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Abstract—This paper presents a new feature descriptor for a 

vehicle verification system. The Steerable Gaussian Filter (SGF) 

is utilized to generate an image feature descriptor. The 

descriptor is constructed by concatenating the statistical 

parameters of the SGF filtered output. The Maximum 

Likelihood Estimation (MLE) estimates the statistical estimator 

using a heavy-tailed and bell-shaped distribution assumption 

such as Gaussian, Laplace, or Generalized Gaussian 

Distribution (GGD). A classifier assigns a class label of the 

vehicle hypothesis based on an image descriptor. As documented 

in the experimental results, the proposed feature descriptor 

achieves a promising result, and it outperforms the state-of-the-

art vehicle verification systems, making it a very competitive 

candidate in the practical applications. 

 

Index Terms—Maximum Likelihood Estimation; Steerable 

Gaussian Filter; Supervised Classification; Vehicle Verification. 

 

I. INTRODUCTION 

 

Several approaches have been proposed in the literature to 

handle the vehicle detection and verification issues. A 

complete survey of the image-based vehicle detection is 

addressed in [1]. The vehicle detection searches the potential 

locations of vehicles in a given image. It produces the vehicle 

hypothesis which needs a further verification process to 

determine whether it is a correct vehicle or an outlier 

occurring in the vehicle detection stage. For this purpose, 

some methods have been proposed in [1-5] to verify the 

correctness of the vehicle hypothesis in image-based vehicle 

detection. In the vehicle verification process, the feature 

descriptor of an image is simply composed of the statistical 

parameters of the Gabor filtered magnitude for all scales and 

orientations sub-bands [4-5]. The Gabor-based vehicle 

verification yields a good verification result as reported in [1-

8]. 

In this paper, the local features are generated from the SGF 

filtered output for the vehicle verification task. The first and 

second order derivative of the SGF is utilized to construct an 

image feature descriptor. In the vehicle verification system, a 

set of vehicle candidates or vehicle hypotheses of a given 

input image are firstly detected using some vehicle or object 

moving detection. These hypotheses are further examined in 

the vehicle verification module to determine the correctness 

of the vehicle occurrence. In our proposed method, an image 

descriptor is constructed by stacking the distribution 

estimators over all SGF filtered outputs. The feature 

descriptor of each vehicle hypothesis is subsequently fed into 

a classifier module which assigns a class label by taking a 

trained set of feature descriptor into account. The classifier 

identifies whether the vehicle hypothesis falls into the correct 

vehicle class or stands as a non-vehicle object. 

 

II. STEERABLE GAUSSIAN FILTER AND ITS STATISTICAL 

MODELING 

 

This section presents a brief introduction of the Steerable 

Gaussian Filter (SGF) and its statistical modeling of SGF 

output over several distribution assumptions such as, 

Gaussian, Laplace, and Generalized Gaussian Distribution 

(GGD). The estimator of bell-shape and heavily-tailed 

distribution is estimated by means of Maximum Likelihood 

Estimation (MLE) method from the SGF filtered output. 

 

A. Steerable Gaussian Filter 

The Gaussian-like filter can be derived from a linear 

combination of basis filters [9-11]. The two-dimensional 

circularly symmetric Gaussian function is defined as: 

 

𝐺(𝑥, 𝑦) = exp{−(𝑥2 + 𝑦2)} (1) 

 

where 𝐺(𝑥, 𝑦) = two dimensional Gaussian function 

        𝑥, 𝑦 = spatial coordinat 

 

The first-order derivative of 𝐺(𝑥, 𝑦) in 𝑥 is given as: 

 

𝐺1
0° =

𝜕

𝜕𝑥
𝐺(𝑥, 𝑦) = −2𝑥 exp{−(𝑥2 + 𝑦2)} (2) 

 

where 𝐺1
0°= first-order derivative of 𝐺(𝑥, 𝑦) in 𝑥 

Whereas, the first-order derivative of 𝐺(𝑥, 𝑦) in 𝑦 can be 

computed as: 

 

𝐺1
90° =

𝜕

𝜕𝑦
𝐺(𝑥, 𝑦) = −2𝑦 exp{−(𝑥2 + 𝑦2)} (3) 

 

where 𝐺1
90°= first-order derivative of 𝐺(𝑥, 𝑦) in 𝑦 

A separable filter 𝐺1
𝜃  is obtained by computing a linear 

combination of 𝐺1
0° and 𝐺1

90° at an arbitrary orientation 𝜃 as: 

