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Abstract 

A Network-on-Chip (NoC) is a new paradigm 
in complex System-on-Chip (SoC) designs 
that provides efficient on-chip communication 
architecture. It offers scalable communication to 
SoC and allows decoupling of communication 
and computation. In NoC, design space 
exploration is critical due to trade-offs among 
latency, area, and power consumption. Hence, 
analytical modeling is an important step for 
early NoC design. This paper presents a novel 
top-down approach router model, and utilizes 
this model for analysis mesh NoC performance  
measured in terms of throughput, average of 
queue size, efficiency, and loss and wait time. As 
case study, the proposed model is used to map 
a MPEG4 video core to a 4x4 mesh NoC with 
deterministic routing to measure the overall 
NoC quality of service, The model is used also 
to present how much occupancy of average 
queue size for each router that reduces resources 
(hardware) area and cost. The accuracy of this 
approach and its practical use is illustrated 
through extensive simulation results.

Keywords: Markov chain, Network-on-Chip, 
Queue, Router, System-on-Chip. 

I. INTRODUCTION

Network-on-chip (NoC) has been 
proposed [1] to replace system bus as the 
primary on-chip communication method. 
Due to the separation of computation and 
communication, NoC could be designed 
separately from the computational entities 
(termed intellectual properties, IPs) [2]. 
Hence, analysis and optimization of NoC 
performance in terms of delay, latency, and 
loss are required. Quality-of-Service (QoS) 
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for NoC defines the level of commitment 
for packet delivery among IPs. Such a 
commitment can be the correctness and 
completion of the transaction, and bounds 
on the performance [3]. 

Researchers addressed the NoC router 
modeling from different perspectives 
[9]–[12]. The work in [12] proposed a delay 
model for a variable pipelined wormhole 
router with fixed time cycle to address 
Lopez’s model problem. However, these 
models cannot be applied for router 
designs that use both clock edges and 
furthermore they did not study the impact 
of changing router design parameters 
on its delay. The router queue modeling 
also still need to be addressed because 
it is very important to get an estimation 
of the optimum queue size that matches 
the target traffic characteristics at higher 
levels of abstraction. 

Different NoC-based SoC applications 
require different NoC design aspects 
in terms of the topology, router type, 
queue size, and switching technique. 
The challenges for NoC research have 
thus been on assisting early design space 
exploration for NoC-based SoC. Good 
traffic and NoC performance estimation 
could significantly shed some light to 
probable NoC design aspects. This work 
looks at router model that estimates an 
NoC router performance. This paper 
presents a performance analysis of mesh 
NoC in terms of throughput, average 
queue size, efficiency, loss, and waits 
time. A discrete time Markov model of 
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mesh NoC topology is obtained, which
helps decision-making in terms of 
switching techniques, buffer sizes, and 
router types. This also helps to identify 
router and link hotspots for better packet 
routing. 

II. RelATeD wORks 

System bus is a circuit-switching, 
connection-oriented on chip 
communication backbone. In contrast, 
NoC uses packetswitching, which 
segments the message into a sequence 
of packets [4] sent to a shared network. 
On-chip networks share the same 
characteristics in topology, switching, 
routing, and flow control with local area 
network [13]. Furthermore, NoC has to 
provide high and predictable performance 
[5] with small area overhead and low 
power consumption. 

An important problem in NoC is the router 
design, because it significantly affects 
the network performance and power 
consumption. An efficient router design 
is determined by its switching technique 
(packet switching, wormhole, etc.), flow 
control type (hand shaking, credit based, 
etc.), queue size, arbiter design (round 
robin, rate-proportional servers, etc.), 
routing scheme (adaptive, deterministic). 
Researchers tried to address the design 
and modeling of NoC routers from 
different perspectives. In this subsection, 
we highlight the work done up to date in 
this area through representative research 
work. 

