
 e-ISSN: 2289-8131 Vol. 10 No. 2-4 35

Grid Federation: Number of Jobs and File Size

Effects on Jobs Time

Musa Sule Argungu1,2, Suki Arif1 and Mohd. Hasbullah Omar1
1InterNetWorks Research Laboratory, School of Computing, Universiti Utara Malaysia. 06010 Sintok, Kedah, Malaysia.

2Department of Computer Science, University of Science and Technology, Aliero. Kebbi State Nigeria.

argungu@internetworks.my

Abstract—Grid federation is fast emerging as an alternative

solution to the problems posed by the large data handling and

computational needs of the existing numerous worldwide

scientific projects. Efficient access to such extensively

distributed data sets has become a fundamental challenge in

grid computing. Creating and placing replicas to suitable sites,

using data replication mechanisms can increase the system’s

performance. Data Replication reduces data access time,

ensures load balancing as well as narrows bandwidth

consumption. In this paper, an enhanced data replication

mechanism called EDR is proposed. EDR applies the principle

of exponential growth/decay to both file size and file access

history, based on the Latest Access Largest Weight (LALW)

mechanism. The mechanism selects a popular file and

determines an appropriate number of replicas as well as suitable

grid sites for replication. It establishes the popularity of each file

by associating a different weight to each historical data access

record. Typically, recent data access record has a larger weight,

which signifies that the record is more relevant to the current

situation of data access. By varying the number of jobs as well

as file sizes, the proposed EDR mechanism was simulated using

file size and job completion time as the variable metrics.

Optorsim simulator was used to evaluate the proposed

mechanism alongside the existing Least Recently Used (LRU),

and Least Frequently Used (LFU) Mechanisms. The simulation

results showed that job completion time increases by the growth

in both file size and number of jobs. EDR shows improved

performance on the mean job completion time, compared to

LRU and LFU mechanisms.

Index Terms—Data Grids; Data Grid Federation; Data

Replication; EDR Optimizer

I. INTRODUCTION

Data Grids (DG) are complex, heterogeneous, diverse

systems that span several sites and organizations [1-3]. A

Data Grid Federation (DGF) [4] could be formed by bringing

together these individual complex and heterogeneous DG

systems via a Peer-to-Peer Wide Area Network [5-7]. A DG

system and its federation exhibit similar characteristics,

except for the underlying topology, which is defined by the

bandwidth connectivity amongst the various sites and cross

registrations of numerous users connected to the DGF system

[5].

A federation of multiple DG systems revolves around

factors such as the cross-registration of multiple users,

heterogeneous resources, enormous data files, and different

context. Depending on the federation settings, the factors may

be set to either no cross-registration, partial cross-registration,

or complete cross-registration. The cross-registration of users

automatically defines the type of connectivity between the

sites, and hence forms the basis for the federation architecture

[5]. By varying the type of cross-registration across sites, up

to 1500 DGF approaches could be realized [5]. The

researchers in [5] further outlined ten of the DGF approaches

that are either actively put to use, or were proposed to be used

within scientific projects. In a DGF setting, each Data Grid is

referred to as a zone, hosting its metadata catalog for

managing the logical namespaces of its users, resources, files,

and context [5].

The DG project [8] by European Union (EU) is one of the

building blocks for deploying robust computing

infrastructure and middleware services for the management

of large-scale data across widely distributed scientific

communities. Within the DG project, a Replica Optimization

Service (ROS) [9] is deployed to address the issues related to

replica optimization. Before deploying the ROS, it is

important to select one or more optimization mechanisms it

will use. These mechanisms also work effectively in a DGF

environment under a wide range of conditions [5], so they

should be tested thoroughly before deployment [10]. One way

to achieve a realistic evaluation of various strategies is to

define a grid simulation environment that closely mimics a

real Data Grid [11]. The simulation environment should be

capable of simulating some grid jobs using a suitable

optimization strategy, and to collect measurements based on

which the strategy is evaluated [10-14].

In this paper, an enhanced data replication mechanism for

improving the performance of DGF environment is proposed.

The write-up starts by highlighting the key elements of a

realistic grid infrastructure, which forms the basis of the

simulation environment used in this paper. The effect of file

size and some jobs on job completion time for all jobs running

within the DGF environment is evaluated. This write-up

analyzes some important metrics used for evaluating DG

systems. Jobs completion time is the metric used, with

varying file sizes and a different number of jobs per unit time.

