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Abstract—The MAHNOB-HCI database provides baselines 

for several modalities but not all. Up to now, there are no such 

baselines using EDA signal for valence and arousal recognitions. 

Because EDA is one of the important signals in affect 

recognition, it is necessary to have baseline accuracy using this 

signal. Applying cvxEDA, EDA tool analysis based on convex 

optimization, to GSR signals resulted phasic, tonic, and 

sudomotor neuron activity (SMNA) phasic driver. There were 

two sets of features extracted, i.e. features from stimulated stage 

only and ratio of features from stimulated to relaxation stages in 

addition to the former set. Using kNN to solve the 3-class 

problem, the best accuracies under subject-dependent scenario 

were 74.6 ± 3.8 and 77.3 ± 3.6 for valence and arousal 

respectively while subject-independent scenario resulted in 75.5 

± 7.7 and 77.8 ± 8.0 for valence and arousal correspondingly. 

Validation using LOO gave 75.2% and 77.7% for valence and 

arousal respectively. cvxEDA method looked promising to 

extract features from EDA as the results were even better than 

the best results in the original database baseline. Some future 

works are using other feature extraction method, enhancing the 

accuracies by employing supervised dimensionality reduction 

and using other classifiers. 

 

Index Terms—cvxEDA; EDA; Emotion Recognition; 

MAHNOB. 

 

I. INTRODUCTION 

 

Previous studies [1]–[4] on emotion recognition using the 

MAHNOB-HCI database for affect recognition provided an 

important contribution to research on affective computing. 

Soleymani et al. [1] provided some baseline accuracies for 

several modalities using the signal from the MAHNOB-HCI 

database for the 3-class problem in valence (it represents the 

degree of pleasantness) and arousal (it represent the state of 

being awoken). Providing baselines from all possible 

combinations, including individual signal, however, seemed 

impossible, such that only some important combinations were 

provided. The best performances were 68% and 76% for 

valence and arousal respectively by combining features from 

EEG and eye gaze. Ferdinando et al. [2] provided baseline 

accuracy for valence, 43%, and arousal, 48%, using ECG 

signals only and they were gradually improved by employing 

different methods. To the best of the author’s knowledge, the 

best baseline accuracies using ECG signals only were 64% 

and 66% for valence and arousal respectively [4], validated 

under the subject-dependent scenario. The ones under 

subject-independent scenario were 59% [3] and 70% [4] for 

valence and arousal correspondingly. 

Another interesting modality for affect recognition is 

electrodermal activity (EDA) signal. Kreibig wrote that 

Autonomic Nervous System (ANS) activities related to 

emotion regulation emerged in cardiovascular and skin 

conductance (SC) measurement [5], bringing the fact that SC 

cannot be neglected in emotion recognition research. This 

signal has been the subject of many classic studies in emotion 

recognition in the absence of the other signals [6]–[9]. To the 

best of the author’s knowledge, there is no baseline accuracy 

using EDA measurement from the MAHNOB-HCI while 

EDA has shown good results in other research and this paper 

aims to fill this gap. 

There are many methods to analyze EDA signals, e.g. 

Ledalab with Continuous Decomposition Analysis (CDA) 

[10] and Discrete Deconvolution Analysis (DDA) [11], EDA 

Explorer [12], cvxEDA [13]. EDA Explorer is available in 

Python as well as in web-based application while the others 

are available in Matlab, by which the experiments in this 

paper were carried out. 

Greco et al. [9] compared Ledalab-based model and 

cvxEDA-based model for emotion recognition problem and 

found that the latter outperformed the former. For this reason, 

this paper used cvxEDA to analyze EDA signals from the 

MAHNOB-HCI database. 

This study also aims to contribute to research on effective 

computing utilizing physiological signals, especially EDA, 

by applying cvxEDA to extract useful features for the 

classifier to solve the 3-class problem in valence and arousal. 

The results complement the existing baseline accuracies for 

the MAHNOB-HCI database [1], [3], [4]. 