 

𝐺1
𝜃 = cos(𝜃) 𝐺1

0° + sin(𝜃) 𝐺1
90° (4) 

 

where 𝜃= a rotated angle from the origin with the bound of 

0 ≤ θ ≤ π 

The function 𝐺1
𝜃  is called as a basis filter which is 

subsequently be interpolated with cos(𝜃) and sin(𝜃) function 

to produce a set of filter banks. We refer 𝐺1
𝜃  as the first-order 

of Steerable Gaussian Filter (SGF-1). To generate a set of 

SGF responses on image 𝐼, a convolution is performed on 

image 𝐼 with the basis filter 𝐺1
𝜃 . Since the convolution is a 

linear operator, the SGF filtered response can be obtained as: 

 

𝑅1
0° = 𝐼 ∗ 𝐺1

0° (5) 
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𝑅1
90° = 𝐼 ∗ 𝐺1

90° (6) 

 

where ∗= convolution process 

Subsequently, the SGF response of image 𝐼 is computed as: 

 

𝑅1
𝜃 = cos(𝜃) 𝑅1

0° + sin(𝜃) 𝑅1
90° (7) 

 

where 𝑅1
𝜃=two-dimensional SGF-1 response 

The second derivative of SGF (SGF-2) has been 

demonstrated to yield a bandpass filter, and offers a 

directionality to some extent. The SGF-2 is formally defined 

as: 

 

𝐺2
𝜃 = cos2(𝜃) 𝐺𝑥𝑥 − 2 cos(𝜃) sin(𝜃) 𝐺𝑥𝑦 + sin2(𝜃) 𝐺𝑦𝑦 (8) 

 

where 𝐺2
𝜃=basis filter of SGF-2 

 𝐺𝑥𝑥=second-order derivative of 𝐺(𝑥, 𝑦) at 𝑥-𝑥 

𝐺𝑥𝑦=second-order derivative of 𝐺(𝑥, 𝑦) at 𝑥-𝑦 

𝐺𝑦𝑦= second-order derivative of 𝐺(𝑥, 𝑦) at 𝑦-𝑦 

To generate the local feature of image 𝐼, the filtering 

process of 𝐼 with SGF-2 can be performed as: 

 

𝑅2
𝜃 = 𝐼 ∗ 𝐺2

𝜃 (9) 

 

where 𝑅2
𝜃=the filtering result with the second-order 

derivative of Gaussian-like filter (SGF-2 response) 

Multiple SGF responses can be obtained by adjusting the 

multiple orientation angles 𝜃. Figure 1 shows an example of 

the SGF-1 and SGF-2 filtered outputs and its responses with 

𝜃 =
𝜋

4
,

𝜋

2
,

3𝜋

4
, 𝑎𝑛𝑑 𝜋. In our proposed method, an image 

feature descriptor is constructed from the statistical estimator 

of SGF filtered output. The MLE produces the statistical 

estimator of SGF filtered output for each orientation angle 𝜃. 

 

 

 

 

 

 

    

    

    

    
 

Figure 1: The first and third row are filtered images resulting from SGF-1 

(first row) and SGF-2 (third row), respectively, with corresponding its 

responses (shown at the second and fourth rows). The second to fifth 

column are the results over different values   θ = {
π

4
,

π

2
,

3π

4
, π}. The first 

column represents an input image. 

 

B. MLE with Gaussian and Laplace Distribution 

A simple and naïve approach to describe the marginal 

distribution of SGF filtered output is with the Gaussian or 

Laplace distribution assumption. The MLE with Gaussian 

distribution assumption produces two distribution estimator, 

namely mean value (�̂�) and standard deviation (�̂�), for each 

SGF filtered output. Let 𝑋 = {𝑥1, … , 𝑥𝑁} be a set of 

“independent and identically distributed” (i.i.d.) sample 

points drawn from SGF filtered output. The value of 𝑋 can be 

set with SGF-1 or SGF-2 coefficients. The formal procedure 

of MLE is maximizing the log-likelihood function of set 𝑋 by 

taking the first-order derivative of log-likelihood function and 

setting it by zero to estimate the distribution estimator. The 

log-likelihood function of 𝑋 is derived as: 

 