The performance of the proposed replication mechanism,

which uses the concept of file exponential growth/decay

policy [3], based on the LALW mechanism [2] was evaluated

in OptorSim DG Simulator [1-2]. The proposed EDR uses the

existing file access patterns that came with OptorSim

simulator. Henceforth in this write-up, the terms DG and

DGF are used for Data Grid and Data Grid Federation,

respectively unless otherwise stated.

The rest of this paper is organized as follows: Section II

examines related literature. The features of a realistic

simulation environment are discussed in Section III. Section

IV describes the proposed EDR mechanism in detail, along

with a set of performance measurements to evaluate the

mechanism. The specific setup used for the simulation and

Journal of Telecommunication, Electronic and Computer Engineering

36 e-ISSN: 2289-8131 Vol. 10 No. 2-4

the results are presented in Section V. Conclusion is given in

Section IV together with suggestions for further research.

II. RELATED LITERATURE

In [6-7], the authors proposed and implemented a

mechanism for job scheduling and dynamic data replication

in DGF system, with the aim of improving data access

latency. The mechanism, otherwise known as SGFRS,

accesses data from an area identified as Network Core Area

(NCA). The mechanism, which was evaluated in OptorSim

simulator, successfully achieved its aim of obtaining data

from the nearest node by allocating areas for the searched

zone using the concept of NCA. By relegating the search to

the nearest node, the need for greater bandwidth has been

reduced by the SGFRS. It has also managed to minimize

expected data access latency of file.

The authors in [15] proposed a scheduling and replication

strategy aimed to study the issues associated with integrating

job scheduling and data replication in data-intensive scientific

applications. The mechanism seeks to minimize overall job

execution time by placing data replicas and jobs onto

appropriate sites. The approach was designed to guarantee

overall grid performance by developing a set of efficient

heuristics, and the results were validated using OptorSim

simulator. Similarly, A dynamic replication strategy in a

hierarchical structure that selects best file replica was

proposed in [16] based on the EU Data Grid CMS testbed

topology. The model was evaluated using access time,

network usage and storage usage performance metrics.

In [2], the researchers proposed a dynamic data replication

mechanism called LALW. The mechanism identifies a

popular file for replication, then computes an appropriate

number of copies and locations for replicating such files.

Each historical data access record is associated with a

different weight. The weights help identify the relevance of

each file record to the users as well as the grid federation

system. A larger weight indicates more recent data access,

which also means that the record is more pertinent regarding

data access within the federation system. The Grid simulator

OptorSim is used to evaluate the performance of the proposed

replication mechanism. The simulation results show that

LALW mechanism successfully optimizes the effective

network usage; indicating that the LALW strategy can find

out a popular file and replicates it to a suitable site without

putting constraints on the bandwidth. An enhanced version of

LALW was proposed by same researchers and named it

enhanced-LALW, known as ELALW mechanism [17]. In

addition to determining file weight, the ELALW also

considers network distance between nodes for replica

placement.

In this write-up, the proposed EDR mechanism considers

storage capacity in addition to the distance between nodes for

effective replica placement. Considerations to storage

capacity come in three folds, that is, highly loaded, lightly

loaded and moderately loaded sites. The aim is to improve on

job completion time by placing data replica closer to the

clients without compromising storage usage. Thus, placing

data replica on the lightly loaded and moderately loaded

nodes eliminates bottlenecks, thereby improving job

completion time for all jobs. The proposed mechanism finds

the least value file, in addition to finding out the largest

weight file, using the concept of file growth /decay policy [3].

Computation of network distance between nodes proceeds

based on the work of researchers in [17], while file weight

and value are computed based on the work of researchers in

[2]. Thus, the strategy not only decides which file to be

replicated, but it also determines which files need to be

deleted to accommodate incoming file replicas, based on their

access weights [2] and lower value [3], respectively.