Researchers addressed the NoC router 
modeling from different perspectives 
[9]–[12]. Chien et al. [14] proposed a 
delay model for wormhole and virtual 
channel routers. However, this model 
was designed for 0.8-micron CMOS 
and also cannot be applied to pipelined 
architectures. Lopez et al. [16] proposed 
an extension to Chiens model for 
pipelined routers. But Lopezs model 
assumes that the time duration of the 
clock cycle depends on the router latency, 

which is not a practical assumption. Peh 
et al. [12] proposed a delay model for a 
variable pipelined wormhole router with 
fixed time cycle to address Lopezs model 
problem. However, these models cannot 
be applied for router designs that use 
both clock edges and furthermore they 
did not study the impact of changing 
router design parameters on its delay. 

The router queue modeling still need to 
be addressed because it is very important 
to get an estimation of the optimum 
queue size that matches the target 
traffic characteristics at higher levels of 
abstraction. Due to limited buffers [6] and 
link bandwidth, packets may be blocked 
due to contention [7]. Buffer sizing has 
a direct association with bounds in 
bandwidth, delay and jitter [8].

III. NOC sTRUCTURe

This chapter provides background on NoC 
architectural issues. These issues include 
network topology, router structure, 
switching techniques and routing 
algorithms. The trade-off analysis in NoC 
modeling can be performed by optimally 
considering NoC architecture parameters 
based on a specified application.

A. Topology

This architecture is based on an m × 
n mesh network where every router, 
except those at the edges, is connected 
to four neighbouring routers and one 
computation resource, (IP) through 
communication channels [15]. This 
topology allows integration of large 
number of IP cores in a regular shape 
structure. A channel consists of two 
unidirectional links between two routers 
or between a router and a resource. Fig. 
1 shows a 3 × 3 mesh NoC with nine 
functional IP blocks.
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The router queue modeling still need to be addressed 
because it is very important to get an estimation of the 
optimum queue size that matches the target traffic 
characteristics at higher levels of abstraction. Due to limited 
buffers [6] and link bandwidth, packets may be blocked due to 
contention [7]. Buffer sizing has a direct association with 
bounds in bandwidth, delay and jitter [8]. 

III. NOC STRUCTURE 
This chapter provides background on NoC architectural 

issues. These issues include network topology, router 
structure, switching techniques and routing algorithms. The 
trade-off analysis in NoC modeling can be performed by 
optimally considering NoC architecture parameters based on a 
specified application. 

A. Topology 
This architecture is based on an m × n mesh network where 

every router, except those at the edges, is connected to four 
neighbouring routers and one computation resource, (IP) 
through communication channels [15]. This topology allows 
integration of large number of IP cores in a regular shape 
structure. A channel consists of two unidirectional links 
between two routers or between a router and a resource. Fig. 1 
shows a 3 × 3 mesh NoC with nine functional IP blocks. 

 

 
 

Fig. 1.  Mesh Topology 
 

The 2D-torus architecture is basically similar as a regular 
mesh except that routers at the edges are connected to the 
routers at the opposite edge through wrap-around channels 
[17]. Every router has five ports, one connected to the local 
resource and the others connected to the closest neighboring 
routers. The long end-around connections can yield excessive 
delays. An octagon NoC consisting of 8 nodes and 12 
bidirectional links. In an octagon topology, exchange message 
between any pair of nodes takes at most two hops. To design a 
system consisting of more than eight nodes, the octagon can 
be extended to multidimensional space, however with a 
significantly increased wiring complexity [16]. 