ℒ(𝜇, 𝜎|𝑋) = −
1

2
𝑁 log 2𝜋 − 𝑁 log 𝜎 −

∑ (𝑥𝑖 − 𝜇)2𝑁
𝑖=1

2𝜎2  (10) 

 

where ℒ(𝜇, 𝜎|𝑋)=log-likelihood function of 𝑋 with Gaussian 

assumption 

The two estimators of this log-likelihood are given as 

follow: 

 

�̂� =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
 (11) 

�̂� = √
∑ (𝑥𝑖 − �̂�)2𝑁

𝑖=1

𝑁
 (12) 

 

where �̂�=the first estimator, i.e. mean value 

 �̂�=the second estimator, i.e. standard deviation 

An image feature descriptor derived from Gaussian 

distribution estimator yields promising result in the vehicle 

verification system as reported in [10]. An alternative choice 

for describing the SGF filtered output is to use the Laplace 

distribution which has fatter tail compared to the Gaussian 

distribution. The Laplace distribution requires the absolute 

difference terms between the data point and sample mean 

value to describe its PDF. The log-likelihood function of 𝑋 

under Laplace distributoin assumption is given as: 

 

ℒ(𝜇, 𝜆|𝑋) = −𝑁 log 2𝜆 −
∑ |𝑥𝑖 − 𝜇|𝑁

𝑖=1

𝜆
 (13) 

 

where ℒ(𝜇, 𝜆|𝑋)=log-likelihood function of 𝑋 with Laplace 

assumption 

The estimators of Laplace distribution can be trivialy 

obtained as: 

 

�̂� = median{𝑥1, … , 𝑥𝑁} (14) 

�̂� =
1

𝑁
∑|𝑥𝑖 − μ̂|

𝑁

𝑖=1

 (15) 

 

where �̂�=the first estimator, i.e. median value 

 �̂�=the second estimator, i.e. Laplace value 

 𝑚𝑒𝑑𝑖𝑎𝑛{∙}= operator to compute median value 

In a nutshell, the median value and least-absolute deviation 

of the sample data can be used to represent the statistical 

estimator of Laplace distribution. The MLE of Gaussian and 

Laplace distribution requires simple mathematical operation 

for computing the distribution estimator. 

 

C. MLE with Generalized Gaussian Distribution 

The GGD has been reported to yield promising results in 

the signal processing and computer vision applications for its 

ability to adapt two different distributions, i.e., Gaussian and 

Laplace distribution. The log-likelihood function of 𝑋 under 

GGD assumption can be obtained as: 
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ℒ(𝛼, 𝛽|𝑥) = log 𝐿(𝛼, 𝛽|𝑥) 

= 𝑁{log 𝛽 − log 2𝛼} + 𝑁 {log 1 − log 𝛤 (
1

𝛽
)}

− ∑ (
|𝑥𝑖|

𝛼
)

𝛽𝑁

𝑖=1

 

(16) 

 

where ℒ(𝛼, 𝛽|𝑥)=log-likelihood function of 𝑋 under GGD 

assumption 

The MLE under GGD assumption produces two 

distribution estimators of SGF filtered output as: 

 

�̂� = (
�̂�

𝑁
∑|𝑥𝑖|�̂�

𝑁

𝑖=1

)

1

�̂�

 (17) 

1 +
𝛹 (

1
𝛽

)

𝛽
−

∑ |𝑥𝑖|𝛽 log|𝑥𝑖|𝑁
𝑖=1

∑ |𝑥𝑖|𝛽𝑁
𝑖=1

+
log (

𝛽
𝑁

∑ |𝑥𝑖|𝛽𝑁
𝑖=1 )

𝛽
= 0 (18) 

 

where �̂�=the first estimator of GGD 

 �̂�=the second estimator of GGD 

 𝛹(∙)= digamma function 

 

The Newton-Raphson method can be utilized to find �̂� 

since there is no closed-form for solving Equation (18). 

The goodness-of-fit statistical value 𝜒2 and Kullback-

Leibler Divergence (KLD) are employed to measure the 

fitting accuracy of SGF filtered output. A better statistical 

fitting result is indicated with a smaller 𝜒2 or KLD value. 

Figure 2 shows an example of statistical fitting with 

Gaussian, Laplace, and GGD assumptions on SGF-1 and 

SGF-2. As it can be seen in this figure, the GGD yields the 

best statistical fitting compared to that of Gaussian and 

Laplace distribution fitting for SGF-1 and SGF-2. 