 

II. LITERATURE STUDIES 

 

A. Emotion Recognition using EDA 

EDA is defined as automatic changes in the skin electrical 

properties due to sweat gland activities [9]. The sweat glands 

secretion depends on many factors and one of them is emotion 

stimulation. The sweat on skin influence the conductivity of 

the skin and researchers uses this quantified property to 

recognize emotion. 

Gunes and Hung [14] wrote that using the facial expression 

for emotion recognition would come to a dead end unless 

multimodality was used and one of the proposed biosignals 

was EDA. Facial expression emotion recognition requires 

cameras, which were not practical in most situation, while 

EDA is measured non-invasively on fingers, wrist, or hand 

palm, using simple circuits. Moreover, the EDA, which is 

controlled by ANS, corresponding to arousal state of human 

being [15]. 

Lanata et al. [6] used EDA glove based on textile-

integrated electrodes to discriminate affective states of 35 

subjects stimulated by IAPS images. It achieved promising 

results to separate neutral and 4-level of arousal using 
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standard, including frequency-domain features, and nonlinear 

features. Of note, nonlinear features usually are 

computationally high cost. 

Yang and Liu [8] extracted nonlinear statistic features after 

surrogate data analysis from EDA to separate five discrete 

emotions using several classifiers with accuracy up to 87%. 

Results from this study provide strong evidence that 

relationship between EDA signal and emotion is nonlinear. 

Greco et al. [9] used cvxEDA to analyze EDA and then 

extract useful features for emotion recognition and 

mood/mental disorder assessment. Specific for emotion 

recognition experiment where subjects were stimulated by 

IAPS images, features from cvxEDA analysis was superior to 

the ones from Ledalab analysis to separate 4-class of arousal, 

72% to 37%, while both had the same performance on 

valence. The cvxEDA looked promising for EDA signal 

analysis. 

 

B. The cvxEDA 

The cvxEDA is a method to analyze EDA using convex 

optimization, proposed by Greco et al. [13], which casts the 

EDA deconvolution as a quadratic optimization problem. The 

EDA generation was modeled based on the following 

assumptions: 

• Skin conductance response (SCR) is preceded by 

burst, generated by a sparse and nonnegative neural 

signal, from sudomotor nerves controlling the sweat 

glands. 

• The number of recruited sweat glands and the 

amplitude of a firing burst have a linear relationship, 

which makes the time course of a single SCR induced 

by a neural burst is free from the previous ones 

although their SCRs overlap, in other words, it is LTI. 

• The sweat diffusion process has a relatively stable 

subject-specific impulse response filter (IRF) for all 

SCRs from the same subject. 

• The phasic activity is superimposed to a slowly 

varying tonic activity with spectrum below 0.05 Hz. 

The cvxEDA splits data into phasic (r), tonic (t), and a noise 

component (), such that the observation model (y) can be 

written as 

 
++= try  (1) 

 

within r, the shape of a single phasic response is modeled 

using Bateman function, 
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where 0 and 1 are the slow and fast time constant, and u() 

is a unit step function. By representing ARMA model of 

Equation (1) into cascade ARMA,  

 

pMAr 1−=  (3) 

 

where p represents sudomotor neuron activity (SMNA) and 

M and A are a tridiagonal matrix, see detail in [13]. 

Tonic component, t, is represented as the cubic B-spline 

basis function 

 
CdBt +=   (4) 

 

where B is a matrix for cubic B-spline basis function, is the 

vector of spline coefficient, C is an Nx2 matrix with Ci,1 = 1 

and Ci,2 = 1/N, d is a 2x1 vector with offset and slope 

coefficients for the linear trend. 

The observation model can be rewritten by substituting 

Equation (3) and (4) into (1). The goal is to identify maximum 

a posteriori (MAP) spike train of p and t, parameterized by 

],,[ dq  , for the measured EDA signals. 

