DFT) for 8-point [2]. The

figure displays the design of DFT 8-point with two DFTs 4-

point, four DFTs 2-point, and three multiplication processes

with twiddle factor. The first DFT 4-point (the upper part) is

used to calculate the even data input (x0, x2, x4, x6). Whereas,

the odd data input (x1, x3, x5, x7) will be processed through

the second DFT 4-point (the lower part). Both calculation

results become the input to four DFTs 2-point. In other words,

all input into DFT 2-point is a joint output of DFT 4-point.

However, some output of DFT 4-point at the lower part (L1,

L2, L3) have to be multiplied by twiddle factors. The output of

DFT 2-point in sequence (X0, X1, X2, X3, X4, X5, X6, X7) is

considered as the transformation result of DFT 8-point.

Figure 1: The design of DFT 8-point in general [2]

In order to simplify the calculation, the designed software

run in MATLAB will be called from the smaller functions. It

requires two calculation functions of DFT 4-point and that of

4 counting of DFT 2-point.

A. Design of 4-point DFT

DFT 4-point design refers to the algorithm that has been

published previously [14]. The algorithm is designed to

imitate Walsh transformation approach. Input data is

multiplied by a matrix to obtain the transformation outcome.

In calculation process of Walsh transformation, the matrix

contains +1 or -1. While in DFT calculation process, the

matrix contains +1, -1, +j, dan –j. The following are the

matrices in both transformation methods.



















−−

−−

−−



















−−

−−

−−

jj

jj

11

1111

11

1111

1111

1111

1111

1111

 Walsh matrix DFT matrix

There are similarities in both matrices. First, all elements

in the first row of both matrices consist of +1. Second, both

matrices are composed of integers. Third, rows other than the

first row contains positive and negative numbers in the same

amount (two positive numbers and two negative numbers).

The challenge is the position of the positive and negative

numbers are not at the same point. Another challenge is there

are four imaginary numbers in DFT matrix.

Figure 2 describes the flow chart of calculation program in

the proposed DFT 4-point. Part of the designed flowchart

adopts the calculation process published previously [14].

Some modifications are needed as the previous design based

on hardware works concurrently while here the DFT 4-point

exerts sequentially.

The program is started by giving a matrix to hold the

calculation result. The output is separated into two-part,

imaginary (Im) and real (Real). Then, the initialisation of Rad

variable that represents the Rademacher function and i

variable that counts the total loop to be executed is

determined. Because there are four numbers of data input,

then there will be four looping processes. To simplify the

multiplication process of Rademacher functions, which

usually operates with logic exclusive-or (xor), Rad has to be

changed into the binary number (R variable), and the value

will be added by 1 for every undertaken looping. The

following step is the multiplication process of Rademacher

functions. The multiplication process is represented by XOR

variable which is the multiplication product of R(0) and R(1).

Every time the looping occurs, one number will be inserted

from data input D for calculation. Then, F variable is used to

accommodate the input number temporarily. The variable

will take in the positive or negative values from data input

depends on the Rademacher R function. F(1) mainly holds the

positive values from each data input because the elements in

the first row from the Fourier or Walsh matrix are all

positive. Later F variable is accumulated into a Real matrix.

MATLAB based Design for an 8-point Discrete Fourier Transform formed on Products of Rademacher Functions

 e-ISSN: 2289-8131 Vol. 10 No. 2-5 41

Figure 2. The flow chart of designed DFT 4-point based on Rademacher

multiplying functions

The next flow is decision process that is the process of

deciding which input values are to be considered (positive or

negative). Three conditions are used as the reference, either

R(1) = 0, R(0) = 0, or XOR = R(0)R(1) = 0. If the Rademacher

function R(1) is equal to logic 0, then F(4) variable will hold

the positive value from data input D. Otherwise, it will take

in negative value (–D). The second decision is whether the

XOR variable has a logic 1 or 0. If the variable has logic 0,

then F(2) variable will take in the positive data input, or else

it will hold negative data input.

The last decision is whether R(0) has logic 1 or not. If the

variable has logic 1, then variable F(3) will take in the

negative value temporarily, accumulate F(2) in Real(2)

variable, and accumulate F(4) in Real(4) variable. If R(0)

condition is not in logic 1, then the F(3) variable will keep the

positive data input value. The temporary value stored in F(2)

and F(4) will be accumulated in Im(2) variable and Im(4)

variable, respectively.