 

  

  
 

Figure 2: Statistical fitting of SGF-1 (first column) and SGF-2 (second 
column) under different probability modeling. 

 

III. PROPOSED VEHICLE VERIFICATION 

 

In the proposed vehicle verification system, an image 

feature descriptor is constructed by concatenating the 

distribution estimator over all SGF filtered outputs. An input 

image is firstly converted from color to grayscale. The 

converted image is subsequently fed into the SGF 

decomposition procedure to acquire SGF filtered outputs 

along various filter orientations. The MLE estimates the 

statistical estimator of each SGF output under a specific 

distribution assumption. An image feature composed from 

the statistical estimator of SGF filtered output is obtained at 

the end of feature extraction stage. 

Let 𝐼 be a grayscale input image. The SGF firstly 

decomposes 𝐼 into several SGF filtered outputs by performing 

the convolution between 𝐼 with the basis filter 𝐺𝑓
𝜃  as denoted 

by: 

 

𝑅𝑓
𝜃 = 𝐼 ∗ 𝐺𝑓

𝜃 (19) 

 

where 𝑓 ∈ {1,2}=the selected order derivative of SGF. 

The values 𝑓 = 1 and 𝑓 = 2 indicate SGF-1 and SGF-2, 

respectively, for the SGF decomposition. The symbol 𝜃 =
{0, … , 𝜋}  denotes the orientation angle, in which the 

difference between two consecutive angles is denoted as ∆𝜃 

in the SGF convolution. 𝑅𝑓
𝜃  represents the SGF filtered output 

on orientation angle 𝜃. At the end of SGF decomposition, a 

set of SGF filtered output 𝑅𝑓
𝜃  is obtained over all 𝜃 values. 

An image feature descriptor is derived from the SGF output 

𝑅𝑓
𝜃  by means of the MLE under a specific distribution 

assumption. The MLE procedure is performed for each 𝑅𝑓
𝜃  to 

compute the statistical estimator �̂�. In this paper, three 

various distributions are investigated for deriving an image 

feature descriptor, i.e., Gaussian, Laplace, and GGD. The 

MLE for 𝑅𝑓
𝜃  under Gaussian distribution assumption is 

defined as: 

 

ℳ𝜇𝜎{𝑅𝑓
𝜃}

 
⇒ {�̂�𝜃 , �̂�𝜃} (20) 

 

where ℳ𝜇𝜎{∙}=the MLE computation under Gaussian 

distribution assumption. 

The symbol �̂�𝜃 and �̂�𝜃 are the estimated mean value and 

standard deviation of SGF filtered output upon the orientation 

angle 𝜃, respectively. As a result, a Gaussian feature 

descriptor can be constructed by concatenating {�̂�𝜃 , �̂�𝜃} over 

all 𝑅𝑓
𝜃  sub-bands as follow: 

 

𝐹𝜇𝜎 = {�̂�0, �̂�0, … , �̂�𝜃 , �̂�𝜃 , … , �̂�𝜋, �̂�𝜋} (21) 

 

where 𝐹𝜇𝜎=Gaussian feature descriptor 

The second feature descriptor, namely Laplace feature 

descriptor, can also be generated using the similar strategy as 

conducted in the Gaussian descriptor. Herein, the MLE 

estimates the statistical estimator of SGF filtered output under 

the Laplace distribution assumption. The MLE of 𝑅𝑓
𝜃  under 

the Laplace distribution assumption is given as: 

 

ℳ𝜇𝜆{𝑅𝑓
𝜃}

 
⇒ {�̂�𝜃 , �̂�𝜃} (22) 

 

where ℳ𝜇𝜆{∙}=the MLE computation under Laplace 

distribution assumption. 

The Laplace feature descriptor can be subsequently derived 

by concatenating the estimator {�̂�𝜃 , �̂�𝜃} over all SGF filtered 

outputs as: 

 

𝐹𝜇𝜆 = {�̂�0, �̂�0, … , �̂�𝜃 , �̂�𝜃 , … , �̂�𝜋, �̂�𝜋} (23) 

 

where 𝐹𝜇𝜆=Laplace feature descriptor. 
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The third feature descriptor, namely GGD feature 

descriptor, can be similarly derived by performing the MLE 

procedure under GGD assumption over all SGF filtered 

outputs. In this case, the MLE calculates the GGD estimator 

using: 

 

ℳ𝛼𝛽{𝑅𝑓
𝜃}

 
⇒ {�̂�𝜃 , �̂�𝜃} (24) 

 

where ℳ𝛼𝛽{∙}= the MLE computation under GGD 

assumption. 

