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Abstract—In this paper, a comparison of real-time extraction 

using the IIR Chebyshev of 4 order and the IIR Butterworth of 

6 order methods is proposed. In the Experiment, the steady-state 

visual evoked potential with stimuli frequencies of 7,5 10, 15, and 

20 Hz is used to control the wheelchair directions (i.e., stop, 

forward, right, and left). The data were collected from a session 

in which fourteen subjects with age about 24±2 years were 

tested. The total average classification accuracy of 82% and 

62.2% for Chebychev and Butterworth extraction method are 

achieved. The higher average classification accuracy of 100% 

and 92.8% for both methods, respectively, are obtained for 

forward direction (8.75-12.5Hz). 

 

Index Terms—Butterworth; Chebyshev; EEG-SSVEP; 

Feedforward Neural Networks. 

 

I. INTRODUCTION 

 

The brain consists of billions of nerve cells called neurons 

that are interconnected each other to form a network 

(electrical current occurs in nerve cells) [1]. The flow of 

electricity in the brain is essentially caused by the movement 

of negative and positive ions out of the cell and cross from 

one fiber to another. The brain regulates and coordinates 

thoroughly of the body such as movements, behaviors, and 

their functions such as muscle movement, organ activity, and 

the center for human awareness of stimuli (hot, cold, touch, 

visual, hearing, etc). Therefore, if we can exactly identify and 

differentiate the pattern of brain signals related to the given 

stimuli such as movement, behaviours, and their functions, 

not only the body but the environment also can be controlled. 

Electroencephalogram (EEG) is a noninvasive 

measurement method to capture the electrical activities of the 

brain on the scalp over multiple areas. The measurement of 

currents that flow during synaptic excitations from a neuron 

to another in the cerebral cortex area is called EEG signal. 

The EEG signals, which is important in clinical application 

(i.e., for diagnosing, monitoring, and managing neurological 

disorders) and in research field (i.e., brain-computer interface 

(BCI) application), is extensively contaminated by a variety 

of large signal or noise [2].The EEG signals consist of many 

data points, however it can only be compressed into a few 

parameters as a feature to differentiate desired information. 

The represented feature of the EEG signals is particularly 

important for recognition, identification, and others external 

application purposes. Detecting and analyzing biosignals of 

the human brain is very important to figure out the brain 

construction, operational function, and how those 

information could be applied to environment control. The 

application of brain signals detection has been developed in 

various fields. From many available biosignals, steady-state 

visual evoked potential (SSVEP) is one of the important 

biosignals of the brain which has a wide application in 

examining brain activity and cognitive functions [2]. These 

signals are natural responses for visual stimulations at 

specific frequency range. When the retina is excited by a 

visual stimulus ranging from 3.5 Hz to 75 Hz, normally the 

brain will generate an electrical activity at the same (or 

multiples of the) frequency of the designed visual stimulus. 

This method is used by the brain to differentiate which 

stimulus the subject is looking at in case of stimuli is flashed 

with different frequency [3, 4]. 

Numerous applications of the EEG based SSVEP are as a 

communication tool by people with neuromuscular disorders 

(such as BCI wheel-chair) [2, 5-17], as audio speller [18], and 

a lie detector [19].  Recently, a great variety of its potential 

applications have been widely studied such as smart homes, 

internet browsing, market researchers, and BCI for 

controlling hand grasp [20]. Previous research has shown that 

several aspects of the ERP (especially the latency and 

magnitude) are highly variable across trials. Many procedures 

appeared in research area to resolve the problem of EEG 

(specifically for obtaining maximum amplitude of SSVEP) 

are not sufficiently standardized yet. 

