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Abstract 

This project presents brain lesion segmentation 
of diffusion-weighted magnetic resonance 
images (DWI) based on thresholding technique 
and gray level co-occurrence matrix (GLCM).  
The lesions are hyperintense lesion from tumour, 
acute infarction, haemorrhage and abscess, and 
hypointense lesion from chronic infarction and 
haemorrhage.  Pre-processing is applied to the 
DWI for intensity normalization, background 
removal and intensity enhancement.  Then, the 
lesions are segmented by using two different 
methods which are thresholding technique and 
GLCM.  For the thresholding technique, image 
histogram is calculated at each region to find the 
maximum number of pixels for each intensity 
level. The optimal threshold is determined 
by comparing normal and lesion regions.  
Conversely, GLCM is computed to segment the 
lesions.  Different peaks from the GLCM cross-
section indicate the present of normal brain 
region, cerebral spinal fluid (CSF), hyperintense 
or hypointense lesions. Minimum and 
maximum threshold values are computed from 
the GLCM cross-section.  Region and boundary 
information from the GLCM are introduced 
as the statistical features for segmentation of 
hyperintense and hypointense lesions.  The 
proposed technique has been validated by using 
area overlap (AO), false positive rate (FPR), 
false negative rate (FNR), misclassified area 
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(MA), mean absolute percentage error (MAPE) 
and pixels absolute error ratio (rerr).  The results 
are demonstrated in three indexes MA, MAPE 
and rerr, where 0.3167, 0.1440 and 0.0205 for 
GLCM, while 0.3211, 0.1524 and 0.0377 
for thresholding technique.  Overall, GLCM 
provides better segmentation performance 
compared to thresholding technique.

Keywords: DWI, GLCM, segmentation, 
thresholding.

i. introDuCtion

Tumor, infarction (stroke/ischemia), 
haemorrhage (bleeding/ ischemia) and 
infection (abscess) are the example of 
brain lesions that are affected in the brain 
cerebrum. In 2006, it was reported that 
tumor and brain diseases such as brain 
infarction and haemorrhage were the 
third and fourth leading cause of death in 
Malaysia [1]. The incidence of brain tumor 
in 2006 was 3.9 among males and 3.2 
among females per 100,000 populations 
with a total of 664 cases reported by the 
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Minister of Health Malaysia. In the United 
States, the combined incidence of primary 
brain tumor was 6.6 per 100,000 persons 
per year with a total of 22,070 new cases 
in 2009 [2], while brain infarction affects 
approximately 750,000 new cases per year 
[3].

Interpretation of brain imaging plays 
an important part in diagnosis of 
various diseases and injury. Magnetic 
resonance imaging (MRI) is one of 
the popular, painless, non-radiation 
and non-invasive brain imaging 
techniques.  Nevertheless, assessment 
of brain lesion in MRI is a complicated 
process and typically performed by 
experienced neuroradiologists. An 
expert neuroradiologist performs 
this task with a significant degree of 
precision and accuracy. It can often be 
difficult for clinicians to precisely assess 
the lesion on the basis of radiographic 
appearance.  Therefore, quantitative 
analysis using computers can help 
radiologists to overcome these problems.  
Due to the importance of brain imaging 
interpretation, significance research 
efforts have been devoted for developing 
better and more efficient techniques 
in several related areas including 
processing, modeling and understanding 
of brain images [4].

Over the past several years, developments 
in MRI unit have enabled the acquisition 
of MR imaging using fast and advanced 
techniques, proving extremely useful in 
various clinical and research applications 
such as diffusion-weighted MRI (DW-
MRI or DWI) [5]. DWI proficient to 
provide image contrast that is dependent 
on the molecular motion of water, which 
can alter by disease [6].  The image is 
bright (hyperintense) when the rate of 
water diffusion in the cell membrane is 
restricted and dark (hypointense) when 
the diffusion is elevated [6]. DWI provides 
very good lesion contrast compared to 
the appearance in conventional MRI [3]. 
Research have shown DWI is considered 
as the most sensitive technique in 
detecting early acute neurological 

disorders, stroke, infection, trauma and 
tumor [3,6-7].  

