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Abstract—In the last few years, multi label classification has 

attracted many scholars and researchers; due to the increasing 

number of modern domains that are applicable to this general 

type of classification. Recently, it has been believed by many 

researchers that the best way to handle the problem of multi 

label classification is by exploiting the correlations among labels. 

Two main strategies have been utilized to capture these 

correlations: conditional correlations and unconditional 

correlations capturing strategies. In this paper, an extensive 

evaluation of both strategies has been conducted, to determine 

the best strategy to handle multi label classification, with respect 

to the size of the data set and the optimized loss function. Results 

showed that the unconditional correlations capturing strategy 

overcomes the conditional correlations capturing strategy in all 

multi label data sets that have been used in this experiment. 

 
Index Terms—Classification; Conditional Correlation; Multi 

Label Classification; Unconditional Correlations. 

 

I. INTRODUCTION 

 

From statistical point of view, and according to the strategy 

that has been used in capturing the correlations among labels, 

the algorithms that captured and exploited correlations among 

labels in Multi Label Classification (MLC) could be 

categorized into two main groups: conditional and 

unconditional correlations strategies. While the later captures 

dependencies and correlations among label, regardless and 

independent from features values, the former captures and 

exploits these correlations with respect to specific 

observations (instances) [1]. 

Most MLC algorithms that capture and exploit correlations 

among labels and claim that these correlations enhanced the 

predictive performance of the classifier, do not consider or 

correlate this enhancement to the type of correlations being 

used [2]. Few researches stated the specific type of 

correlations capturing strategy which was used in their 

proposed algorithms [3]. Many researches in the domain of 

MLC claim enhancement and improvement of the predictive 

performance, but unfortunately never carefully questioned 

the conditions that make exploiting correlations among labels 

beneficial. 

This Paper aims to elaborate on the issue of labels 

correlations and dependencies in depth, which will result in a 

better understanding of exploiting correlations among labels 

in MLC. Firstly, a formal definition of both conditional and 

unconditional correlations capturing strategies will be 

presented. Then, a classification of Multi Label Learning 

(MLL) algorithms according to the strategy that has been 

used in capturing the correlations will be discussed. 

To give a formal definition of unconditional correlations 

capturing strategy, consider Y= (y1, y2,…,yn), to be a vector 

of labels in a multi label data set.  

Then, P(Y) = ∏ 𝑝(𝑖) (𝑦𝑖)𝑛
𝑖=1 , is called unconditionally 

correlations capturing strategy. 

As it can be seen from the formal definition of 

unconditional correlations capturing strategy, the correlations 

among labels do not consider the instances (observations) of 

the data set. On the other hand, the conditional correlations 

capturing strategy considers the concrete observations 

(instances), and it is defined formally as follows: 

For a given vector of labels in a multi label data set, Y= (y1, 

y2,…,yn). Then, Px(Y) = ∏ 𝑝𝑥(𝑖) (𝑦𝑖) 𝑛
𝑖=1 , is called 

conditionally correlations capturing strategy. 

To make it simpler, conditional correlations capturing 

strategy considers the instances in the data set when capturing 

the correlations among labels, while unconditional 

correlations capturing strategy ignores the instances 

(observations) in the data set, when capturing the correlations 

among labels. In fact, both types could be beneficial in 

improving the predictive performance of a multi label 

classifier. 

The paper is organized as follows: next section briefly 

describes the related work of both strategies, and several 

well-known algorithms that represent both types of 

correlation capturing strategy. Section 3 describes the 

methodology of the research, and Section 4 presents the 

conclusion and the future work.   

 

II. RELATED WORK 

 

This section will discuss the two main strategies that are 

being used in capturing the correlations among labels in 

MLC. 

 

A. MLC Algorithms Based on Unconditional 

Correlations Strategy 

Capturing correlations among labels by following the 

unconditional type of correlations has attracted many 

researchers. The reason for that is, the small search space for 

the unconditional correlations when compared to the 

conditional correlations [4]. Unconditional correlations 

strategy focuses only on the label space of the multi label data 
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sets, and ignores the observations (instances), which makes it 

simpler and easier to implement.  