III. SIMULATION ENVIRONMENT

The OptorSim is designed to test various replication

optimization strategies in a simulated grid environment

before they are deployed in the real grid platform, which has

been used by many researchers [1-3, 5-7, 12-15]. It

emphasizes more on simulating data access optimization

algorithms. The simulator uses discrete event simulation and

is managed under the open source license. It was developed

in the framework of the European Data Grid (EDG) project

[8] as a joint effort of University of Glasgow and CERN [18],

amongst others. The simulation environment is based on the

EDG) project [8]. Other simulators exist for DG systems [19-

24]. However, this write-up used OptorSim based on its

emphasis on simulating data access optimizations algorithms

and frequent uses in the related research domain.

In this setup, a data file is characterized by its name, size,

and an index number, which represents its similarity to other

files. The set of data files specifies a job it needs to analyze.

As we are studying the performance of different optimization

strategies, files are considered homogeneous. Thus only the

movement of files records caused by replication is simulated

in this study.

IV. ENHANCED DATA REPLICATION MECHANISM

The proposed EDR mechanism helps to improve data

locality by increasing number of replicas within the

federation system. It accesses the Current Disk Space (CDS),

to ascertain the available storage capacity of a node. CDS is

calculated as follows [25]:

CDS = 𝑆reg − 𝑆usage (1)

where 𝑆reg is maximum storage capacity of a node and 𝑆usage

is storage space occupied by resources on the node. If the

CDS is higher than the size of the file to be replicated, the

replica is placed on the node, and the job is scheduled on that

node. If, however , the node has insufficient space, other

nodes are contacted within the cluster. If all the nodes within

the cluster returned a CDS less than the file size, then the

mechanism will delete old files or replicas from the node. For

removing a file from the node, the access frequencies of all

the files stored on the node are compared. The file with the

least access frequency are deleted and replaced with the

incoming replica. The algorithm for implementing the

Enhanced Data Replication Mechanism is shown in Figure 1.

This study uses access history for stored files to find the

least value file [2]. The header nodes manage file

information in each of the clusters of the DG federation. A

given file record in a cluster header is stored according to

the following format<File_ID, Cluster_ID, Number> [2-3].

The “Number” indicates how many times a given file

(File_ID) was accessed by the cluster (Cluster_ID). The

concept of file weight and file value has a direct bearing on

both file size and file access history based on LALW [2],

buttressed in [3] and [17]. In this write-up, the authors are

Grid Federation: Number of Jobs and File Size Effects on Jobs Time

 e-ISSN: 2289-8131 Vol. 10 No. 2-4 37

interested in creating space for an incoming file replica.

Each file weight increases by the increase in access rate, and

decreases by the decline in access rate. Similarly, file value

changes with a corresponding increase or decrease in access

rate. Thus, the principle was applied to file access history to

help determine the files with less popularity.

Figure 1: Enhanced Data Replication Mechanism

A. Evaluation Metrics for Grid Optimization Strategies

There are several measures [26], which can be considered

in the evaluation of Grid optimization strategies. Since the

effectiveness of a strategy could depend on the adopted

measure, it is typical to select a suitable metric for evaluation.

In this write-up, mean job execution time (MJET) is used to

evaluate the performance of the proposed mechanism. MJET

is defined as the total time to execute all the jobs, divided by

the number of jobs completed [2]. The average job execution

time is calculated as time to execute a file (𝑇𝑖), plus the time

consumed by a job in waiting queue (𝑊𝑖), divided by the

number (n) of jobs completed. It is expressed

mathematically as [2]:

1

()
 =

n i i

i

T W
MJET

n


 (2)

where 𝑛 = number of jobs processed by the system, 𝑇𝑖=

time to execute the 𝑖th job, and 𝑊𝑖 = waiting time of 𝑖th job

that has been spent in the queue.

B. Simulation Setup

In this section, the write-up describes the simulation setup,

to depict a realistic grid environment, starting with the

configuration parameters. Table 1 contains some of the

important parameters used for the simulation.

Table 1

Configuration parameters used for the simulation

Parameter Value

Number of jobs 50 to 1000

Single file size (GB) 2.5 to 10

Job Scheduler Access Cost for current jobs + all queued jobs
Optimization

Mechanism

EDR-Occasionally Replicate, Delete least

access lowest weight file

Access Pattern Zipf Distribution

The simulation was run using jobs numbers ranging from 50

to 1000 on the increment of 100, 200, 400, 600, 800 and 1000.

Files sizes were varied from 2.5GB, 5Gb, and 10GB.

