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Abstract — This paper presents further development of an 
improved version of the neocognitron algorithm introduced by 
Fukushima. Some comparisons of other symbol recognition 
methods based on the neocognitron neural network are also 
performed, which led to the proposal of several modifications — 
namely, layer dimension adjustment, threshold function and 
connection Gaussian kernel estimation. The width and height are 
taken into account independently in order to improve the 
recognition of patterns of slightly different dimensions. The 
learning and recognition calculations are performed as FFT 
convolutions in order to utilize external specialized computing 
system. Finally, more detailed results of the neocognitron 
performance evaluation are provided. 

Index Terms — neocognitron, vehicle plate, recognition, neural 
networks 

I. INTRODUCTION 
 
This paper proposes further results on development and pa-
rameter estimation of an improved version [1] of the neocog-
nitron algorithm introduced by Fukushima [2].  
The neocognitron neural network [2], [3], [4] is widely used 
for symbol recognition. This article describes the neocognitron 
neural network modification applied to vehicle plate symbols 
recognition. The state-of-the-art methods give the possibility 
of robust recognition, as it is described in this article, but they 
still need in further improvements in order to rise up time and 
recognition rate. The proposed improvements give the possi-
bility of increase of both these characteristics. 
The architecture of the neocognitron corresponds to one of the 
standard neocognitron variants [2], albeit with some changes 
introduced to the calculation algorithms and is comprised of 
layers of S-cells (simple cells) and C-cells (complex cells). In 
order to improve the performance of the neocognitron applied 
to vehicle plate symbols, some modifications were carried out: 
• the threshold function and connection Gaussian kernel esti-
mation methods were proposed; 
• the method of layer dimensions adjustment was developed; 
• independent width and height pattern dimensions were intro-
duced; 
• learning and recognition calculations were performed as FFT 
convolutions. 
In addition, S-cells are used for feature extraction and are 
modified through unsupervised learning line-extracting cells 
and competitive supervised learning on the highest stages. In 
this process, S- and C-cell staggering is preserved. 

This paper is organized as follows. Section II describes the 
state-of-the-art, giving a short review of existing methods. 
Section III performs a brief explanation of the neocognitron 
architecture, described accurately in [2]. Section IV gives a 
way of Gaussian kernel estimation for the neocognitron con-
nections. Section V describes the threshold function estima-
tion for S-layer output. Section VI is announcing the test set 
size choose method. Section VII describes the adjustment of 
the layers size for the test set patterns. Section VIII reports 
about the way of FFT convolution application in the neocogni-
tron. Section IX describes the test and training patterns sets 
and the experimental evaluations. In conclusion, we summa-
rize the results of the work and outline further directions of the 
research. 
 
II. NEOCOGNITRON COMPARISON WITH OTHER RECOGNITION 

METHODS 
 
At present, there are many vehicle plate symbol recognition 
methods in use, some of which are briefly compared here. 
A very popular method, based on single-layer neural networks 
has recognition speed as a key advantage. However, as it re-
quires the data set to be linearly separable, it is restricted to 
use with very limited class of input sets. 
Multi-layer perceptron[5] can represent non-linear functional 
mappings. It provides a wide class of pattern sets due to its 
capacity to overcome constraints of linear separability. Alt-
hough this network is widely used in practical recognition 
systems, as its main application is in solving general recogni-
tion problems, it does not take into consideration image pat-
terns features. Some problems in selecting feature basis for 
recognition system should also be noted. For example, the 
feature basis should meet the requirements of sufficiently low 
noncorrelatedness and completeness. It can be based on statis-
tical characteristics of input patterns, data in spatial and Fouri-
er space, or be combined with dimension reduction methods. 
The additional requirement of this method is the ability to 
cope with input pattern transforms (shift, rotation, scale and 
perspective) and input signal noise of sufficiently low magni-
tude, which can be met by specific tuning of neural network or 
by using the specialized neural networks. 
Cognitron [6] is a neural network similar to the visual cortex 
structure. It was one of first specialized neural networks de-
veloped and applied to image pattern recognition. However, it 
is not widely used in contemporary systems due to strong re-
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strictions placed upon input pattern recognition (shift, rotation, 
scale and perspective). 
Topological recognition methods are widely used in image 
pattern recognition [7], [8]. In common cases, topological 
methods are based on describing the equivalence of objects 
that can be mapped one to one using a continuous function. 
This approach allows for rotation, translation, and perspective 
transform independent pattern recognition. Thus, it can be 
implemented as an independent recognition method or be a 
part of the complex recognition system. One of the key tools 
of topological recognition is the homology group of simplicial 
or cubic complexes. 
However, there are some theoretical problems, caused by 
straightforward application of this method, the key one being 
that this method is not persistent to noise. In order to over-
come this limitation, simplicial complex calculation method 
introduces some improvements independent of noise impact, 
one of which is persistent homology groups [9]. The disad-
vantage of this method is that it yields rather unstable results 
on low-dimension data is used as input. 
 