B. Router Structure 
Router operates at the network layer similar to the one for 

computer network. A router uses packet headers and a 
forwarding table to determine the best way a packet should go 

between the networks. An NoC router has three main 
architectural components, input/output ports, queues, and 
switch fabric (SF). The switch fabric establishes the required 
paths between pairs of input and output ports according to a 
certain routing mechanism suach as round-robin scheduler, 
weighted round-robin scheduler, and max-min fairness 
scheduling [18]. 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 2.  Input-queuing router 

 
Fig. 2 shows an input-queuing router. Each input port has a 

dedicated first-in first-out (FIFO) queue for storing incoming 
packets. In one time step, an input queue must be able to 
support one write and one read operations. Assuming an n×n 
router, the switch fabric must connect n input ports to n output 
ports [18]. The main advantage of an input queuing router is 
the low memory speed requirement, distributed traffic 
management at each input port, and also distributed table 
lookup at each input port. It is supports packets broadcast and 
multicast without the need to duplicate the packet. The main 
disadvantage is the head of line (HOL) problem when the 
packet at the head of the queue is blocked from accessing the 
desired output port [18]. There are three potential causes for 
packet loss, fully populated input queue, internal blocking due 
to blocked the switch fabric, and when switch fabric is busy 
serving another packet. 

C. Switching Techniques 
As an alternative to circuit switching, a message can be 

partitioned and transmitted as fixed-length packets by packet 
switching. Packets are individually routed from source to 
destination. A packet is stored at each intermediate node then 
forwarded to the next node. Packet switching is good for short 
and frequent messages [19]. However, unlike in circuit 
switching where a physical path is reserved for the whole 
message, each packet of a message has to be routed at each 
intermediate node. Moreover, splitting a message into packets 
also increases overhead.  

Traditional designs borrowed from local area networks 
(LANs) result in limiting performance bottleneck. Some new 
switching techniques, such as virtual cut-through (VCT) and 
wormhole switching techniques have been proposed to 
improve NoC performance [19]. In packet switching, a packet 
must be received, in whole, at an intermediate node before a 
routing and forwarding decision to the destination. However, 
the header of a packet usually arrives to an intermediate node 
earlier than the tail of a packet by several clocks. To construct 
small router that resides in an on-chip component, wormhole 
switching is usually used [19]. This work assumes wormhole 
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The 2D-torus architecture is basically 
similar as a regular mesh except that 
routers at the edges are connected to 
the routers at the opposite edge through 
wrap-around channels [17]. Every router 
has five ports, one connected to the local 
resource and the others connected to the 
closest neighboring routers. The long end-
around connections can yield excessive 
delays. An octagon NoC consisting of 8 
nodes and 12 bidirectional links. In an 
octagon topology, exchange message 
between any pair of nodes takes at most 
two hops. To design a system consisting 
of more than eight nodes, the octagon can 
be extended to multidimensional space, 
however with a significantly increased 
wiring complexity [16].

B. Router structure

Router operates at the network layer similar 
to the one for computer network. A router 
uses packet headers and a forwarding 
table to determine the best way a packet 
should go between the networks. An 
NoC router has three main architectural 
components, input/output ports, queues, 
and switch fabric (SF). The switch fabric 
establishes the required paths between 
pairs of input and output ports according 
to a certain routing mechanism suach as 
round-robin scheduler, weighted round-
robin scheduler, and max-min fairness 
scheduling [18].
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contention [7]. Buffer sizing has a direct association with 
bounds in bandwidth, delay and jitter [8]. 
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optimally considering NoC architecture parameters based on a 
specified application. 