Segmentation or separation of specific 
region of interest (ROI) of pathological 
abnormalities from MR images is 
an essential process for diagnosis 
and treatment planning. Accurate 
segmentation is still a challenging task 
because of the variety of the possible 
shapes, locations and image intensities of 
various types of problems and protocols.  
Computerized segmentation process is 
essential to overcome these problems. A 
large number of approaches have been 
proposed by various researchers to deal 
with various MRI protocols [8]. These 
approaches were introduced to solve the 
problems of automatic lesion detection 
and segmentation in various conventional 
MRI.

Thresholding based segmentation 
discriminates pixels according to their 
gray level value. The key parameter in the 
thresholding process is the choice of the 
threshold value. In this study, histogram 
thresholding is applied to separate 
hyperintense lesion from DW images. 
The rationale being that the brightness of 
hyperintense lesion pixels are higher than 
the normal pixels.

Gray level co-occurrence matrix (GLCM) 
has been widely used in computer vision 
and pattern recognition applications 
[9] such as in fingerprint verification 
[10], fruits skin defect detection [11], 
industrial vision system [12], and in 
medical image analysis (notably on x-ray, 
MRI, echocardiogram and mammogram) 
in order to discriminate between 
pathological and non-pathological tissues 
[13-16].  In the classical technique, Haralick 
et al. [17] introduced six textural features 
from GLCM which are the most relevant 
features to analyze textural images. This 
method has been widely used by various 
researchers for segmenting or identifying 
tissue types in MR images [18, 14, 19-24].
In this research work, a new approach for 
automatically detecting and segmenting 
brain lesions from DWI is introduced. 
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Beside the widely known thresholding, 
this paper proposes a new statistical 
information based on region and 
boundary information from the GLCM. 
The analysis involves both thresholding 
and GLCM computation to pre-processed 
DWI; calculating the minimum and 
maximum threshold values from GLCM 
cross-section; and segmenting the 
hyperintense or hypointense lesions 
based on thresholding and region and 
boundary information from the GLCM. 
Segmentation evaluation is made in 
order to analyze the performance of the 
proposed techniques.

ii. Diffusion-weighteD mri 

a. Brain Lesion

Accurate segmentation is still a challenging task because of 
the variety of the possible shapes, locations and image 
intensities of various types of problems and protocols.  
Computerized segmentation process is essential to overcome 
these problems. A large number of approaches have been 
proposed by various researchers to deal with various MRI 
protocols [8]. These approaches were introduced to solve the 
problems of automatic lesion detection and segmentation in 
various conventional MRI. 

Thresholding based segmentation discriminates pixels 
according to their gray level value. The key parameter in the 
thresholding process is the choice of the threshold value. In 
this study, histogram thresholding is applied to separate 
hyperintense lesion from DW images. The rationale being that 
the brightness of hyperintense lesion pixels are higher than the 
normal pixels. 

Gray level co-occurrence matrix (GLCM) has been widely 
used in computer vision and pattern recognition applications 
[9] such as in fingerprint verification [10], fruits skin defect 
detection [11], industrial vision system [12], and in medical 
image analysis (notably on x-ray, MRI, echocardiogram and 
mammogram) in order to discriminate between pathological 
and non-pathological tissues [13-16].  In the classical 
technique, Haralick et al. [17] introduced six textural features 
from GLCM which are the most relevant features to analyze 
textural images. This method has been widely used by various 
researchers for segmenting or identifying tissue types in MR 
images [18, 14, 19-24]. 

In this research work, a new approach for automatically 
detecting and segmenting brain lesions from DWI is 
introduced. Beside the widely known thresholding, this paper 
proposes a new statistical information based on region and 
boundary information from the GLCM. The analysis involves 
both thresholding and GLCM computation to pre-processed 
DWI; calculating the minimum and maximum threshold 
values from GLCM cross-section; and segmenting the 
hyperintense or hypointense lesions based on thresholding and 
region and boundary information from the GLCM. 
Segmentation evaluation is made in order to analyze the 
performance of the proposed techniques. 