One of the first algorithms that captured correlations 

among labels by following the unconditional strategy of 

correlations capturing is the Label Powerset (LP) algorithm. 

LP transforms the problem of MLC to a problem of multi 

class classification, by considering each new label set as a 

new class in a multi class classification, and then applies any 

single label classifier in the learning phase [5].  

Another algorithm that captured the unconditional 

correlations among labels, is the RAndom K labELsets 

(RAKEL) algorithm [6]. In fact, RAKEL is an ensemble 

algorithm that comprises several LP classifiers. These 

classifiers are defined on different subsets of labels that are 

randomly chosen. RAKEL depends heavily on two main 

parameters: number of the base classifiers and the size of 

label subsets. The final prediction made by RAKEL is 

obtained through combining the prediction of the several 

ensemble members on the label subsets [7]. Although, 

RAKEL has a competitive performance, its theoretical 

principle is not clear; as it is not obvious clear what loss 

function it tries to optimize [2]. 

Classifier Chains (CC) and its two main extensions: 

Ensemble of Classifier Chains (ECC) [8] and Probabilistic 

Classifier Chains (PCC) [9] follow the unconditional 

correlations strategy. CC transforms the multi label data set 

into a single label data set, and then trains a binary classifier 

for each label. A chain of classifiers is then built, where 

binary attributes are added to each classifier for all of the 

predictions of the previous classifiers [8]. PCC proposed a 

solution for optimizing the best chains orders by predicting 

labels combinations in a stepwise manner through 

augmenting (k-1) binary features to the input space. In fact, 

this solution is infeasible and thus, leads to high 

computational complexity [2].  

ECC depends for its final prediction on averaging several 

CC predictions. Hence, it has the same limitations and 

drawbacks of the CC algorithm, in addition to the ambiguity 

of the loss function that ECC intends to optimize.  

The Pruned Set (PS) method -as its name indicates- prunes 

all the label sets that have a frequency less than a specific user 

predefined threshold [10]. This strategy may solve the 

problem of the high computational complexity of LP, and the 

problem of the imbalance class distribution, but at the same 

time it imposed a new problem, which is the huge information 

loss due to the pruned labels combinations. The Ensemble of 

Pruned Set (EPS) method constructs a number of pruned sets 

through sampling the training set, and build the final 

prediction using a voting schema and a user predefined 

threshold, in order to form new combinations of labels [10]. 

 

B. MLC algorithms Based on Conditional Correlations 

Strategy 

The benefits of capturing conditional correlations between 

labels and features encouraged many researchers to adapt 

several single label classification algorithms to handle multi 

label data sets. It can be clearly seen that, conditional 

correlations capturing strategy is intensively used with 

Algorithm Adaptation Methods (AAMs), while 

unconditional correlations strategy tends to be more suitable 

to Problem Transformation Methods (PTMs). 

The problem of MLC could be seen as a special type of 

structured output, and based on this point of view, it could be 

solved by using Structural Support Vector Machine (SSVM) 

as in [11]. RANK-SVM is another multi label ranking 

algorithm based on SVM. This algorithm utilizes a set of 

linear classifiers in order to minimize the ranking loss metric, 

with the help of kernel trick to handle nonlinear problems 

[12]. 

Also, several Multi Label Ranking (MLR) algorithms have 

utilized conditional correlations in the ranking process of 

relevant labels to a test instance. For example, Ranking by 

Pairwise Comparisons (RPC) that depends on performing 

exhaustive pairwise comparisons to achieve the ranking of all 

labels to a given test case [13]. RPC has a limitation of 

considering only a second order correlation, which makes it 

suitable only for small data sets. Calibrated Label Ranking 

(CLR) is another pairwise method that enhanced RPC by 

introducing a calibration label. This virtual label (L0) works 

as a split point between relevant labels, and irrelevant labels 

[13]. As in RPC the CLR method suffers from space 

complexity, and computational complexity too. 