C. Grid Topology Simulated.

The OptorSim Simulator could simulate any Grid topology

[12]. The simulator accepts a Grid topology in the form of M

x N square matrix of bandwidth configuration file. In this

paper, the bandwidth connectivity is configured to match the

DGF setup in Figure 2. Every site in this setup has a

computing element (CE) and initial unfilled storage of 80 GB

capacity. The site containing original master files has a

capacity of 100 GB. The storage capacity values used are

arbitrary scaled down representatives from the actual

resources at the CMS sites [1]. The topology is shown in

Figure 2.

Figure 2: Data Grid Federation Architecture

The simulated workloads for the grid federation model

were based on a sample data extract from the high-energy

physics experiment (HEP) [27] test-bed data. There are six

(6) types of jobs, and 1,000 jobs were processed in this study.

Each file has a size of 10 GB, totaling to 10,000 GB for

processing 1000 jobs. Each CE takes approximately one

second to process each file. Similarly, a total of 5000GB and

2500GB for file sizes 5GB and 2.5GB, respectively for

processing 1000 jobs.

V. RESULTS AND DISCUSSION

In this section, the authours present simulation results,

using OptorSim to evaluate storage usage by varying number

of jobs and size of the files used for the simulation. The

simulation was run several times, by controlling the

simulation environment. The simulation was run by keeping

one parameter constant as well as re-starting the simulator

after each run. After simulating for the 20th time, the root-

mean-square value of the total jobs times was compared

against the absolute values, resulting in a negligible variation

of about 0.5%. This is to be expected because, in certain

situations, the mechanism has to select between two equally

valid options randomly. For instance, if the mechanism seeks

to get a certain file in the shortest time possible, and there are

two sites, which could deliver the file in the same time, one

of the sites is chosen randomly. This is also due to the way

//Procedure for replica placement

i- Access source /remote data & compute storage

requirement (SR) for replication

ii- Input list of Storage Elements (SEs) within the current

cluster

iii- Compute Current Disk Space (CDS) for all the SEs within

the cluster

iv- Locate lightly loaded SEs for replication

 IF NONE

v- Locate moderately loaded nodes

vi- Compare storage requirement (SR) with Current Disk

Space for the SEs

Is SR >= CDS?

IF Yes

vii- While network distance <= average network distance for

all sites: Locate and delete least value file(s) from the

appropriate moderately /highly loaded nodes to make

them lightly loaded,

viii- Place file replica for the popular file within the lightly

loaded SE or moderately loaded SEs

END

Journal of Telecommunication, Electronic and Computer Engineering

38 e-ISSN: 2289-8131 Vol. 10 No. 2-4

Java implements certain objects, such as the hash tables used

for holding data items. All the mechanisms were tested along

with the existing heuristic (Queued Access Cost + All Queued

Jobs) scheduling mechanism. The results from the simulation

for varying number of submitted jobs and file sizes ranging

from 2.5GB to 10GB are shown in Figure 3(a)-(c).

Figure 3(a): Comparing EDR, LRU, and LFU for 10 GB File Size

Figure 3(b): Comparing EDR, LRU, and LFU for 5 GB File Size

Figure 3(c): Comparing EDR, LRU, and LFU for 2.5 GB File Size

The impact of number of jobs and file size for EDR

mechanism was evaluated alongside LRU and LFU

mechanism for some jobs ranging from 50 to 1000, and file.

The EDR, LRU and LFU optimizers showed a similar pattern

of poison distribution along the number of jobs and job

completion time. In this paper, mean job time, no of jobs, and

file sizes are of concern. It was observed that job completion

time decreases with the corresponding decrease in file size,

for all the mechanisms under review. Also, jobs time

increases steadily as number of jobs rises from 50 to 1000,

with irregular pattern between 400 to 1000 for 2.5 GB file

size. This shows that a large file could run faster and complete

in a shorter time when split into smaller chunks and made to

run on different machines. This is one of the advantages of

DG federation, whereby idle machines could be used for

concurrent job executions to the benefits of the users.