A. Topology 
This architecture is based on an m × n mesh network where 

every router, except those at the edges, is connected to four 
neighbouring routers and one computation resource, (IP) 
through communication channels [15]. This topology allows 
integration of large number of IP cores in a regular shape 
structure. A channel consists of two unidirectional links 
between two routers or between a router and a resource. Fig. 1 
shows a 3 × 3 mesh NoC with nine functional IP blocks. 
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routing and forwarding decision to the destination. However, 
the header of a packet usually arrives to an intermediate node 
earlier than the tail of a packet by several clocks. To construct 
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Fig. 2 shows an input-queuing router. 
Each input port has a dedicated first-
in first-out (FIFO) queue for storing 
incoming packets. In one time step, an 
input queue must be able to support one 
write and one read operations. Assuming 
an n×n router, the switch fabric must 
connect n input ports to n output ports 
[18]. The main advantage of an input 
queuing router is the low memory 
speed requirement, distributed traffic 
management at each input port, and also 
distributed table lookup at each input 
port. It is supports packets broadcast and 
multicast without the need to duplicate 
the packet. The main disadvantage is the 
head of line (HOL) problem when the 
packet at the head of the queue is blocked 
from accessing the desired output port 
[18]. There are three potential causes for 
packet loss, fully populated input queue, 
internal blocking due to blocked the 
switch fabric, and when switch fabric is 
busy serving another packet.

C. switching Techniques

As an alternative to circuit switching, 
a message can be partitioned and 
transmitted as fixed-length packets by 
packet switching. Packets are individually 
routed from source to destination. A 
packet is stored at each intermediate 
node then forwarded to the next node. 
Packet switching is good for short and 
frequent messages [19]. However, unlike 
in circuit switching where a physical 
path is reserved for the whole message, 
each packet of a message has to be routed 
at each intermediate node. Moreover, 
splitting a message into packets also 
increases overhead. 
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Traditional designs borrowed from local 
area networks (LANs) result in limiting 
performance bottleneck. Some new 
switching techniques, such as virtual cut-
through (VCT) and wormhole switching 
techniques have been proposed to 
improve NoC performance [19]. In packet 
switching, a packet must be received, in 
whole, at an intermediate node before a 
routing and forwarding decision to the 
destination. However, the header of a 
packet usually arrives to an intermediate 
node earlier than the tail of a packet by 
several clocks. To construct small router 
that resides in an on-chip component, 
wormhole switching is usually used [19]. 
This work assumes wormhole switching 
because this switching requires less 
queue capacity and allows low-latency 
communication.

D. Routing

Routing algorithms are used to specify the 
path from source to destination for each 
message. They can be implemented in 
two ways which are either deterministic 
or adaptive [19]. 

Deterministic routing protocol chooses 
the path for a message only by its source 
and destination. All packets with the 
same source and destination pair will 
follow one single path. The packet will be 
delayed if any channel along this path is 
loaded with heavy traffic, and if a channel 
along this path is faulty, the packet cannot 
be delivered. Thus, the deterministic 
routing protocols suffer from poor use 
of bandwidth, and blocking even when 
alternative paths are available. 

A common deterministic routing algorithm 
is dimension order routing, in which the 
packet is routed in one dimension at a 
time, arriving at the proper coordinate in 
each dimension before proceeding to the 
next dimension. Deterministic routing has 
been widely used in multi-computers due 
to its simplicity for router implementation 
[19]. It is because in the deterministic 
routing, messages with the same source 
and destination always traverse the same 
path. 

Adaptive routing protocols are 
proposed to make more efficient use 
of bandwidth and to improve fault 
tolerance of interconnection network. In 
order to achieve this, adaptive routing 
protocols provide alternative paths for 
communicating nodes. Thus, it could 
overcome the congested areas in the 
network. Several adaptive routing 
algorithms have been proposed, showing 
that message blocking can be considerably 
reduced, thus strongly improving 
throughput [16].

IV. MARkOV CHAIN AppROACH 
FOR NOC MODelINg

There are several approaches to modeling 
NoC. Several works [1]–[4] focus on 
stochastic models. This project could be 
conceptualized from top-level system 
design. It starts with the highest level of 
NoC view, and works its way down to 
every single component in NoC block 
diagram.

A. Modeling Abstractions

An NoC-based SoC system is composed 
from an NoC topology and IP blocks. The 
NoC provides decoupling computation 
(IP) and communication parts. This allows 
for IPs and interconnects to be designed 
independently. At a level below is the 
router abstraction. Routers are pivotal 
modules in NoC based design.