An algorithm that followed the conditional correlations 

strategy was presented in [14]. This algorithm was called 

(LEAD), short for Multi-Label Learning by Exploiting Label 

Dependency. LEAD is based on using a Bayesian network 

structure that aims to capture and encode the conditional 

correlations between labels and features set. The main goal of 

the LEAD algorithm is to enhance the predictive performance 

of MLL by exploiting conditional correlations. It manages to 

do that by using a Bayesian network, which is in its essence 

a Directed Acyclic Graph (DAG). 

Back Propagation for MultiLabel Learning (BP-MLL) 

algorithm [15] is an adaptation of the traditional multi-layer, 

feed-forward neural network to handle multi label data. The 

net was trained with gradient descendent and error back 

propagation, with an error function that took into account the 

multi label data. Experimental results showed a competitive 

performance of the BP-MLL algorithm in genomics and text 

categorization domains. 

Conditional Dependency Network- Logistic Regression 

(CDN-LR) and Conditional Dependency Network- Support 

Vector Machine (CDN-SVM) are two a cyclic directed 

graphical based model that were presented in [16]. CDN-LR 

and CDN-SVM effectively captured and exploited 

conditional correlations among labels and instances in order 

to improve the predictive performance of MLC. 

Instance-Based Learning by Logistic Regression (IBLR) is 

a hybrid approach that is capable of capturing inter 

correlations among labels. The main idea of this approach is 

to consider class labels of the neighbouring examples as 

features of unseen test cases along with the reduction of IBL 

to LR [17]. 

To summarize, two main strategies are being used in MLC 

to capture correlations and dependencies. The first strategy 

considers only those correlations among labels and ignores 

any correlations between the labels and the observations. This 

strategy has been called as unconditional correlations 

strategy. The second strategy considers the correlations 

between labels and observations, and it has been called as 

conditional correlations strategy. Table 1 summarizes the 

main differences between the two strategies. 
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Table 1 

 Conditional and unconditional correlations capturing strategies 

 

Conditional Correlations Strategy 
Unconditional Correlations 

Strategy 

Captures correlations among labels and 
observations (Features). 

Captures correlations among 
labels only. 

More oriented toward AAMs More oriented toward PTMs 

Usually, more oriented to specific 
domains 

More general to any domain 

More time consuming Less time consuming 

More Complexity Less Complexity 

 

III. THE RESEARCH METHODOLOGY 

 

A. Data Collection 

In order to evaluate the performance of both strategies on 

the predictive performance of MLC algorithms, data has been 

collected from several published articles. The algorithms 

have been divided into two groups: algorithms that capture 

conditional correlations, and algorithms that capture 

unconditional correlations. For the first group the following 

algorithms have been chosen to be used in this paper: LP, 

RAKEL, CC, ECC, PS and EPS. For the second group, the 

selected algorithms are: CLR, BPMLL, LEAD, RANK-

SVM, CDN-LR, CDN-SVM and IBLR. Six evaluation 

metrics have been used in the evaluation process of the 

selected algorithms. These metrics are: Hamming Loss (H.L), 

Accuracy (ACC), F1-Measure, Micro-F1, Macro-F1and 

Exact Match (EM). More details about these evaluation 

metrics could be found in [5]. Data sets were divided into two 

groups: regular size data sets that have 15 or fewer labels, and 

large size data sets that have more than 15 labels. Table 2 

describes the main characteristics of the data sets. 

 
Table 2 

 Data set main characteristics 

 

Size Data set Instances Attributes Label LC Domain 

R
eg

u
la

r Yeast 2417 103 14 4.327 Biology 

Scene 2712 294 6 1.074 Media 

Emotions 593 72 6 1.868 Media 

L
ar

g
e TMC2007 28596 500 22 2.16 Text 

Ohsumed 13929 1002 23 1.66 Text 

 
B. Unconditional Correlations Algorithms Data 

Collection 

Table 3 to Table 5 depict the collected data on the regular 

size data sets, using several algorithms that capture the 

unconditional correlations among labels. Bold values 

represent the best values, where "NG" represents the "Not 

Given" values. 
 