In this paper, a real-time extraction method between IIR 

Chebyshev of 4 order and IIR Butterworth of 6 order is 

compared. The designed filter as an extraction method is 

developed based on the four stimuli frequencies (i.e., f:7.5 

(bottom), 10 (up), 15 (right), and 20 (left) Hz) as indicated in 

visual or intension stimuli in Figure 1. The four peak (i.e., ω: 

0.03π, 0.04π, 0.06π, and 0.08π) corresponds to the four 

stimuli frequencies, respectively. They are converted with 

f=fs ω/2π, f is stimuli frequency, fs is the sampling frequency 

(500 Hz), and ω is the normalized frequency. Through the 

designed method, it is expected that the appeared maximum 

power spectrum of the extracted signals are close as possible 

with the stimuli frequency range by mean the quality of the 

extracted signals are significantly improved. At last, the 

extracted signals are classified using an adaptive feed forward 

neural networks (AFNN) technique. A modular classification 

AFNN algorithm based on Levenberg-Marquardtin updating 

parameters is used. The experimental results in this paper 

show that the implementation of the proposed method 

achieves a very significant statistical improvement in 

extracting and classifying the peak of amplitude which helps 

improve different BCI applications in order to help the people 

and provide them with efficient solutions. Figure 1 is a 

proposed scheme of real-time extraction of brain signals for 
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wheelchair movement with designed visual stimuli. 

 

 
 

Figure 1: Scheme of real-time extraction of brain signals for Wheelchair-

BCI with visual stimuli design: 7.5 (bottom), 10 (up), 15 (right), and 20 
(left) Hz indicate the wheelchair go stop, forward, right, and left, 

respectively 

 

II. METHODS 

 

A. Data Acquisition 

In the experiment, fourteen subjects between the ages of 22 

and 26 years old (all males, none of whom had any known 

neurological deficits) were tested. The stimuli were four red 

square (each measuring 4.1 x 4.1 cm) presented with four 

different frequencies at the computer screen monitor (see 

Figure1). The subjects were sited at a distance of 70 cm and 

focused on one of the flashed red squares according to the 

intended direction. In brain based EEG recording signals, 

researchers have normally minimized recorded noise by 

reducing the impedance between the recording electrodes and 

the living skin tissue. High electrode impedances do not 

meaningfully reduce the size of the EEG signal, but they 

might increase the noise level, resulting in a lower signal-to-

noise ratio. In this experiment, less than 5 kΩ impedances is 

used as shown in Figure 3. The EEG signals are recorded 

continuously using three electrodes (channels) at O1, O2, and 

Oz by following the 10-20 International System and digitized 

at a 500 Hz sampling rate. Each subject records four sessions 

to indicate four different directions. Different data analysis of 

this experiment has been published in the other works [21, 

22]. For the performance evaluation of the proposed method, 

two of experiments were conducted. 

 

B. Signal Processing 

Preparatory to an analysis of the features of maximum 

amplitude from recorded EEG-SSVEP signals in real time, 

actual signals were recorded in three-channel (O1, O2, and 

Oz) configuration. In the experiment, 19 channels were 

recorded but in this paper, the data were only processed from 

the three channels according to the visual stimuli. Two 

feature extraction methods which are IIR Chebyshev of 4 

order and the IIR Butterworth of 6 order are compared in real 

time. Both proposed design extraction methods are shown in 

Figure 2 and 3. The cut-off frequencies of band-pass and stop-

band filter are designed in the range of 7.25 - 20.5 Hz with an 

attenuation of -10 dB for Chebyshev and in the range of 3-40 

Hz with an attenuation of -25 dB for out of stopband range. 

In the designed filter of the Butterworth extraction for 

passband in the range of 6 – 21 Hz according to the given 

stimulus, the stopband filter must be in the range of 3 – 40 

Hz. However, in the Chebyshev extraction, the stopband can 

be closely assigned into given stimuli which the noise out of 

the intended frequency ranges is highly removed. 

The filtered signal is captured based on the time of the 

given stimuli. Since the sampling frequency of the EEG 

system (Mitsar 202) is 500 Hz while the time for each given 

stimulus is about 5 seconds, then the obtained data is 500 x 5 

= 2500 data per 5 seconds. Therefore, for the recording time 

of 90 seconds, the total obtained data is about 4500 data (i.e., 

90 x 500). The filtered EEG-SSVEP signals are then 

transformed into frequency domain using fast Fourier 

transform (FFT) algorithm.  