II. DIFFUSION-WEIGHTED MRI  

A. Brain Lesion 
 

 
(a) Normal  (b) Solid tumor  (c) Acute infarction

   
(d) Abscess  (e) Haemorrhage  (f) Chronic infarction

Fig. 1 Original DWI with brain lesion indicated by a white circle 

Fig. 1 shows DWI intensities in major brain lesion, where 
the lesion is indicated by a white circle. In normal brain, the 
region consists of brain tissue (normally called as gray and 
white matter tissue in conventional MRI) and a cavity which is 
full of cerebral spinal fluid (CSF) located in the middle of the 
brain, as shown in Fig. 1(a). The DWI intensity for CSF is 
dark. Fig. 1 (b-f) shows several brain lesions, in which the 
intensity can be divided into hyperintense and hypointense. 

DWI hyperintense lesion includes acute infarction, acute 
haemorrhage, solid tumor and abscess. Chronic infarction and 
necrosis tumor appear to be hypointense in DWI. The 
summary of major brain lesions, types, symptoms and 
pathological findings is summarized in Table I. Nevertheless, 
this paper is only focused on the hyperintense lesions.  Based 
on our hypothesis, the hyperintense lesions in DWI can be 
well separated from the normal tissue because of its high gray 
level intensity.

Table 1 Description of brain lesions, types, symptoms and 
pathological findings [25-28] 

B. Imaging Parameter  
The DW images have been acquired from the General 

Hospital of Kuala Lumpur using 1.5T MRI scanners Siemens 
Magnetom Avanto. Acquisition parameters used were time 
echo (TE), 94 ms; time repetition (TR), 3200 ms; pixel 
resolutions, 256 x 256; slice thickness, 5 mm; gap between 
each slice, 6.5 mm; intensity of diffusion weighting known as 
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Symptoms  Pathological 
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Solid: 
Hyperintense 

Cystic/
Necrosis: 
Hypointense 
 

 
Loss of balance; 
walking, visual 
and hearing 
problems; 
headache; 
nausea; 
vomiting; 
unusual sleep; 
seizure 

 
Abnormal 
growth of 
cells in 
uncontrolled 
manner
shape: round, 
ellipse, 
irregular 
texture: clear, 
partially clear, 
blur 

 
Infarction 
(Stroke/ 
Ischemia) 
 

Acute  
(30 minutes - 
72 hours after 
onset): 
Hyperintense 
 
Chronic 
(after 2 weeks): 
Hypointense 

 
Paralysis; visual 
disturbances; 
speech problems; 
gait difficulties; 
altered level of 
consciousness 

 
Cerebral 
vascular 
occlusion/ 
blockage 
 

 
Haemorrhage 
(Bleeding/ 
Ischemia) 

 
Deoxyhemoglo
-bin: 
Hyperintense 
 
Oxyhemoglo-
bin: 
Hypointense 

 
Paralysis; 
unconsciousness; 
visual 
disturbances; 
speech problems 

 
Presence of 
blood 
products 
outside of the 
cerebral 
vascular 
 

 
Infection 
(Abscess) 

 
Hyperintense 
 

 
Fever; seizure; 
headache; 
nausea; 
vomiting; altered 
mental status 

 
Bacterial, viral 
or fungal 
infections, 
inflammatory 
and pus 
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B. imaging parameter

The DW images have been acquired 
from the General Hospital of Kuala 
Lumpur using 1.5T MRI scanners 
Siemens Magnetom Avanto. Acquisition 
parameters used were time echo (TE), 94 
ms; time repetition (TR), 3200 ms; pixel 
resolutions, 256 x 256; slice thickness, 
5 mm; gap between each slice, 6.5 mm; 
intensity of diffusion weighting known 
as b value, 1000 s/mm2 and total number 
of slices, 19. All samples have medical 
records which have been confirmed by 
neuroradiologists. Images were encoded 
in 12-bit DICOM (Digital Imaging and 
Communications in Medicine) format.   