The SMNA p is modeled using Poisson distribution, but 

later an exponential distribution of the same mean replaces it 

to keep the analysis tractable. For tonic component,  = 10s 

is used to make the sampling frequency is exactly twice the 

upper band limit, i.e. 0.05 Hz and assumes that vector has 

normal distribution so does the noise term, . These form 

likelihood term for each q, , and d. By substituting these 

terms into 

 

( ) ( ) ( ) ( )dPPqPdqyPydqP  ,,|)|,,(   (5) 

 

and taking the logarithm of Equation (5), the optimization 

problem representing the cvxEDA algorithm is 

 

minimize 2
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subject to Aq ≥ 0 

(6) 

 

III. MATERIALS AND METHODS 

 

A. The Database 

The MAHNOB-HCI database for affect recognition 

involved 30 participants stimulated emotionally by pictures 

and fragments of movies [1]. The database includes the 

following synchronized signals: 32-channel EEG, peripheral 

physiological signals (ECG, temperature, respiration, and 

skin conductance), eye gaze, face and body camera, and 

audio. For emotion elicitation experiment, the protocol 

marked 30 seconds before and after the stimulated session for 

relaxation with a single pulse to separate them. 

The experiments in this paper used data downloaded from 

the database server under “Selection of Emotion Elicitation”. 

For each session, baselines (measured during relaxation 

stage) and response (measured stimulated stage) signals were 

separated to each other based on single marking pulses. The 

relaxation signals used in this experiment were the ones 

before the stimulated stage only as the changing from 

relaxation to stimulated may provide good separation among 

the classes. 

 

B. Feature Extraction 

The EDA signals, sampled at 1024 Hz but downsampled to 

256 Hz to save storage space [1], were taken from channel 

GSR3 of the database. Although EDA and emotion have a 

nonlinear relationship [8], extracting nonlinear features is 

usually time-consuming, such that it was not used in this 

study. On the other hand, the cvxEDA can be applied directly 

to raw signal, making this method even more interesting.  

Before applying the cvxEDA, which requires signals in 

Siemens, the original signals in Ohm were converted to 

Siemens. Following this conversion, three signals were 

extracted using cvxEDA, i.e. phasic (r), tonic (t), and sparse 

SMNA of phasic component (p) using default parameters. On 

completion of cvxEDA analysis, features were extracted from 

the phasic (r), tonic (t), and sparse SMNA of phasic 

component (p). 
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The extracted features were the time-domain features as 

proposed by Greco et al. [9], statistical distribution as applied 

by Ferdinando et al. [3] in ECG signal analysis, and frequency 

domain analysis. Mostly, the number of significant SCR are 

calculated within the 5-second window after the stimulation, 

but the EDA signals from the MAHNOB-HCI do not have the 

same length. This brought consequences to modify the 

definition of this index. 

Several features were extracted: 

• nSCR1, number of significant SCR within 5-second 

non-overlap window, divided by number of the 

window. 

• nSCR2 = number of significant SCR within 5-second 

non-overlap window, divided by length of the signal in 

seconds. 

• nSCR3 = number of significant SCR divided by the 

length of the signal in seconds. 

• The area under the curve (AUC) of phasic and tonic 

signals. 

• 14 items of statistical distribution: mean, standard 

deviation, Q1, median, Q3, IQR, percentile 2.5, 

percentile 10, percentile 90, percentile 97.5, 

maximum, skewness, and kurtosis. 

Two sets of features were used in this study, i.e. features 

from the stimulated stage only (31 features) as feaure1 and 

ratio of features in stimulated to relaxation in addition to the 

first set (62 features) feature2. Involving ratio of stimulated 

to relaxation stages as features should give larger 

discriminant values to separate certain class from the other 

because when someone was stimulated the SMNA generated 

sparse and non-negative neural signal to initiate burst that 

later emerged as SCR, see the first assumption in the 

discussion about the cvxEDA. as they were not present during 

the relaxation stages. Frequency-domain features, Power in 

0–0.1 Hz, 0.1–0.2 Hz, 0.2–0.3 Hz, 0.3–0.4 Hz, [6] were also 

added to both feature1 and feature2 to get other feature set 

feature3 (42) and feature4 (84). Finally, a sequential forward 

floating search algorithm was applied to select a set of 

features offered large discriminant value. This procedure, 

however, also acted as a dimensionality reduction process. 