 

 
Figure 2: Magnitude Response of the IIR Butterworth of 6 order in the 

normalized Frequency ω (πrad) scheme of real-time extraction of brain 
 

The feedforward neural network (FNN) is one of the most 

widely used ANNs [9, 23, 24]. By adaptively updating the 

varies parameter of the weight in such of classification 

purpose then the FNN called as adaptive feedforward neural 

network (AFNN). The neurons in an AFNN are organized as 

a layered structure and connected in a strict feedforward 

manner. The network is trained using many different training 

patterns or features. The information in the network is stored 

as connection weights, which are updated during the training 

procedure so as to minimize the total error between the actual 

outputs generated by the network and the desired outputs 

which is called supervised learning. The structure of a basic 

FNN is presented in Figure 4. 

 

 
 

Figure 3: Magnitude Response of the IIR Chebyshev of 4 order in the 

normalized Frequency ω (πrad) 

 

In the input layer (i.e., the maximum amplitudes from each 

channel O1, O2, and Oz) and each hidden layer, there is 

always a bias neuron along with original input neurons and 

specified hidden neurons. The bias neuron is represented by 

the symbol ‘b' (1 is used as the input value to bias neurons) in 

Fig.4. xn represents the input variable to a neuron. Given the 

need to train the FNN, bias neurons serve to increase the 

degrees of freedom of the network and to update the training 

weights. The use of a bias term is a way of improving training 

weights at its layer and helps convergence of the weights to 

an acceptable solution. From Figure 4, the output of the 
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neuron can be written as 
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Figure 4: AFNN architecture 

 

where i denote the number of input, j denotes the number of 

neurons, b indicate the bias of each layer, z indicates the 

output of networks, xi are the O1, O2, and Oz as neuron input, 

vij are the interconnection weights of the second layer, wj are 

the interconnection weights of the second layer, g(∙) and f(∙)  

are the activation function of the first and the second layer, 

respectively, and y is the output of the neuron. In this 

classification, the output y is obtained in the form of 

frequency range such as less than 7.5Hz, 7.51-12.5Hz, 12.51-

17.5Hz, and more than 17.5Hz. 
 

III. EXPERIMENTAL RESULTS 

 

The raw data, filtered signals using Chebyshev and 

Butterworth of subject 4 are given in Figures 5- 7. The raw 

data and filtered signals are almost similar for all subject by 

mean they are still difficult to differentiate each other since 

they still corrupted by some artifact. However, it can be 

roughly seen that the average extracted amplitude using the 

Chebyshev method is smaller than using the Butterworth 

method. It is assumed that the result by Butterworth is higher 

corrupted by artifact but it could be richer with the desired 

information. In the filter design, the stopband range of the 

Butterworth is wider than the Chebyshev method. While in 

the Chebychev design filter, the ripple in the band-pass area 

is used to pass the frequency of 7.5, 10, 15 and 20 Hz (stimuli 

frequency) and remove the frequency signal outside the 

stimuli. However, to avoid the uneven attenuation due to the 

transition from the pass-band to the stop-band area, the 

bandwidth is slightly expanded. Those frequencies have 

designed to be the peak of the Chebyshev filtered by mean 

the amplitude around those peaks will be passed. Therefore, 

the quality of the feature extraction is improved as indicates 

in Figure 6.  

The features were extracted every 320 (one trial) for about 

16 target trials. Although there is some noticeable 

improvement, it remains difficult to identify the associated 

signals with respect to the given stimulus. The extracted 

maximum amplitude with its frequency ranges about 7 to 30 

Hz for each channel (O1, O2, and Oz) are given in Figure 8 

and Figure 9 for Chebychev and Butterworth extraction 

methods, respectively. Each figure indicates that the 

maximum amplitude is achieved at the average frequency of 

10 Hz (subject 4). The FFT results with Chebychev method 

is slightly better than obtained with Butterworth. However, 

these results were not automatically happened with all 

subjects. In several subjects, the obtained with Butterworth 

methods was better as indicated in Tables 1 to 4. 