After the decision process completed, the next step is

accumulation process of F(3) into Real(3) variable.

Concurrently, i variable will be added by 1. The value of i

variable will be the reference in doing the looping, whether

the looping process will be repeated. If the program has taken

four looping, then the accumulated numbers (stored in Real

and Im matrix) will be pulled out and considered as the output

of the DFT 4-point transformation.

B. Design of 8-point DFT

Figure 3 shows the programming flow of executing

functions in DFT 4-point, DFT 2-point, and multiplication

process with twiddle factor to form the transformation

process of data input into the frequency domain. In the

designed program, DFT 4-point will be executed twice, and

DFT 2-point will be executed four times corresponding to the

design of DFT 8-point that is shown in Figure 1.

The program flows as follows. First, the program starts by

reading data input x in matrix size 8x1. The data will divide

into two parts, even (U) and odd (L). Next, the program calls

DFT4 function with matrix U as the input to the function. The

calculation output processed by DFT4 holds in UR variable

for real number and UI for the imaginary number. It follows

by retrieving DFT4 function to process data input from matrix

L. The output of this process will be saved in LR and LI

variables for real number and the imaginary number,

respectively.

Afterwards, the DFT2 function is executed four times for

calculation process in DFT 2-point. The input for each DFT2

function is the output from DFT4 which processed formerly.

For example, UR(1), UI(1), LR(1), and LI(1) will be the input

of DFT2 function (DFT2#1 process). However, the numbers

stored in the second, third, and fourth column in matrix LR

and LI are not inserted directly as the input data to DFT2. The

numbers have to be multiplied with twiddle factor.

Figure 3: The flow of calculation process in DFT 8-point

Journal of Telecommunication, Electronic and Computer Engineering

42 e-ISSN: 2289-8131 Vol. 10 No. 2-5

The numbers in the second column of matrix LR and LI are

multiplied by twiddle factor W8
1. Then the outcome is kept in

LRW81 and LIW81. Both of the value, as well as the numbers

on the second column from matrix UR dan UI, becomes the

input into DFT2 (DFT2#2 process). The result of the function

is stored in X1 and X5 variables. The following step is

multiplying LR(3) and LI(3) by twiddle factor W8
2. The

output of this multiplications (LRW82 and LIW82) along with

UR(3) and UI(3) becomes the data input for calculation

function in DFT2 representing DFT2#3 process. The

numbers in the fourth column of matrix LR and LI are

multiplied by twiddle factor W8
3, and the output is taken in

LRW83 and LIW83. Both of the values including the numbers

in column four from matrix UR and UI becomes the input to

DFT2 (DFT2#4 process).

The result of four executions of the DFT2 function is the

final output of the transformation using DFT 8-point.

However, the result has to be rearranged to form a correct

sequence of DFT 8-point output. The output of each DFT2

function has been arranged in appropriate order, which is [X0,

X1, X2, X3, X4, X5, X6, X7] as shown in the last process of

the flowchart in Figure 3.

III. RESULTS AND DISCUSSIONS

The designed algorithm of DFT 8-point based on

Rademacher function is programmed on MATLAB. The

execution result has been analysed and some of them shown

in Figure 4. Some data input is used to figure out the truth of

program compilation.

Figure 4: The screenshot of the execution result of DFT 8-point program

Figure 4 shows MATLAB display of programming

execution of two different input data. The first given data is x

= [1, 2, 3, 4, 5, 6, 7, 8] (marked in red circle) and the second

is x = [-15, -10, -1, 6, 9, 15, 21, 24] (marked in yellow circle).

The program is executed by a simple command;

[Output]=DFT_8_Point(x). The figure represents the exact

result of proposed program execution.

Then, the program is compared to the result of discrete

Fourier transform provided in MATLAB library. The

program is stored in a file named fft.m. The program

algorithm is just like the one in the method published by

Martin and Frigo [10]. Figure 5 shows the comparison of

execution result using designed DFT 8-point program and the

program provided in MATLAB. Both of the program have

the same input which is x = [1, 5, 2, 6, 3, 1, 4, 3]. The output

of both executions is exactly the same. This concludes that

the design of DFT 8-points based on Rademacher function

has successfully been conducted and the output produced by

the compiled program resembling the expected result.