 

C. Classifier and Validations 

A kNN classifier was used to solve the 3-class problem in 

valence and arousal [4]. The results were validated under 

subject-dependent and subject-independent scenarios as in 

[3], [4]. For subject-dependent scenario, 20% of the samples 

were held out for validation, while the rest were subject to 10-

fold cross validation, repeated for 1000 times with new 

resampling for each repetition. Reported accuracies were the 

average over the repetition. Standard deviations were also 

provided to evaluate variation among the repetition. 

Subject-independent scenario evaluates if the proposed 

features are ready for a general system where the classifier 

recognizes emotion based on new samples. At first, all 

samples belong to certain participant were excluded for 

testing while the rest were used to build the model. This 

process was repeated for all subjects. The reported accuracy 

was the average. This validation was called leave-one-

subject-out (LOSO) validation [3]. 

Validation using leave-one-out (LOO) method was also 

used to compare the results with the ones from Soleymani et 

al. [1] which used LOO also. LOO is excluding one sample 

as test while using the rest of the sample to make a model. 

The results were compared to the ones from Soleymani et 

al. [1] and Ferdinando et al. [3], [4] using t-test with 

significance level 0.05. The same test was also used to select 

the best performance among all. 

 

IV. RESULTS AND DISCUSSIONS 

 

Frequency-domain features in feature3 had no contribution 

since the sequential forward floating search process for 

feature1 and feature3 produced the exact same results, while 

the results from feature2 and feature4 were different. These 

facts brought consequences that feature3 was discarded from 

this study.  

Table 1 summarizes experiments for both valence and 

arousal in subject-dependent and subject-independent 

scenarios. Results in Table 1 were compared to ECG-based 

features in Ferdinando et al. [3], [4]. Apparently, they all 

outperformed ECG-based features performance, shown by 

very small p-values from t-test, except for feature2 in arousal 

in the subject-independent scenario. These findings were 

remarkable as features from ECG requires exhausted 

computation, i.e. feature selection and all experiment with 

kNN were done for features from each combination of 

window size and overlap parameters in spectrogram analysis 

[3]. On the other hand, utilizing cvxEDA only requires four 

combinations, including feature3, see section III-C. 

 
Table 1 

Accuracies of all experiments written in mean and standard deviation for 
valence and arousal, validated using subject-dependent and subject-

independent scenarios 

 

Feature 

sets 

Subject-dependent Subject-independent 
Valence 

(%) 

Arousal 

(%) 

Valence 

(%) 

Arousal 

(%) 

feature1 67.1 ± 4.3 77.2 ± 3.9 68.9 ± 9.4 77.6 ± 8.9 
feature2 69.9 ± 4.1 69.4 ± 4.2 72.4 ± 8.3 70.9 ± 10.4 

feature4 74.6 ± 3.8 77.3 ± 3.6 75.5 ± 7.7 77.8 ± 8.0 

 

Table 2 presents results from LOO validation for both 

valence and arousal. It was evident that results from feature4 

outperformed the ones accomplished by Soleymani et al. [1]. 

Moreover, these were achieved using only single modality. 

 
Table 2 

Accuracies of all experiments written for valence and arousal validated 

using LOO 

 

Feature sets Valence (%) Arousal (%) 

feature1 68.4 77.7 

feature2 71.3 71.1 

feature4 75.2 77.7 

 

Summary of all significance tests is shown in Table 3. It 

was apparent that mostly the EDA-based features 

outperformed the other, see checked column. 

 
Table 3 

Summary of t-test for significant difference to Ferdinando et al. [3], [4] and 

Soleymani et al. [1] 

 

Feature 

sets 

Ferdinando et al. [3], [4] 
Soleymani et 

al. [1], LOO 
Subject-

dependent 

Subject-

independent 

V A V A V A 

feature1       

feature2       

feature4       

 

Among feature1, feature2, and feature4, it was obvious that 

feature4 demonstrated its superiority within all validations 
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method in most cases. The significance test confirmed this 

finding as the p-values for all comparisons were close to zero, 

indicating significant differences. Involving ratios between 

stimulated and relaxation stages as features contributed larger 

discriminant among the class such that it improved the 

performance. To be more specific, a ratio based on frequency-

domain features contributed more than the ones from 

standard EDA feature and statistical distribution. 