Table 3 

 Yeast data set 

 

Algorithm H.L↓ ACC↑ 
F1 

Measure↑ 

Micro-

F1↑ 

Macro-

F1↑ 

Exact 

Match↑ 

LP 0.206 0.530 0.643 0.643 0.418 0.260 

RAKEL 0.207 0.487 0.625 0.624 0.333 0.128 

CC 0.211 0.489 0.619 0.620 0.403 0.196 

ECC 0.623 0.298 0.458 0.459 0.469 0.001 

PS 0.205 0.533 0.647 0.645 0.396 0.258 

EPS 0.207 0.537 0.654 0.650 0.515 0.253 
Average 0.276 0.479 0.607 0.606 0.422 0.182 

 
 

 
 

 

 
 

Table 4 

Scene data set 

 

Algorithm H.L↓ ACC↑ 
F1 

Measure↑ 

Micro-

F1↑ 

Macro-

F1↑ 

Exact 

Match↑ 

LP 0.090 0.735 0.755 0.745 0.754 0.696 

RAKEL 0.097 0.671 0.706 0.724 0.734 0.602 

CC 0.103 0.696 0.714 0.705 0.714 0.659 

ECC 0.470 0.159 0.235 0.247 0.243 0.007 

PS 0.084 0.751 0.769 0.760 0.766 0.717 
EPS 0.085 0.751 0.769 0.759 0.765 0.715 

Average 0.154 0.627 0.658 0.656 0.662 0.566 

 
Table 5 

 Emotions data set 

 

Algorithm H.L↓ ACC↑ 
F1 

Measure↑ 

Micro-

F1↑ 

Macro-

F1↑ 

Exact 

Match↑ 

LP 0.198 0.584 0.687 0.688 0.675 0.351 
RAKEL 0.186 0.592 0.706 0.701 0.681 0.341 

CC 0.207 0.554 0.655 0.663 0.633 0.310 
ECC 0.640 0.268 0.409 0.422 0.416 0.002 
PS 0.192 0.599 0.701 0.704 0.692 0.367 

EPS 0.193 0.599 0.703 0.705 0.691 0.366 
Average 0.269 0.532 0.643 0.647 0.631 0.289 

 
Table 6 and Table 7 depict the collected data on the large 

size data sets, using three algorithms that capture the 

unconditional correlations among labels. 
 

Table 6 
TMC2007 data set 

 

Algorithm H.L↓ ACC↑ 
F1 

Measure↑ 

Micro-

F1↑ 

Macro-

F1↑ 

Exact 

Match↑ 

ECC 0.068 0.517 0.496 NG NG 0.767 

EPS 0.069 0.549 0.573 NG NG 0.740 

RAKEL 0.068 0.549 0.577 NG NG 0.744 
Average 0.068 0.538 0.548 NG NG 0.750 

 
Table 7 

Ohsumed data set 

 

Algorithm H.L↓ ACC↑ 
F1↑ 

Measure 
Micro 
F1↑ 

Macro 
F1↑ 

EM↑ 
↑Match 

ECC 0.063 0.426 0.414 NG NG 0.784 

EPS 0.074 0.424 0.366 NG NG 0.797 

RAKEL 0.075 0.383 0.392 NG NG 0.830 

Average 0.070 0.411 0.390 NG NG 0.803 

 
C. Conditional Correlations Algorithms Data Collection 

Table 8 to Table 10 describe the data that has been 

collected on the three regular size data sets, that have been 

tested against several common conditional correlations-based 

algorithms. 