Figure 5: The screenshot of the execution result of the designed DFT 8-

point and provided a program in MATLAB library

IV. CONCLUSIONS

DFT 8-point design based on Rademacher function has

been constructed formed on DFT 4-point model for hardware

realisation which has been published in [14]. Some

adjustment has been made to revise the execution pattern

from concurrent to sequential. The algorithm design is run

under MATLAB programming. The output is resembling the

one resulted in DFT program provided in MATLAB.

Potentially, this design can be an alternative in calculating the

Fourier transform. Further study should be done to enhance

DFT algorithm with more input, such as 16-point, 32–point,

etc.

REFERENCES

[1] J.W. Cooley and J.W. Tukey, “An algorithm for the machine

computation of the complex Fourier series,” Mathematics of

Computation, vol. 19, pp. 297–301, Apr. 1965.
[2] P. Duhamel and M. Vetterli, “Fast Fourier transforms: a tutorial review

and a state of the art,” Signal Processing, vol. 19, pp. 259–299, Apr.

1990.
[3] P. N. Swarztrauber, “Vectorizing the FFTs,” Parallel Computations

(ed. G. Rodrigue), Academic Press, pp. 51–83, 1982.

[4] H. V. Sorensen, M. T. Heideman, and C. S. Burrus, “On computing the
split-radix FFT,” IEEE Transactions on Acoustics, Speech and Signal

Processing, vol. 34, pp. 152–156, Feb. 1986.

[5] R. C. Singleton, “An algorithm for computing the mixed radix fast
Fourier transform,” IEEE Transactions on Audio and Electroacoustics,

vol. AU-17, pp. 93–103, June 1969.

[6] C. Temperton, “A generalized prime factor FFT algorithm for any n =
2p3q5r,” SIAM Journal on Scientific and Statistical Computing, vol.

13, pp. 676–686, May 1992.

[7] D. H. Bailey, “A high-performance FFT algorithm for vector

supercomputers," Intl. Journal of Supercomputing Applications, vol. 2,

no. 1, pp. 82–87, 1988.

[8] H. Guo, G. A. Sitton, and C. S. Burrus, “The quick discrete fourier
transform,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Proc.,

Apr. 1994.

[9] W. H. Press, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes
in Fortran: The Art of Scientific Computing. New York, NY:

Cambridge University Press, 1992

[10] M. Frigo and S. G. Johnson, "FFTW: an adaptive software architecture
for the FFT," Proceedings of the 1998 IEEE International Conference

on Acoustics, Speech and Signal Processing, Seattle, WA, pp. 1381-

1384 vol.3, 1998.
[11] S. Boussakta, and A. G. J. Holt, “Fast algorithm for calculation of both

Walsh-Hadamard and Fourier transforms (FWFTs),” Electron. Letter,

vol. 25, no. 20, pp. 1352-1354, 1989.
[12] Monir T. Hamood and, Said Boussakta, “Fast Walsh–Hadamard–

Fourier transform algorithm,” Trans. Signal Processing, vol. 59, no. 11,

pp. 5627-5631, November 2011
[13] Teng Su, and Feng. Yu, “A Family of Fast Hadamard–Fourier

Transform Algorithms,” Signal Processing Letters, vol. 19, no. 9, pp.

583-586, September 2012.
[14] Zulfikar and H. Walidainy, "A novel 4-point discrete Fourier

transforms circuit based on product of Rademacher functions," 2015

International Conference on Electrical Engineering and Informatics
(ICEEI), Denpasar, 2015, pp. 132-137.

MATLAB based Design for an 8-point Discrete Fourier Transform formed on Products of Rademacher Functions

 e-ISSN: 2289-8131 Vol. 10 No. 2-5 43

[15] Zulfikar and H. Walidainy, "Design of 8-point DFT based on
Rademacher Functions," International Journal of Electrical and

Computer Engineering vol. 6, no. 4, pp. 1551-1559, 2016

[16] M. Y. Zulfikar, S. A. Abbasi, and A. R. M. Alamoud, “FPGA Based
Processing of Digital Signals using Walsh Analysis,” Proceeding of

IEEE International Conference on Electrical, Control and Computer
Engineering (INECCE 2011), pp: 440-444, 21-22 June, Pahang,

Malaysia, 2011.