 



ISSN: 2180 - 1843     Vol. 3     No. 2     July-December 2011

Journal of Telecommunication, Electronic and Computer Engineering

4

iii. proposeD teChniQues

a. thresholding technique

The flowchart of the proposed 
segmentation is shown in Fig. 2. The 
samples of brain DWI dataset are first 
collected.  In the pre-processing stage, 
several algorithms are applied to enhance 
the images. The intensity is normalized 
from 0 to 1, the background and skull 
are removed and then the intensity is 
enhanced using two different algorithms 
which are gamma-law transformation 
and contrast stretching. The algorithms 
are applied to span the narrow range 
of DWI histogram for thresholding 
purpose. The segmentation process starts 
at full image and splits to 8 x 8 regions. 
The lesion intensity range is analysed 
based on thresholding technique. This is 
done by calculating image histogram at 
each region and finding the maximum 
number of pixels at each intensity level. 
An optimal threshold is determined by 
comparing normal and lesion regions in 
the histogram. Region of interest (ROI) 
is then segmented based on the optimal 
threshold.

b value, 1000 s/mm2 and total number of slices, 19. All 
samples have medical records which have been confirmed by 
neuroradiologists. Images were encoded in 12-bit DICOM 
(Digital Imaging and Communications in Medicine) format.   
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Fig. 2 Flowchart of the proposed thresholding technique 

B. GLCM  
GLCM [17, 29] is a matrix of relative frequencies in which 

two neighbouring pixels separated by distance d, at angular 
orientationφ, occur in an image. One pixel is with gray level u 
and the other is with gray level v. The angular orientationφ is 
quantized to four directions which are horizontal, diagonal, 
vertical and off-diagonal, or 0o, 45o, 90o and 135o, 
respectively. For an image I(x,y), where the image has 1≤x≤Nx 
pixels in horizontal direction and  1≤y≤ Ny pixels in vertical 
direction. Suppose that the image has Ng resolution levels in 

which u represents the gray level of pixel I(x,y) and v 

represents the gray level of the nearest-neighbour pixel φ,dv  
where 0≤u,v≤Ng-1. The GLCM, φ,),( dvuG  is calculated as: 
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For d=1, the eight nearest-neighbour orientation of φ 
corresponding to pixel I(x,y) can be illustrated in Fig. 3. 
 

 
 

Fig. 3 Eight nearest-neighbour pixel cells to pixel *. With d=1; 1 and 
5 are φ = 0o, 4 and 8 are φ = 45o, 3 and 7 are φ = 90o, 2 and 6 are φ = 135o.

* is the reference pixel I(x,y) [17]. 
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In practice, for each d, the matrices for the four orientations 
are averaged. Thus, the averaged GLCM, ),( vuG  is computed 
as: 
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IV. IMAGE PREPROCESSING 
Several Several pre-processing algorithms are applied to 

DW images for intensity normalization, background removal 
and intensity enhancement. The original DWI has 12-bit 
intensity depth unsigned integer. In normalization process, the 
type of the intensity depth is converted to double precision, 
where the minimum value is set to 0 while for the maximum is 
to 1. The DWI includes background image which needs to be 

Preprocessing 

Segmentation 

DWI Brain Image 

Image Normalization 

Background Removal 

Image Enhancement 

Image Splitting  
(Block Processing) 

Histogram 

Thresholding 
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iv. image preproCessing

Several Several pre-processing algorithms 
are applied to DW images for intensity 
normalization, background removal 
and intensity enhancement. The original 
DWI has 12-bit intensity depth unsigned 
integer. In normalization process, the 
type of the intensity depth is converted 
to double precision, where the minimum 
value is set to 0 while for the maximum 
is to 1. The DWI includes background 
image which needs to be removed. This 
is because the background shares similar 
gray level values with certain brain 
structures. The technique for background 
removal can be found in [30]. Then, 
image enhancements are applied. Two 
different techniques are used, which are 
Gamma-law transformation algorithm 
and contrast stretching. The objective is 
to evaluate image enhancement that can 
provide better segmentation results for 
thresholding technique.