 
Figure 5: Raw data of EEG-SSVEP 

  

 
Figure 6: Extracted EEG-SSVEP signals with Chebyshev 

 

The EEG-SSVEP signals have been converted from time 

domain to frequency domain by using the FFT method 

(Figures. 8 and 9), the value varies greatly from the three 

channels used. So a classifier is required that will produce a 

single value to navigate the electric wheelchair. To improve 

the learning process and produce high accuracy the number 

of neurons, the classifier is designed with 2 layers with the 

first layer 72 neuron and second layer 1 neuron. Training of 

an AFNN is the same as solving a nonlinear programming 

problem. The variables of the problem are the weights of the 

AFNN, and the objective function is the mean square error of 

all the training patterns. The error of an input pattern is the 

difference between the desired output and the actual output 

generated by the AFNN. The Levenberg-Marquardt curve-

fitting method (a combination of two minimization methods: 

the gradient descent method and the Gauss-Newton method) 

is used. 

 

 
Figure 7: Extracted EEG-SSVEP signals with Butterworth. 
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Figure 8: The captured signal in frequency domain from Chebyshev 

extraction 
 

 
Figure 9: The captured signal in frequency domain from Butterworth 

extraction 

 

The classification results for all subject are given in Table 

1and Table 3 (left and right) using feature extracted by 

Chebchev method and Table 2 (forward and stop) using 

feature extracted by Butterworth. The average classification 

accuracy of 82% and 62.2% for Chebychev and Butterworth 

extraction method are achieved. The significant difference of 

classification accuracy between the obtained from 

Chebychev and Butterworth methods is caused by the wide 

range of the Butterworth stopband (i.e., 3-40 Hz). The 

passband range of the Butterworth is about 6 – 21 Hz. There 

were some noise or artifact that included in the extracted 

signals especially in the low and high-frequency range. This 

statement highly related with the low classification results in 

both frequency range (i.e., < 7.5 Hz and > 17.5 Hz) which 

related with left and stop direction. That low classification for 

the high-frequency range might be caused by the frequency 

of the stimulus were too high by mean the ability of visual 

concentration of most subject is less than 18 Hz. The higher 

classification accuracy of 100% and 85.7% for both methods 

are obtained for forward direction. It can be concluded that 

the classification accuracy is affected by the stimuli 

frequency and the design of the extraction method especially 

related to the range of the stopband.  

 
Table 1 

Classification Accuracy: Left and Right with Chebychev Method 
 

S 

Left (> 17.5Hz) Right (12.51-17.5Hz) 

Input 
Out 

Input 
Out 

O1 O2 Oz O1 O2 Oz 

1 20 20 20 20 14.9 14.9 14.9 15 

2 11.7 18.4 17.7 17.6 13.4 12 13.4 15 

3 19.8 19.8 19.8 19.4 14.9 14.9 14.9 15 

4 20 9.76 20 20 14.9 14.9 14.9 15 

5 9.76 10.2 9.76 10 15.1 14.6 15.1 14.2 

6 11 10.5 11 10.1 14.9 15.1 14.9 16.3 

7 17.56 15.1 17.56 17.8 14.9 15.1 14.9 16.3 

8 7.56 18.9 7.56 17.9 14.9 14.9 14.9 15 

9 14 7.56 14.4 15 12 12 14 13 

10 10.2 10 10.2 9.98 15.1 14.9 15.1 15 

11 15.1 9.76 15.4 18.9 14.9 14.9 14.9 15 

12 20 11.2 20 20 14.9 11.5 14.9 13.6 

13 15.1 7.65 19.1 18.3 10.5 9.27 8.54 7.92 

14 12.9 10 12.9 12 15.6 14.9 15.6 15.1 

 Accuracy 64% Accuracy 93% 

 

Table 2 

Classification Accuracy: Forward and Stop with Chebychev Method 
 

S 

Forward (7.51-12.5Hz) Stop (< 7.5Hz) 

Input 
Out 

Input 
Out 

O1 O2 Oz O1 O2 Oz 

1 10 10 10 9.99 7.56 14.9 14.9 -12.6 

2 14.6 12.2 14.6 12.4 13.2 12.9 13.2 10.7 

3 10 10 10 9.99 14.9 7.56 14.9 7.2 

4 10 14.6 10 11.7 14.9 7.56 5.9 7 

5 11 11 11 9.99 11 11 11 9.99 

6 10 10 10 9.99 4.4 8.9 12.4 5.5 

7 10 10 10 9.99 9.76 10 9.76 10 

8 10.2 7. 6 10.2 9.99 9.76 7.32 6.76 5.7 

9 10.2 10 10.2 9.98 5 10 4 6.98 

10 9.76 10 9.76 10 7.56 7.56 7.56 7.49 

11 10 10 10 10 10 14.9 13.9 13.7 

12 10 10 10 10 5.9 12.4 7.9 5.3 

13 9.76 10 10 10.2 7.56 150.2 7.56 6.35 

14 10 7.56 10 11.2 14.9 11.2 14.9 14.2 

 Accuracy 100% Accuracy 71% 

 