 
Table 8 

 Yeast data set 

 

Algorithm H.L↓ ACC↑ 
F1 

Measure↑ 
Micro-

F1↑ 
Macro-

F1↑ 
Exact 

Match↑ 

CLR 0.226 0.514 0.405 NG NG 0.970 

BPMLL 0.322 0.185 0.210 0.202 0.459 0.185 

LEAD 0.202 NG NG NG NG NG 

Rank- 

SVM 
NG NG NG 0.587 0.387 0.161 

CDN-LR NG NG NG 0.640 0.438 0.174 

CDN-

SVM 
NG NG NG 0.638 0.357 0.164 

Average 0.25 0.3495 0.3075 0.51675 0.41025 0.3308 
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Table 9 

Scene data set 

 

Algorithm H.L↓ ACC↑ 
F1 

Measure↑ 
Micro-

F1↑ 
Macro-

F1↑ 
Exact 

Match↑ 

CLR 0.101 0.695 0.405 NG NG 0.391 

BPMLL 0.579 0.212 0.663 0.233 0.219 0.212 

LEAD 0.098 NG NG NG NG NG 

Average 0.259 

 

0.453 

 
0.534 0.233 0.219 0.301 

 
Table 10 

 Emotions data set 

 

Algorithm H.L↓ ACC↑ 
F1 

Measure↑ 

Micro-

F1↑ 

Macro-

F1↑ 

Exact 

Match↑ 

CLR 0.214 0.557 0.668 NG NG 0.740 

BPMLL 0.433 0.276 0.389 0.381 0.426 0.276 

LEAD 0.197 NG NG NG NG NG 

Rank-

SVM 
NG NG NG 0.651 0.566 0.225 

CDN-LR NG NG NG 0.629 0.615 0.225 

CDN-
SVM 

NG NG NG 0.654 0.641 0.241 

Average 0.281 0.416 0.528 0.578 0.562 0.341 

 
Table 11 and Table 12 depict the collected data on the large 

size data sets, using two algorithms that captured conditional 

correlations among labels 
 

Table 11 

TMC2007 data set 

 

Algorithm H.L↓ ACC↑ 
F1 

Measure↑ 

Micro-

F1↑ 

Macro-

F1↑ 

Exact 

Match↑ 

CLR 0.078 0.506 0.577 NG NG 0.853 

IBLR 0.077 0.479 0.434 NG NG 0.797 
Average 0.077 0.492 0.505 NG NG 0.825 

 
Table 12 

Ohsumed data set 
 

Algorithm H.L↓ ACC↑ 
F1 

Measure↑ 

Micro-

F1↑ 

Macro-

F1↑ 

Exact 

Match↑ 

CLR 0.088 0.374 0.407 NG NG 0.914 

IBLR 0.097 0.230 0.127 NG NG 0.937 

Average 0.092 0.302 0.267 NG NG 0.925 

 
D. Data Analysis 

After collecting the data, the collected data is aggregated 

and summarized. The data has been grouped according to the 

data set, and the correlations capturing strategy that has been 

used in the algorithm. Then, the results of each metric are 

averaged over all the algorithms that have been used. Table 

13 depicts the final summarization of the collected data, 

where "C" represents the conditional correlations strategy, 

and "U" represents the unconditional correlations strategy. 

Table 13 clearly shows that the unconditional correlation 

capturing strategy overcomes the conditional correlations 

capturing strategy on most evaluation metrics using all data 

sets. The only metric that is preferred by conditional 

correlations capturing strategy is the Exact Match metric, 

since conditional correlations strategy wins 4 times and 

unconditional correlations strategy wins only 1 time. In fact, 

this is rational, since most conditional correlations capturing 

strategies are designed to optimize the Exact Match metric, 

while unconditional correlations capturing strategies are 

usually designed to optimize the Hamming Loss metric. 