Subsequently, the GGD feature descriptor can be 

composed by stacking the GGD estimator {�̂�𝜃 , �̂�𝜃} over all 

SGF filtered outputs as: 

 

𝐹𝛼𝛽 = {�̂�0, �̂�0, … , �̂�𝜃 , �̂�𝜃 , … , �̂�𝜋, �̂�𝜋} (25) 

 

where 𝐹𝛼𝛽=GGD feature descriptor. 

The dimensionalities of the Gaussian, Laplace, and GGD 

feature descriptors are identical, since the MLE produces the 

same statistical estimator for each SGF filtered output, i.e., 

two estimators for each SGF output. 

Two major steps are involved in the entire vehicle 

verification system: 1) vehicle detection, and 2) vehicle 

verification. The vehicle detection estimates and detects the 

occurrence of moving object such as vehicle motion, human 

activity on the road, shadow, tree-leaf motion, fake 

foreground, etc. using some object tracking or moving 

detection algorithms. The vehicle detection produces several 

vehicle hypotheses (vehicle candidates) from a given input 

image. At the vehicle verification stage, this vehicle 

hypothesis is further verified and concluded whether they are 

correct vehicle objects or fake moving objects. Figure 4 

shows the general framework of vehicle detection and 

verification system. Some outliers may occur at the vehicle 

detection stage. At the vehicle verification, these outliers 

(fake moving objects) are verified out to acquire the correct 

decision of the vehicles. 

The vehicle verification examines the vehicle hypothesis 

(vehicle candidates) produced from a vehicle detection using 

a specific feature descriptor. Figure 3 illustrates the schematic 

diagram of the proposed vehicle verification system. In this 

scheme, an image feature descriptor is derived from the 

statistical estimator of SGF filtered output through the feature 

extraction stage. This feature descriptor is only computed on 

a region of vehicle hypotheses (vehicle candidates). A 

classifier assigns a class label for vehicle hypothesis based on 

its feature descriptor and the trained feature set. In our system, 

the vehicle verification can be regarded as a two-class 

supervised problem. The classifiers assign a “vehicle” or 

“non-vehicle” label over all vehicle hypotheses. The 

proposed Gaussian, Laplace, or GGD feature descriptors are 

utilized for the vehicle verification. 

 

IV. EXPERIMENTAL RESULTS 

 

The effectiveness of the proposed feature descriptor is 

examined with the open access GTI vehicle image database 

[12]. This vehicle image database consists of 8000 color 

images of size 64 × 64. The database is further divided into 

two classes, i.e., positive and negative classes. The positive 

class contains 4000 rear vehicle images with four various 

poses, i.e., far, left, middle close, and right vehicle poses. The 

negative class has 4000 non-vehicle images, consisting of the 

other elements in traffic sequence captured with four different 

camera views (i.e. far, left, middle close, and right camera 

view). 

 

      Vehicle   Verification

Input Image
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Vehicle 

Detection

Classifier
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Hypotesis
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Result
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Detected Vehicle
 

 
Figure 3: The proposed vehicle verification system 

 

In our experiment, the identical experimental setup is 

applied, which has been conducted in [2-5]. The verification 

performance is examined using the 5-fold 50% holdout cross-

validation method [4]. The data are split into five folds. Two 

independent runs are conducted on each fold. For the first run, 

half of the data is turned as training set, while the other half 

is considered as testing set. Subsequently, the training and 

testing sets are interchanged in the second run. The accuracy 

of the verification system is measured in terms of percentage 

of correct prediction over all testing images. The final 

verification accuracy is obtained by averaging the proportion 

of correct prediction over all folds. 

 

A. Effectiveness of the Proposed Feature Descriptor 

The effectiveness of proposed feature descriptor for vehicle 

verification is investigated in this subsection. In our 

experiment, a color image is first converted into grayscale 

before performing the feature extraction. The image feature 

is derived by concatenating the statistical estimator with the 

Gaussian, Laplace, and GGD assumptions over all SGF 

transformed sub-bands. In this experiment, Gaussian feature 

descriptor has a dimensionality of 96, in which the difference 

between two consecutive orientation angle is ∆𝜃 = 0.021𝜋. 