Table 3 

Classification Accuracy: Left and Right with Butterworth Method 
 

S 

Left  (> 17.5Hz) Right  (12.51-17.5Hz) 

Input 
Out 

Input 
Out 

O1 O2 Oz O1 O2 Oz 

1 20 11.2 20 20 14.9 14.9 14.9 15 

2 11.7 12.4 11.7 10 13.4 12 13.4 15 

3 20 12.7 20 20 14.9 11 14.9 15 

4 19.8 9.76 20 20 14.9 14.9 14.9 15 

5 4.88 12.9 5.12 7.48 11.7 12 11.7 7.17 

6 11 22.2 11 17.6 11.2 15.1 11.2 14.5 

7 6.1 6.34 5.85 7.58 5.85 6.34 5.85 7.37 

8 7.56 8.78 7.56 7.72 7.32 7.56 7.32 7.77 

9 11 11.5 18.5 19.1 10 10 10 9.99 

10 5.61 14.4 5.61 7.86 15.1 14.9 15.1 15 

11 12.9 9.76 12.9 18.9 11.7 14.9 14.9 14.6 

12 11.2 11.2 20 7.52 14.9 22.9 14.9 17 

13 11.7 4.88 11.7 31.5 12.9 7.32 8.54 22.3 

14 12.9 4.88 12.9 31.3 15.6 12.4 15.6 17.3 

 Average Accuracy 57.1% Average Accuracy 64.3% 

 
Table 4 

Classification Accuracy: Forward and Stop With Butterworth Method 

 

S 

Forward (8.75-12.5Hz) Stop (< 7.5Hz) 

Input 
Out 

Input 
Out 

O1 O2 Oz O1 O2 Oz 

1 10 10 10 9.99 7.56 11 7.32 7.49 

2 13.2 12.2 13.2 11.5 13.2 12.9 13.2 10.7 

3 10 12.2 10 10 14.9 11.2 14.9 14.6 

4 11 8.78 11 10 7.56 22.2 7.56 7.5 

5 11 11 11 9.99 11 11 11 10 

6 9.27 10 9.27 9.99 12.4 12.4 12.4 10.3 

7 10 5.85 10 9.99 11 5.61 11 5.36 

8 10.2 7.56 10.2 9.99 10.9 7.32 9.75 7.2 

9 11.2 11 11 10 10.7 11 10.7 9.98 

10 9.76 10 9.76 10 7.56 7.31 7.56 7.49 

11 10 20 10 5.57 13.4 13.9 12.2 9.83 

12 10 23.7 10 10.5 14.9 12.4 14.9 19.3 

13 9.76 10 10 10.2 7.56 12.9 11.2 7.38 

14 10 5.61 10 9.96 14.9 11.2 14.9 14.2 

 Average Accuracy 92.8% Average Accuracy 42.6% 

 

IV. CONCLUSIONS 

 

A non-invasive brain-computer interface uses EEG-

SSVEP signals over visual cortex to control electronic 

wheelchair movement (i.e., Stop, forward, right, and left) is 

developed. A comparison of real-time extraction using the 

IIR Chebyshev of 4 order and the IIR Butterworth of 6 order 

methods is proposed. The total average classification 



A Comparison of Real-Time Extraction between Chebyshev and Butterworth Method for SSVEP Brain Signals 

 e-ISSN: 2289-8131   Vol. 10 No. 2-3 139 

accuracy of 82% and 62.2% for Chebychev and Butterworth 

extraction method are achieved. The higher average 

classification accuracy of 100% and 92.8% for both methods, 

respectively, are obtained for forward direction (8.75-

12.5Hz). It can be concluded that the classification accuracy 

is affected by the stimuli frequency and the design of the 

extraction method especially related to the range of the 

stopband. 
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