 

 

Table 13 

Data final summarization 
 

Size Data Set Metric H.L↓ Acc↑ F1↑ Micro↑ Macro↑ EM↑ 

R
eg

u
la

r 

Y
ea

st
 U 0.276 0.479 0.607 0.606 0.422 0.182 

C 0.25 0.349 0.307 0.516 0.410 0.330 

Winner C U U U U C 

S
ce

n
e U 0.154 0.627 0.658 0.656 0.662 0.566 

C 0.259 0.435 0.534 0.233 0.219 0.301 

Winner U U U U U U 

E
m

o
ti

o
n

s U 0.269 0.532 0.643 0.647 0.631 0.289 

C 0.281 0.416 0.528 0.578 0.562 0.341 

Winner U U U U U C 

L
ar

g
e T
M

C
2
0
0
7
 U 0.068 0.538 0.548 NG NG 0.750 

C 0.077 0.492 0.505 NG NG 0.825 

Winner U U U NG NG C 

O
h

su
m

ed
 U 0.070 0.411 0.390 NG NG 0.803 

C 0.092 0.302 0.267 NG NG 0.925 

Winner U U U NG NG C 

 

Table 14 summarizes the total number of wins for both 

conditional and unconditional correlations capturing 

strategies. Regarding Hamming Loss metric, unconditional 

correlations strategy wins 4 times, while conditional 

correlations strategy wins only 1 time. For Accuracy and F1-

measure, it is clearly noted that, the unconditional 

correlations strategy totally overcomes the conditional 

correlations strategy with a number of wins equals to 5 for the 

unconditional correlations strategy and zero for the 

conditional correlations strategy. Same situation for the 

Micro-F1 and Macro-F1 metrics. For the Exact Match metric, 

it is clearly seen that, the conditional strategy overcomes the 

unconditional strategy.  

 
Table 14 

Number of wins comparison 

 
Metric H.L↓ Acc↑ F1↑ Micro↑ Macro↑ EM↑ 

U 4 5 5 3 3 1 
C 1 0 0 0 0 4 

 
Also, it is obviously clear that, the size of the data sets does 

not affect the previous results. On all cases and whatever the 

size of the data set is, the unconditional correlations strategy 

always shows a better predictive performance than the 

conditional correlations strategy on all evaluation metrics 

with only one exception, that is the Exact Match metric. Table 

15 shows a comparison between the number of wins for both 

strategies with respect to the size of the data sets. 

 
Table 15 

Data set-size based comparison 
 

Size Regular Large 

U 15 6 

C 3 2 

 

Also, it is very important to determine the best strategy to 

use with respect to the data set which is being used. Table 16 

depicts a brief comparison between the unconditional 

correlations capturing strategy and the conditional 

correlations capturing strategy, with respect to the data set 

being used. It can be clearly noted that, unconditional 

correlations strategy is preferred to be used with all data sets 

regardless to the size and the characteristics of the data set. 
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Table 16 

Comparison based on the data sets being used 

 

Data Set Yeast Scene Emotions TMC2007 Ohsumed 

U 4 6 5 3 3 

C 2 0 1 1 1 

 
E. Findings 

This section summarizes those main findings of the data 

analysis process. The following are the main findings: 

1. In general, the unconditional correlations capturing 

strategy shows a better predictive performance over the 

conditional correlations capturing strategy. 

2. When optimizing the Exact Match metric, it is better to 

use the conditional correlations capturing strategy 

otherwise, the unconditional correlations capturing 

strategy is preferred. 

3. The size of the data sets does not affect the truth of 

preferring unconditional correlations capturing 

strategy over conditional correlations capturing 

strategy. In fact, as the size of the data sets get larger, 

it is more preferred to use unconditional correlations 

capturing strategy but, this could be an assumption that 

needs concrete proof. 

 

IV. CONCLUSION AND FUTURE WORK 

 

In MLC, two main strategies are being used to capture the 

correlations among labels: conditional and unconditional 

correlations capturing strategies. This paper investigates 

which of these two strategies is more preferred, with respect 

to different evaluation metrics and the size of the data sets. In 

general, unconditional correlations strategy shows a better 

predictive performance than conditional correlations strategy 

on most evaluation metrics, regardless of the size of the data 

set. As a future work, much more researches should be 

conducted to determine the characteristics of the data sets that 

make capturing and exploiting the correlations among labels 

of great benefit. 
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