Gamma-law transformation algorithm 
is chosen to expand the narrow range 
of low input gray level values of DWI 
to a wider range. It has the basic form 
of s=crγ, where c is amplitude, and γ is 
a constant power of input gray level, r 
[31].  γ=0.4 has been found to be the best 
value based on experiments to enhance 
the output histogram [32]. The Gamma-
law transformation response is shown in 
Fig. 4.
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Fig. 4 Image response for gamma-law transformation 

On the other hand, contrast stretching is applied to improve 
an image by stretching the range of intensity values. Unlike 
histogram equalization, contrast stretching is restricted to a 
linear mapping of input to output values. For each pixel, the 
input gray level, r is mapped to output, s according to equation 
(5). 
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Standardize Image Background = 0.02 is adopted for this 
experiment. This value is chosen to correct the image 
background in-homogeneity.  Thus, the images will have 
similar background value, with the average of 0.02. 
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Fig. 5 Image response for contrast stretching 

Fig. 5 shows image response of contrast stretching in which 
the original value, r is mapped to output value, s. Fig. 6 
illustrates the results of preprocessing steps. Fig. 6(a) shows 
the original normalized image and its histogram. In Fig. 6(b), 
all background pixels have been removed, and therefore 
improve the shape of the image histogram.  The maximum 
peak is located at 0.1.  After applying Gamma-law 
transformation algorithm, the histogram has been enhanced in 
which the peak is located at 0.4 as shown in Fig. 6(c).  On the 
other hand, the maximum peak is located at 0.2 for contrast 
stretching as shown Fig. 6(d). 
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(d) Image and histogram of contrast stretching 

Fig. 6 Pre-processing steps 

V. SEGMENTATION PROCESS USING THRESHOLDING 
TECHNIQUE 

For the image segmentation process, firstly the entire image 
is divided by 8 x 8 regions where 256 x 256 pixels of the 
entire image is split to 16 x 16 pixels size in each region. Fig. 
7 shows the image splitting (block processing) with 16 x 16 
pixels size per segment.  

Maximum pixels 
distributions

Fig. 4 Image response for gamma-law 
transformation

On the other hand, contrast stretching 
is applied to improve an image by 
stretching the range of intensity values. 
Unlike histogram equalization, contrast 
stretching is restricted to a linear mapping 
of input to output values. For each pixel, 
the input gray level, r is mapped to 
output, s according to equation (5).
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which the peak is located at 0.4 as shown in Fig. 6(c).  On the 
other hand, the maximum peak is located at 0.2 for contrast 
stretching as shown Fig. 6(d). 
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Fig. 6 Pre-processing steps 

V. SEGMENTATION PROCESS USING THRESHOLDING 
TECHNIQUE 

For the image segmentation process, firstly the entire image 
is divided by 8 x 8 regions where 256 x 256 pixels of the 
entire image is split to 16 x 16 pixels size in each region. Fig. 
7 shows the image splitting (block processing) with 16 x 16 
pixels size per segment.  
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Fig. 5 Image response for contrast stretching

Fig. 5 shows image response of contrast 
stretching in which the original value, r is 
mapped to output value, s. Fig. 6 illustrates 
the results of preprocessing steps. Fig. 
6(a) shows the original normalized 
image and its histogram. In Fig. 6(b), all 
background pixels have been removed, 
and therefore improve the shape of the 
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image histogram.  The maximum peak is 
located at 0.1.  After applying Gamma-law 
transformation algorithm, the histogram 
has been enhanced in which the peak is 
located at 0.4 as shown in Fig. 6(c).  On the 
other hand, the maximum peak is located 
at 0.2 for contrast stretching as shown Fig. 
6(d).

removed. This is because the background shares similar gray 
level values with certain brain structures. The technique for 
background removal can be found in [30]. Then, image 
enhancements are applied. Two different techniques are used, 
which are Gamma-law transformation algorithm and contrast 
stretching. The objective is to evaluate image enhancement 
that can provide better segmentation results for thresholding 
technique. 