III. NEOCOGNITRON ARCHITECTURE 
 
The neocognitron neural network consists of several layers. 
The input layer U0 contains one cell plane, used to input the 
pattern. The purpose of the next layer — a layer of contrast 
extracting cells UG, containing two cell planes with concentric 
and off-centre receptive fields is to extract the contrast from 
the images independently of the mean of brightness. The out-
put of the layer UG serves as the input for the first S-layer — 
the first of four stages, each containing one S-and one C-cell 
layer — which is trained to extract edge component with dif-
ferent rotation angles. The first layer is used for feature extrac-
tion, while the second is used for blurring the S-layer output. 
The connections of S-cells at stages US2 and US3 are trained by 
unsupervised competitive learning as described in [2], [3], 
[10], whereas US4 layer is trained by supervised competitive 
learning according to [2] and is used to show the recognition 
results. 
 

IV. GAUSSIAN KERNEL ESTIMATION 
 
Both fixed and variable connections (aCl , cSl and aSl, bSl, re-
spectively) should be estimated as Gaussian function. The 
Gaussian kernel can be estimated by various methods. The 
method described in this work is based on overall correlation 
estimation. Denoting the pattern pixel intensity as the chance 
quantity (0, 0), we can hypothesize, that the neighbouring pix-
el, shifted on (x, y) relatively to the pattern pixel, has correlat-
ed chance quantity ξ (x, y). Thus, we can calculate the Pearson 
product-moment correlation coefficient between ξ(0, 0) and ξ 
(x, y) as: 

,

)),(),(())0,0()0,0((

)),(),())(0,0()0,0((

)),(),0,0((

1 1

22

1

 



 











n

i

n

i
ii

n

i
ii

yxyx

yxyx

yx











  (1)

 

where summation index i runs over all of the pixels of the pat-
tern images. Consequently, the resulting function can be ap-
proximated by Gaussian, applying the least squares method. 
The connectivity range is chosen by the three-sigma rule. 
 

V. THRESHOLD FUNCTION ESTIMATION 
 
S-layer output threshold value θl selection is sufficient for 
learning and recognition. Our aim is to maximize the output 
value uSl on the seed cell:  
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Thus we can find the value of the θl threshold, so that uSl 
achieves the maximum value. 
S-layer output is determined as 
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where ),,( ka
lS


  — variable C-layer connection weight 

value, )(kbSl — variable lateral inhibition, l — positive S-
layer threshold, )(


lSc — fixed weight, n


— the receptive 

field centre,


— the radius of the summation range, 
φ(x) = max(0, x). 
If we have the fixed count of learning iterations M, we can 
write 
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According to Fermat's theorem, the equation should be solved 
as 
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The derivative is then given by 
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As the result, we obtain 
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With that, we have estimated a value of θl threshold. 
 

VI. CHOOSING THE EXPERIMENTAL SAMPLE SET 
 
The approximation of the experimental sample set can be 
found according to the central limit theorem (CLT), which 
states that the sum set of independent events (in this case 
learning result) that are independent and equally distributed, 
converges to normal distribution. Thus, CLT can be applied to 
the test set, which can be approximated as the set of equally 
distributed random quantities: 
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VII. NEOCOGNITRON LAYER DIMENSIONS ADJUSTMENT 
The proposed version of the neocognitron enables independent 
adjustments to the neocognitron layers' width and height. 
Here, some heuristic formulae for neocognitron layer adjust-
ment were applied, generalizing the Fukushima's neocognitron 
parametrization. Thus, the first layer U0 dimensions are set 
according to input data dimensions, whereas the layer UG di-
mensions are set according to the following expressions: 