Figure 3(a) compares Mean Job Time for EDR, LRU and

LFU for 1000 Jobs, and 10 GB File Size. Figure 3(b)

compares Mean Job Time for the three mechanisms, using 5

GB file size for jobs run of 1000. Lastly, Figure 3(c) plot for

2.5 GB file size, 1000 jobs for the three mechanisms under

review. It is evident from the results that file size as well

number of jobs both have an incremental effect on the total

completion time for grid jobs.

VI. CONCLUSIONS AND FUTURE WORKS

The graphs of Mean Job Time Vs. Number of Jobs for 1000

Jobs and File Sizes of 10 GB, 5 GB and 2.5 GB as shown in

Figures 3.1(a-c) exhibit poison distribution patterns over

different time’s intervals for both EDR, LRU and LFU

mechanisms. The jobs were run at various time intervals,

starting with 50, 100 jobs, 200 jobs, 400 jobs, 600 jobs, 800,

and 1000 jobs in that order. By comparison, EDR

outperforms the LRU and LFU mechanism regarding jobs

completion time for 1000 jobs.

The advantage EDR has over LRU and LFU is that the

former performs advanced replication of files that may be

required by next job based on their access weights, which

reduces job completion time subsequently. In contrast, LRU

and LFU always replicate, which may affect the expected

completion time. In the future, we intend to add other

performance indicators that are significant such as different

types of end users and effect of replications on SE and CE

Usage. Also, the study will be extended to simulate 1,000,000

jobs. New job scheduler will also be introduced, along with

our EDR optimizer, for further enhancement of the DGF

performance. The new mechanisms will be tested against the

effect of data replication on SE usage in the near future. It is

expected that the mechanisms can optimise SE usage and

access time for a high number of jobs. Also, the mechanism

will be compared with ELALW mechanism against job

completion time.

ACKNOWLEDGEMENTS

The authors wish to thank the Ministry of Education,

Malaysia for funding this study under the Long Term

Research Grant Scheme (LRGS/bu/2012/UUM/Teknologi

Komunikasi dan Infomasi).

REFERENCES

[1] D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson, K.

Stockinger, and F. Zini, "Evaluating scheduling and replica
optimisation strategies in OptorSim", Journal of Grid Computing, pp.

57-69, March 2004.

[2] R. S. Chang and H. P. Chang, “A Dynamic Data Replication Strategy
using Access-Weights in Data Grids”, Future Generation Computer

System, 22, pp. 254-268, 2008.

[3] M. K. Madi and S. Hassan, “Dynamic replication algorithm in Data
Grid: a survey”, In International conference on network applications,

protocols, and services, November 2008.

[4] M. A. Salehi, B. Javadi, and R. Buyya, “Preemption-aware admission
control in a virtualized grid federation,” in Advanced Information

Networking and Applications (AINA), 2012 IEEE 26th International

Conference on, 2012, pp. 854–861.
[5] A. Jagatheesan and R. W. Moore, "Data grid and grid-flow

management systems", in Proceedings of IEEE International

Grid Federation: Number of Jobs and File Size Effects on Jobs Time

 e-ISSN: 2289-8131 Vol. 10 No. 2-4 39

Conference on Web Services, 2004, pp. xxix-xxix.

[6] Z. Mohamad, F. Ahmad, A. N. M. Rose, F. S. Mohamad and M. M.
Deris, “Job scheduling for dynamic data replication strategy in

heterogeneous federation data grid systems”, In 2013 2nd IEEE

International Conference on Informatics and Applications (ICIA),
September 2013, pp. 203-206.

[7] Z. Mohamad, F. Ahmad, A. N. M. Rose, F. S. Mohamad and M. M.

Deris, "Implementation of Sub-Grid-Federation Model for
Performance Improvement in Federated Data Grid", Malaysian

Journal of Applied Sciences, vol. 1, no. 1, pp. 55-67, 2016.

[8] P. Kunszt, “European DataGrid project: Status and plans”, Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 502, no. 2,

pp. 376-381, 2003.
[9] A. Sulistio, C. S. Yeo and R. Buyya, “A taxonomy of computer-based

simulations and its mapping to parallel and distributed systems

simulation tools”, Software-Practice and Experience, vol. 34 no. 7, pp.
653-674, 2004.

[10] K. Jain, A. V. Vidhate, V. Wangikar, and S. Shah, “Design of file size

and type of access based replication algorithm for data grid”, in Proc.