1)  NoC-level Abstraction: Fig. 3 shows 
a SoC system is composed from 
NoC and IP blocks. The NoC 
provides decoupling computation 
(IP) and communication parts. This 
allows for IPs and interconnects to 
be designed independently.

2)  Topology-level Abstraction: Fig. 1 
shows the top level view of a 3 
mesh topology for NoC modeling. 
Two elements on NoC are router 
and network interface (NI). The 
NI is used as interfaces between IP 
blocks and NoC. Function of the 
router is to transport data from one 
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network interface to another. This 
work considered analysis on NoC 
router only.

switching because this switching requires less queue capacity
and allows low-latency communication. 

D. Routing 
Routing algorithms are used to specify the path from source 

to destination for each message. They can be implemented in 
two ways which are either deterministic or adaptive [19].  

Deterministic routing protocol chooses the path for a 
message only by its source and destination. All packets with 
the same source and destination pair will follow one single 
path. The packet will be delayed if any channel along this path 
is loaded with heavy traffic, and if a channel along this path is 
faulty, the packet cannot be delivered. Thus, the deterministic 
routing protocols suffer from poor use of bandwidth, and 
blocking even when alternative paths are available.  

A common deterministic routing algorithm is dimension 
order routing, in which the packet is routed in one dimension 
at a time, arriving at the proper coordinate in each dimension 
before proceeding to the next dimension. Deterministic 
routing has been widely used in multi-computers due to its 
simplicity for router implementation [19]. It is because in the 
deterministic routing, messages with the same source and 
destination always traverse the same path.  

Adaptive routing protocols are proposed to make more 
efficient use of bandwidth and to improve fault tolerance of 
interconnection network. In order to achieve this, adaptive 
routing protocols provide alternative paths for communicating 
nodes. Thus, it could overcome the congested areas in the 
network. Several adaptive routing algorithms have been 
proposed, showing that message blocking can be considerably 
reduced, thus strongly improving throughput [16]. 

IV. MARKOV CHAIN APPROACH FOR NOC 
MODELING 

There are several approaches to modeling NoC. Several 
works [1]–[4] focus on stochastic models. This project could 
be conceptualized from top-level system design. It starts with 
the highest level of NoC view, and works its way down to 
every single component in NoC block diagram. 

A. Modeling Abstractions 
An NoC-based SoC system is composed from an NoC 

topology and IP blocks. The NoC provides decoupling 
computation (IP) and communication parts. This allows for 
IPs and interconnects to be designed independently. At a level 
below is the router abstraction. Routers are pivotal modules in 
NoC based design. 

1) NoC-level Abstraction: Fig. 3 shows a SoC system is 
composed from NoC and IP blocks. The NoC provides 
decoupling computation (IP) and communication parts. This 
allows for IPs and interconnects to be designed independently. 

2) Topology-level Abstraction: Fig. 1 shows the top level 
view of a 3 mesh topology for NoC modeling. Two elements 
on NoC are router and network interface (NI). The NI is used 
as interfaces between IP blocks and NoC. Function of the 
router is to transport data from one network interface to 
another. This work considered analysis on NoC router only. 

 

 
 

Fig. 3.  NoC-level Model Abstraction 
 

3) Router-level Abstraction: Mesh topology is used with 
each router has the maximum 5 input-output ports. Four ports 
are connected with others routers and one port to the IP. Fig. 2 
shows an input-queuing router internal structure. Each input 
port has a first-in first-out (FIFO) queue for storing incoming 
packets. In mesh topology, the top queue is fed by the link 
connected to the IP associated with that router and the other 
four bottom queues are fed by the inter-router links. 

B.  Performance Metrics 
The NoC performance is analyzed in term of throughput, 

average queue size, and packet delay. 
1)Throughput in units of packets per time step which  

demonstrate how many end-to-end packet/flit transfer. 
2) Latency in terms of time step, where time step is define 

as the time to transfer a packet on a local link (between  
two routers or between an NI and a router). 