Gamma-law transformation algorithm is chosen to expand 
the narrow range of low input gray level values of DWI to a 
wider range. It has the basic form of s=crγ, where c is 
amplitude, and γ is a constant power of input gray level, r 
[31].  γ=0.4 has been found to be the best value based on 
experiments to enhance the output histogram [32]. The 
Gamma-law transformation response is shown in Fig. 4. 
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Fig. 4 Image response for gamma-law transformation 

On the other hand, contrast stretching is applied to improve 
an image by stretching the range of intensity values. Unlike 
histogram equalization, contrast stretching is restricted to a 
linear mapping of input to output values. For each pixel, the 
input gray level, r is mapped to output, s according to equation 
(5). 
 

s = ratio * r                                                                       (5) 
 
where ratio is: 
   

Background Image eStandardiz
Background Image Original

=ratio
            (6)

 

Standardize Image Background = 0.02 is adopted for this 
experiment. This value is chosen to correct the image 
background in-homogeneity.  Thus, the images will have 
similar background value, with the average of 0.02. 
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Fig. 5 shows image response of contrast stretching in which 
the original value, r is mapped to output value, s. Fig. 6 
illustrates the results of preprocessing steps. Fig. 6(a) shows 
the original normalized image and its histogram. In Fig. 6(b), 
all background pixels have been removed, and therefore 
improve the shape of the image histogram.  The maximum 
peak is located at 0.1.  After applying Gamma-law 
transformation algorithm, the histogram has been enhanced in 
which the peak is located at 0.4 as shown in Fig. 6(c).  On the 
other hand, the maximum peak is located at 0.2 for contrast 
stretching as shown Fig. 6(d). 
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(d) Image and histogram of contrast stretching 
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V. SEGMENTATION PROCESS USING THRESHOLDING 
TECHNIQUE 

For the image segmentation process, firstly the entire image 
is divided by 8 x 8 regions where 256 x 256 pixels of the 
entire image is split to 16 x 16 pixels size in each region. Fig. 
7 shows the image splitting (block processing) with 16 x 16 
pixels size per segment.  
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Fig. 6 Pre-processing steps

v. segmentation proCess 
using threshoLDing 
teChniQue

For the image segmentation process, 
firstly the entire image is divided by 8 x 
8 regions where 256 x 256 pixels of the 
entire image is split to 16 x 16 pixels size 
in each region. Fig. 7 shows the image 
splitting (block processing) with 16 x 16 
pixels size per segment. 
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Fig. 7 Image splitting (16 x 16 pixels size per segment) 

Region 46 which is indicated by red circle is the lesion, 
examine by neuroradiologist.  Next, histogram is calculated at 
each region as shown in Fig. 8. The red circle shows the 
histogram distribution of lesion, whereas the others are 
histogram of normal brain area.  
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Fig. 8 Histogram distribution of each region 

Two histograms which are normal and abnormal (lesion) are 
then generated. All normal and abnormal regions are overlap 
respectively to find the maximum number of pixels at each 
intensity level. The maximum number of pixels is calculated 
by using the function shown in equation (7).  