,1
,1

0

0




GYYGY

GXXGX

AUU
AUU

  (14) 

Such UG dimension parameterization ensures, that all nonzero 
elements of the convolution matrix for input and connection 
matrices will be taken into account. The UC1, UC2 and UC3 
layers dimensions are set according to the following: 
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Here mx and my denote cells thinning-out coefficients. These 
formulae describe the dimension reduction, enabled by the cell 
thinning-out procedure. They further ensure, that the parity of 
the layer dimensions is changing from layer to layer according 
to the half-pitch staggering, applied in neocognitron. 
The US2 and US3 layers dimensions are set according to formu-
lae 
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These expressions describe the half-pitch staggering, that re-
quires the dimension parity change. 
The US1 layer dimension is given by the formulae: 
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These expressions take into account half-pitch staggering. 
US4 layer dimensions are calculated by formulae 

,
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UC4 layer dimensions are always set to 1: 
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VIII. LAYER OUTPUT CALCULATION USING FFT 
 
The proposed version of neocognitron is based on the applica-
tion of FFT [11] for input and connection convolutions on 
each layer. It allows for the convolution calculations to be 
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performed by the outer device performing FFT, thus increas-
ing the performance. 
The sequence of the convolution processing consists of the 
following steps: 
1. input and connection matrices FFT calculation; 
2. element-wise input and connection matrices FFT multipli-
cation; 
3. obtaining the resulting matrix reverse FFT; 
4. potential for cells thinning-out, performed over the matrix, 
obtained on the previous step. 
The layer output calculation can be regarded as the convolu-
tion of the layer input and connections, as is common ap-
proach in different signal processing applications. Such inter-
pretation gives us the ability to use the convolution theorem: 

),()()( hFfFhfF    (24) 

where operator F denotes the discrete Fourier transform 
(DFT), operator   is convolution, operator   refers to ele-
ment-wise multiplication, and  f, h — input and connections 
matrices. 
 In this work, the discrete convolution theorem is used, where-
by the convolution is assumed to be cyclic, so that certain re-
strictions are applied to input and connection data. To exclude 
impact of the error, introduced by cyclic convolution, we set 
the size of convolution, connection and input matrices to 

,10  cxixx NNN   (25) 

,10  cyiyy NNN   (26) 

where Nix, Niy are dimensions of the required output matrix, 
Ncx, Ncy denote dimensions of the connection matrix. In order 
to meet these restrictions, both input and connection matrices 
are filled by zeros.  
The next step is the element-wise input and FFT multiplication 
of connection matrices: 

).()()( hFfFoF    (27) 

The result of the operation is processed by reverse FFT: 

)).((1 oFFo    (28) 

If the cells thinning-out operation is performed, it should be 
applied to matrix o, resulting in dimensionality reduction (fig. 
1). 
 

IX. EXPERIMENTAL EVALUATIONS 
 
The developed method evaluations were performed using one 
learning and one recognition set, each containing 5000 pat-
terns, i.e. images of various sizes up to 14 x 17 pixels, which 
depict the Russian vehicle plate digits. Although the recogni-
tion rate is dependent on the training patterns, the proposed 
recognition demonstrated up to 96% recognition success rate, 
whereas the learning set yielded 100% of recognition. The 
examples of the learning and test pattern lists are shown on 
fig. 2.  

Table 1 depicts comparison of the recognition rate for the pro-
posed version of the neocognitron, the Fukushima’s neocogni-
tron with equal width and height, and state-of the-art method, 
using multi-layer  perceptron.  Also the time rate comparison 
is shown. As we can see, the proposed version of the neocog-
nitron gives us a possibility to increase both the recognition 
rate by more exact fitting the layers’ dimensions to patterns 
sizes and the time rate using FFT besides of matrix multiplica-
tion. 
The recognition rate and time significantly depend on θRi pa-
rameters. These parameters denote the threshold values θi, 
described in previous sections, for  recognition (as opposed to 
θLi thresholds, used for learning), regulating the selectivity of 
S-cells, that is, the count of non-zero outputs of S-cells. The 
fig. 3-7 depict the dependency of the neocognitron on the 
threshold values. As can be seen on the fig. 3, the recognition 
rate dramatically decrease depending on θR1. When the θR1 is 
sufficiently lower than the extremum, the threshold results in  
non-zero output for insignificant features of input pattern, so 
that the network is not robust to noise, while the values, higher 
than  the extremum, give zero-output to most of the features, 
even significant.  Both cases result in recognition rate de-
crease. The recognition rate graphs, depicted on the figures 5, 
7, can be explained in a similar way, but here the low-
threshold recognition rate decrease is not so noticeable. It is 
caused by lowering the input pattern noise impact for the 
higher layers. Figures 4, 6 depict the decrease of the recogni-
tion time with threshold decrease. It is caused by dependency 
of S-layers’ planes count: the greater threshold we choose, the 
less planes we have.  
 