3) Average lost traffic is measured in units of packets per 
time step. 

4) Queue Occupancy Queue size is measured in units of   
packets. 

C. Queue Modeling 
This section presents an analytical model for input-queuing 

router. Each queue is considered as a first-in-first-out (FIFO) 
queue. The model has simple close-form calculations and 
produces the performance of the queue.  

A simple M/M/1/B queue is used in this model. This model 
provides a discrete-time Markov chain [18] analysis of queue 
where the time step is taken equal to the time required to 
transmit a packet. Poisson distribution traffic arrival process 
and the exponential distributed service time is assumed. For 
each queue model, one server queue with B finite buffer size 
are assumed. 
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the time required to transmit a packet. 
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one server queue with B finite buffer size 
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switching because this switching requires less queue capacity
and allows low-latency communication. 

D. Routing 
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Deterministic routing protocol chooses the path for a 
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the same source and destination pair will follow one single 
path. The packet will be delayed if any channel along this path 
is loaded with heavy traffic, and if a channel along this path is 
faulty, the packet cannot be delivered. Thus, the deterministic 
routing protocols suffer from poor use of bandwidth, and 
blocking even when alternative paths are available.  

A common deterministic routing algorithm is dimension 
order routing, in which the packet is routed in one dimension 
at a time, arriving at the proper coordinate in each dimension 
before proceeding to the next dimension. Deterministic 
routing has been widely used in multi-computers due to its 
simplicity for router implementation [19]. It is because in the 
deterministic routing, messages with the same source and 
destination always traverse the same path.  

Adaptive routing protocols are proposed to make more 
efficient use of bandwidth and to improve fault tolerance of 
interconnection network. In order to achieve this, adaptive 
routing protocols provide alternative paths for communicating 
nodes. Thus, it could overcome the congested areas in the 
network. Several adaptive routing algorithms have been 
proposed, showing that message blocking can be considerably 
reduced, thus strongly improving throughput [16]. 

IV. MARKOV CHAIN APPROACH FOR NOC 
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There are several approaches to modeling NoC. Several 
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significantly impact router performance in the network. 
Congestion condition occurs as soon as input traffic exceeds 
the maximum output traffic c. All routers have different 
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topology. Therefore, probability c for each router may be 
different. Assume that packet arriving at a certain input 
switching fabric router is destined to other n  1 router output 
with equal probability c that depends on n. The general 
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average of all queues in a router. There are the equations of 
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for a router ri. The overall performance in term of throughput, 
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obtained by averaging all 16 routers in a 4×4 mesh NoC. The 
general NoC performance is given in Table I. 
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A. MPEG4 SoC Traffic Distribution 
As shown in Fig. 6, a typical traffic distribution graph 

(TDG) for the video applications (MPEG4 core) discussed in 
[20] is considered the main design input. The numbers written 
on the arrows are the average number of packets transmitted 
and the numbers written on the circles represent the IPs 
number.  
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B. Mapping Routes to Connectivity Matrix 
IPs mapping and routing for the MPEG4 cores through the 

routers in 4×4 Mesh NoC with deterministic routing is shown 
in Fig. 7. All communication between IP blocks with same 
source and destination always go through same path of router 
through shortest path. Connectivity matrix is formed through 
IPs routing. A packet with same source and destination go 
through the specific routing path had been determined. Total 
no of hops used is 35 as shown in Table II. 
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The output traffic of a router is important 
value that significantly impact router 
performance in the network. Congestion 
condition occurs as soon as input traffic 
exceeds the maximum output traffic c. All 
routers have different number of input/
output port, n, and their placement in the 
NoC topology. Therefore, probability c 
for each router may be different. Assume 
that packet arriving at a certain input 
switching fabric router is destined to other 
n − 1 router output with equal probability 
c that depends on n. The general equation 
of output traffic c is:
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Table II.  MPEG4 connectivity matrix.
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D. Overall NoC performance and 
Router Hotspots

To verify performance analysis, overall 
mesh NoC performance in term of 
throughput, average queue size, efficiency, 
loss, and waiting time are performed. 
Initial mapping of 12-IPs MPEG4 core in 
4×4 mesh NoC modeling is made through 
the shortest path deterministic routing 
given in Table I and Fig. 7. Simulation 
was performed and the router loading 
performance analysis for all 16 routers is 
shown in Fig. 8. 