ACM International Conference & Workshop on Emerging Trends in

Technology (ICWET '11), New York, NY, USA, 2011, pp. 315-319.

[11] W. Zhao, X. Xu, N. Xiong, and Z. Wang, "Dynamic replica
replacement strategy in data grid", in Proc. 8th IEEE International

Conference on Computing Technology and Information Management

(ICCM), 2012, vol. 2, pp. 578-584.
[12] H. Stockinger, F. Donno, E. Laure, S. Muzaffar, P. Kunszt, G.

Andronico and P. Millar, “Grid Data Management in action:
Experience in running and supporting data management services in the

EU Datagrid Project", arXiv preprint cs/0306011, June 2003.

[13] B. H. William, D. G. Cameron, L. Capozza, A. P. Millar, K.
Stockinger, and F. Zini, "Evaluation of an economy-based file

replication strategy for a data grid", in Proceedings of 3rd IEEE/ACM

International Symposium on Cluster Computing and the Grid
(CCGrid), 2003, pp. 661-668.

[14] L. Guy, P. Kunszt, E. Laure, H. Stockinger and K. Stockinger "Replica

management in data grids", in Global Grid Forum, July 2002, vol. 5,
pp. 278-280.

[15] R. L. Anikode and B. Tang, "Integrating scheduling and replication in

data grids with performance guarantee", in conf. 2011 IEEE Global
Telecommunications Conference (GLOBECOM 2011), pp. 1-6.

[16] P. Vashisht, R. Kumar, and A. Sharma, "Efficient dynamic replication

algorithm using agent for data grid", The Scientific World Journal, pp.

767016-767016, 2014.

[17] N. Mansouri and A. Asad, "Weighted data replication strategy for data
grid considering economic approach", Int. J. Comput. Elect. Auto.

Control Inf. Eng, vol. 8, pp. 1336-1345, July 2014.

[18] B. H. William, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger
and F. Zini, "Simulation of Dynamic Grid Replication Strategies in

OptorSim", in International Workshop on Grid Computing, Springer,

Berlin, Heidelberg, 2002, pp. 46-57.
[19] M. R. K. Grace, S. S. Priya and S. Surya, “A survey on grid

simulators”, Int. J. Comput. Sci. Inf. Technol. Secur, 2(6), 1224-1230,

2012.
[20] S. A. Monsalve, F. G. Carballeira and A. C. Mateos, "Analyzing the

performance of volunteer computing for data-intensive applications",

2016 International Conference on High-Performance Computing &
Simulation (HPCS), Innsbruck, 2016.

[21] H. Casanova, “Simgrid: A toolkit for the simulation of application

scheduling”, in Proc. First IEEE/ACM international symposium on
Cluster computing and the grid, 200, pp. 430-437

[22] C. L. Dumitrescu and I. Foster, “GangSim: a simulator for grid

scheduling studies”, In Proceedings of the Fifth IEEE International

Symposium on Cluster Computing and the Grid (CCGrid'05), Volume

02 (CCGRID '05), IEEE Computer Society, Washington, DC, USA,

1151-1158, 2005.
[23] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K.Taura, and

A. Chien, "The microgrid: a scientific tool for modeling computational

grids", in Proceedings of the 2000 ACM/IEEE Conference on
Supercomputing (SC '00), 2000, pp. 53-53.

[24] R. Buyya and M. Murshed, "Gridsim: A toolkit for the modeling and
simulation of distributed resource mgt and scheduling for grid

computing", Concurrency and computation: practice and experience,

vol. 14, no. 13‐15 pp. 1175-1220, 2002.
[25] M. Lei, and S. Vrbsky, “A Data Replication Strategy to Increase Data

Availability in Data Grids”, in Proc. 2006 International Conference on

Grid Computing and Applications, Las Vegas, NV, June 2006, pp.
221-227.

[26] R. Jain, “Art of Computer Systems Performance Analysis: Techniques

for Experimental Design Measurements Simulation and Modeling”,
John Wiley & Sons, Inc., 1991.

[27] F. Jolfaei and A. T. Haghighat, "The impact of bandwidth and storage

space on job scheduling and data replication strategies in data grids",
in Proc. 8th IEEE International Conference on Computing Technology

and Information Management (ICCM), 2012, vol. 1, pp. 283-288.