An orientation angle for all SGF basis filter lies between the 

range [0, π]. We employ K-Nearest Neighbor (KNN), 

Minimum Distance (MinDist), and Support Vector Machine 

(SVM) as the classifier to assign class label of testing image 

based on the Gaussian feature descriptor. Table 1 shows the 

vehicle verification performance of Gaussian, Laplace, and 

GGD feature descriptors for SGF-1 and SGF-2, respectively, 

over various vehicle poses and classifiers. As reported in 

these tables, the SVM classifier yields the best performance 
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over all proposed feature descriptors. 

 
Table 1 

Performance of the Proposed Method over Various Classifiers 

 

Feature Descriptor KNN-L1 KNN-L2 MinDis SVM 

𝐹𝜇𝜎 SGF-1 99.86 97.76 93.78 99.98 

𝐹𝜇𝜆 SGF-1 99.85 99.85 93.39 99.96 

𝐹𝛼𝛽 SGF-1 97.9 98.04 82.4 98.96 

𝐹𝜇𝜎 SGF-2 99.85 99.88 92.6 99.98 

𝐹𝜇𝜆 SGF-2 99.86 99.81 92.41 99.92 

𝐹𝛼𝛽 SGF-2 98.25 98.08 82.63 99.22 

 

B. Comparison with the former existing methods 

In this subsection, the effectiveness of the proposed feature 

descriptor is compared with the other former existing 

methods. Herein, the SVM is utilized as the baseline classifier 

for comparison. The experiment was conducted with the 5-

fold 50% holdout cross-validation as suggested by [4]. In this 

experiment, the feature dimensionality is set at 48 for 

Gaussian, Laplace, and GGD descriptors. This 

dimensionality is identical to that of the [4-5]. The orientation 

angles for the SGF basis function are set in between [0, 𝜋]. 
The difference between two consecutive orientation angles of 

the SGF basis filter is ∆𝜃 = 0.042𝜋. Table 2 clearly reveals 

that the proposed method consistently outperforms the 

conventional schemes. Thus, the proposed feature descriptors 

can be a very effective and potential candidate in the vehicle 

verification task. 

 
Table 2 

Performance Comparisons between the Proposed Method and Former 

Existing Schemes 
 

Method Far Left 
Middle 

Close 
Right Average 

PCA [2] 91.56 93.32 96.22 91.04 93.04 

Reduced HOG [3] 92.44 96.48 95.36 95.64 94.98 

LG [4] 91.6 97.18 98 96.96 95.94 

HOG [3] 98.14 98.32 99.18 97.44 98.27 
Gamma [5] 99.75 99.4 99.65 97.65 99.11 

𝐹𝜇𝜎 SGF-1 99.95 99.95 100 100 99.98 

𝐹𝜇𝜆 SGF-1 99.95 100 99.95 99.95 99.96 

𝐹𝛼𝛽 SGF-1 99.4 99.6 98.4 98.45 98.96 

𝐹𝜇𝜎 SGF-2 100 99.95 99.95 100 99.98 

𝐹𝜇𝜆 SGF-2 99.85 99.9 99.95 100 99.92 

𝐹𝛼𝛽 SGF-2 99.15 99.3 98.7 99.75 99.22 

 

Figure 4 shows some vehicle verification results using the 

proposed feature descriptor. As it can be seen, the proposed 

vehicle verification improves the detection result of the on-

road vehicle objects. The vehicle verification is able to 

classify the correct vehicle and non-vehicle hypothesis which 

can further refine the vehicle detection result. 

 

V. CONCLUSION 

 

In this paper, a new method has been presented to construct 

the feature descriptor for the vehicle verification task. 

Specifically, an image feature descriptor is composed of the 

statistical parameters of the SGF filtered output under a 

heavy-tailed bell-shape distribution modeling. As 

documented in experimental results, the proposed feature 

descriptor is superior to the former methods in terms of the 

vehicle verification task. 

 

   

   
 

Figure 4: Examples of vehicle detection and verification result: (first 
column) input image, (second column) vehicle hypothesis generation, and 

(third column) vehicle hypothesis verification using 𝐹𝜇𝜎 SGF-2 
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