Fig. 8 shows that all 16 routers give 
different performance in mesh NoC due to 
the router loading and IPs traffic. Router 
six (R6) is determined as a router hotspot 
that gives the worst performance, only 
39% efficiency, 100% wait time and 61% 
loss. R6 is connected to IP5 has a highest 
traffic rate. Therefore, all five queues of R6 
have been mostly occupied with packets. 
The efficiency of centre routers are R7, 
R10, and 

also R6 less than 50%, while 100% 
occupancy of queue size, almost 100% 
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wait time, and more than 50% loss. The 
R9 that is connected to IP9 gives a best 
performance with closely 100% efficiency, 
no loss, and only 8% wait time. Congestion 
could be characterized by decreased 
efficiency, increased loss, and increased 
wait time. Throughput only depends on 
the probability output traffic c, for each 
router. The average of throughput for this 
mesh NoC is 54%.

e. Hotspots Analysis

The main reason to identify router 
hotspots in an NoC is to improve the 
overall performance NoC. Thus, IP of 
router hotspot is rerouted possibly until 
the best performance could be achieved. 
From this router loading analysis, an early 
idea of mapping IPs that have different 
traffic rate could be set up for the each 
router. The occupancy of average queue 
size also could be obtained with specific 
routes. Therefore, the resource hardware 
area and cost could be reduced in the 
NoC topology. 

 
 

Fig. 9.  Comparison efficiency between first routes and reroute IP5 in terms of a (a) Throughput, (b) Average queue size, (c) Loss, and (d) Wait time. 
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Fig. 9.  Comparison efficiency between first routes and reroute IP5 in terms of a (a) Throughput, 
(b) Average queue size, (c) Loss, and (d) Wait time.

Fig. 9 shows the percentage of loss 
between two routes among all 16 routers 
in mesh NoC. It can be seen that R6 is 
known as a router hotspot was decreased 
34% of loss after rerouting IP5. In contrast, 
for the loss percentage of R5 increased 
42% due to congestion occurred in all 
queue ports of R5. The only router of R7 
offered the most decreasing of loss after 
rerouting IP5. It was happened because 
the only north, east, and IP6 queue ports 
have been used to traverse the path. In 
general, apparently only 3% differences 
of performance between two routes due 
to the number of hops is used. The first 
route used 35 hops and second route used 
38 hops. It is shows that the first route 
provided a better overall performance 
than second route. Table III also reveals 
that the average queue size for both 
routes was reduced around 50% NoC 
area complexity.
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Table III.  Overall comparison before and after 
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Variables First 
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Throughput Th (packet/timestep) 54 57 
Queue occupancy Qa 51% 55% 
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VI. CONClUsION

This paper presented a Markov chain 
model for identifying router loading and 
hotspots. An analytical model for 4-4 mesh 
NoC with a video application MEPG4 
cores is presented. NoC performance 
metrics such as throughput, waiting time, 
queue size, efficiency, and loss could be 
easily identified from the model output. 

As with most other research works, the 
models described in this work cannot yet 
claim that they are finished. There are 
many interesting possibilities for future 
research here and the most important 
of these are, extending this modeling 
approach with other NoC topologies, 
router types, and queue models. Another 
challenging problem is to improve the 
model to automatically place each IP to 
the most optimum NoC tile. Finally is to 
prototype the NoC. 
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