LOSO validation through subject-independent scenario 

exposed interesting results. Building a model by excluding all 

samples from one subject for testing, degrade performances 

were expected but Table 1 exposed that the performances 

were close to the ones from the subject-dependent 

experiment, only the variation among the experiments were 

relatively higher, which could not be avoided. This is a 

surprising and unexpected result. 

Turning now to confusion matrices for all validations 

scenarios, only the ones from feature4 were presented for the 

other feature sets had a similar pattern with 1 signifies low 

level, 2 represents medium level, and 3 denotes high level. 

Table 4-6 exhibit similar pattern that valence recognition 

struggled for medium class, while arousal recognition looked 

balance for all classes. On the other hand, recognizing low 

level of valence was easier than the other, and it was even the 

highest among all. Fixing problem in medium valence could 

improve the performance. 

 
Table 4 

Confusion matrix of feataure4 validated using subject-dependent 
 

Valence  Arousal 

 1 2 3   1 2 3 

1 0.907 0.028 0.065  1 0.770 0.146 0.084 
2 0.285 0.485 0.230  2 0.196 0.793 0.011 

3 0.187 0.059 0.754  3 0.166 0.089 0.745 

 
Table 5 

Confusion matrix of feataure4 validated using subject-independent 
 

Valence  Arousal 
 1 2 3   1 2 3 

1 0.925 0.025 0.050  1 0.781 0.134 0.085 

2 0.273 0.485 0.242  2 0.196 0.793 0.011 

3 0.184 0.056 0.760  3 0.174 0.083 0.743 

 

Table 6 

Confusion matrix of feataure4 validated using LOO validation 
 

Valence  Arousal 

 1 2 3   1 2 3 

1 0.910 0.030 0.060  1 0.756 0.129 0.085 
2 0.273 0.500 0.227  2 0.201 0.788 0.011 

3 0.179 0.061 0.760  3 0.174 0.083 0.743 

 

Further work is required to validate findings in this study 

using other databases. It is important to assess whether the 

proposed method truly offers superior features for emotion 

recognition by comparing the results utilizing other feature 

extraction method, e.g. nonlinear method, and experimenting 

with other classifiers. Since Neighborhood Components 

Analysis (NCA) showed powerful to enhance the emotion 

recognition using ECG-based features only [4], the same 

enhancement for the EDA-based feature is another interesting 

future works. 

 

V. CONCLUSION 

 

EDA-based emotion recognition using features from the 

cvxEDA method was presented. Standard and frequency-

domain features as well as statistical distribution-based 

features were extracted for kNN classifier, validated using 

subject-dependent and subject-independent scenarios, and 

also LOO. In this study, the aim was to provide baseline 

recognitions for valence and arousal using the EDA-based 

feature only for the MAHNOB-HCI. 

This study has identified that ratio of stimulated to 

relaxation stages as features from standard analysis and 

statistical distribution has no contribution after feature 

selection using sequential forward floating search. On the 

other hand, including this ratio as features from frequency-

domain resulted in superior feature set, which outperformed 

the others.  

Compare to some references [1], [3], [4], the proposed 

features used in this study offered better results for the 3-class 

problem, see highlighted results in Table 1 and 2. These are 

the second major findings in this study and will serve as 

baselines for future studies using the MAHNOB-HCI, 

especially for EDA-based features only. However, 

recognizing medium valence looked challenging, while low 

valence showed the easiest ones.  

This study was limited by the absence of nonlinear features 

as Yang and Liu found that relationship between EDA signal 

and emotion is nonlinear [8]. Deeper studies using nonlinear 

features, e.g.  Lanata et al. [6] proposed recurrent plot, 

deterministic chaos, and detrended fluctuation analysis, were 

left for future works. It would be interesting to assess the 

effects of NCA, which showed promising results in [4]. 

Applying the NCA can probably improve the negative 

finding on the confusion matrices, such that the medium 

valence recognitions are improved to increase the 

performances of the whole system. 
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