X. CONCLUSION 
 
The neocognitron neural networks have many parameters, 
implying the recognition results. Gaussian kernel estimation 
allowed us to achieve the sizes of the connectivity area on 
each layer in order to take into account correlations between 
neighbouring cells. Threshold function estimation gives us the 
possibility to control whether the feature is relevant to the in-
put pattern. Independent width and height layer dimensions 
enable us to fit the sizes of layers to sizes of the input patterns. 
Using FFT, we can improve the speed of the neocognitron 
network, because it reduces the matrix multiplication to the 
operation of element-wise multiplication.  
The evaluations of the proposed method were performed using 
one learning and one recognition set, each containing 5000 
patterns. Patterns were presented by low-resolution images of 
various sizes up to 14 x 17 pixels, depicting Russian vehicle 
plate digits. The proposed modifications of the parameteriza-
tion and evaluation of the neocognitron neural network gave 
us the possibility to improve both time from 1.06 to 1.09 ms 
and recognition rate of the neocognitron from 94.6 to 96 per-
cent. 
The parameters adjustment gives us a possibility for further 
improvement of the neural network algorithm and architec-
ture. However, it is supposed that, in order to improve the 
recognition rate, some experiments for determination of neo-
cognitron half-pitch staggering impact are needed. In addition, 
future work in this field should compare suggested convolu-
tion methods with existing alternatives, using other discrete 
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transforms, such as Hartley transform. One more direction that 
should be explored in more depth is the different ways of edge 
extraction layer learning, i.e., methods of generation of edge 
extraction layer patterns. The pattern preprocessing require-
ments should also be studied. Although neocognitron can per-
form the recognition of gray-scale images, the improvement of 
neocognitron performance depends of preprocessing algo-
rithms. Heuristically, high-contrast images should give better 
results, when compared to low-contrast ones. However, the 
preprocessing method should be chosen according to more 
stringent arguments. Looking forward, it is also planned to 
analyze all the tasks required to perform video surveillance. In 
order for a proper symbol recognition pattern to be produced, 
a proper auto, license plate, and symbol segmentation should 
be performed. These tasks are currently under consideration, 
noting that some steps could be achieved via more complex 
algorithms, involving the neocognitron. For instance, using the 
selective attention mechanism, proposed by Fukushima, we 
could realize both symbol extraction and recognition in one 
algorithm. Thus, the task of neocognitron application as a part 
of more complex algorithm is being considered for our future 
work. 

 
Figure 1: Cells thinning-out after multiplication. 

 

Table 1 
Comparison of the proposed neocognitron,  

Fukushima’s neocognitron and state-of-the-art multilayer perceptron 

 Proposed 
neocognitron 

Fukushima’s 
neocognitron 

Multi-layer 
perceptron 

Average time for pattern, 
ms (learning patterns) 

1.06 1.17 1.25 

Rate, percent (learning 
patterns) 

100 100 100 

Average time for pattern, 
ms (test patterns) 

1.09 1.21 1.31 

Rate, percent (test pat-
terns) 

96.0 94.6 92.7 

 
Figure 2: Learning and test pattern examples. 

 
Figure 3: Recognition rate graphs for learning and test sets depending on θR1 

 

Figure 4: Recognition time graphs for learning and test sets depending on θR3 

 

Figure 5: Recognition rate graphs for learning and test sets depending on θR3. 
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Figure 6: Recognition time graphs for learning and test sets depending on θR4 

 

Figure 7: Recognition rate graphs for learning and test sets depending on θR4. 
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