 

n)),mR:1(R Max(PixelsPixels(n)Max  =                       (7) 

Where n is the intensity at level n, R1 and Rm are regions in 
the block histogram according to each intensity level. The 
purpose of overlapping the histogram for each block is to 
enhance the lesion for comparison with normal. This will 
produce a new histogram as shown in Fig. 9. The optimal 
threshold is determined by the ROI indicator, which the 
intensity level of normal histogram is reached zero pixels. 
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Fig 9 Optimal threshold with Gamma-law enhancement 

Fig. 10 shows the maximum block histogram, which is done 
by overlapping the histogram in all blocks including both 
normal and abnormal. By using the proposed technique, we 
can clearly characterize the lesion area because it has been 
enhanced. 
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Fig 10 Maximum block histogram 

The statistical features representing the hyperintense and 
hypointense regions are then calculated according to equation 
(8), where Toptimal is the threshold value to obtain the 
segmentation. 
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VI.  SEGMENTATION PROCESS USING GLCM 
Fig. 11 shows an example of GLCM for image in Fig. 1(c). 

The image has hyperintense lesion due to acute infarction. The 
GLCM is computed for Ng=128, d=1 and at average 
orientations, and is represented in a contour plot. Colour 
intensity represents the co-occurrence frequencies, or the 
number of repetitions between each pixel pair, u and v. It can 
be seen that hypointense region and CSF occur at smaller co-
occurrence entry; normal brain tissue is located in the middle 
of the matrix, while hyperintense region exists at higher entry.  
The red dash-line shows a cross-section at u=v. At this line, 
the co-occurrence frequency is the highest. The plot also 
shows that the co-occurrence frequencies are diagonally 
symmetry and the gray level resolutions are brighter when the 
co-occurrence transitions increase off-diagonally with the 
matrix. 
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Fig. 7 Image splitting (16 x 16 pixels size per 
segment)

Region 46 which is indicated by red circle 
is the lesion, examine by neuroradiologist.  
Next, histogram is calculated at each 
region as shown in Fig. 8. The red circle 
shows the histogram distribution of 
lesion, whereas the others are histogram 
of normal brain area.
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Fig. 7 Image splitting (16 x 16 pixels size per segment) 

Region 46 which is indicated by red circle is the lesion, 
examine by neuroradiologist.  Next, histogram is calculated at 
each region as shown in Fig. 8. The red circle shows the 
histogram distribution of lesion, whereas the others are 
histogram of normal brain area.  
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Fig. 8 Histogram distribution of each region 

Two histograms which are normal and abnormal (lesion) are 
then generated. All normal and abnormal regions are overlap 
respectively to find the maximum number of pixels at each 
intensity level. The maximum number of pixels is calculated 
by using the function shown in equation (7).  

 

n)),mR:1(R Max(PixelsPixels(n)Max  =                       (7) 

Where n is the intensity at level n, R1 and Rm are regions in 
the block histogram according to each intensity level. The 
purpose of overlapping the histogram for each block is to 
enhance the lesion for comparison with normal. This will 
produce a new histogram as shown in Fig. 9. The optimal 
threshold is determined by the ROI indicator, which the 
intensity level of normal histogram is reached zero pixels. 
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Fig 9 Optimal threshold with Gamma-law enhancement 

Fig. 10 shows the maximum block histogram, which is done 
by overlapping the histogram in all blocks including both 
normal and abnormal. By using the proposed technique, we 
can clearly characterize the lesion area because it has been 
enhanced. 
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Fig 10 Maximum block histogram 

The statistical features representing the hyperintense and 
hypointense regions are then calculated according to equation 
(8), where Toptimal is the threshold value to obtain the 
segmentation. 
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VI.  SEGMENTATION PROCESS USING GLCM 
Fig. 11 shows an example of GLCM for image in Fig. 1(c). 

The image has hyperintense lesion due to acute infarction. The 
GLCM is computed for Ng=128, d=1 and at average 
orientations, and is represented in a contour plot. Colour 
intensity represents the co-occurrence frequencies, or the 
number of repetitions between each pixel pair, u and v. It can 
be seen that hypointense region and CSF occur at smaller co-
occurrence entry; normal brain tissue is located in the middle 
of the matrix, while hyperintense region exists at higher entry.  
The red dash-line shows a cross-section at u=v. At this line, 
the co-occurrence frequency is the highest. The plot also 
shows that the co-occurrence frequencies are diagonally 
symmetry and the gray level resolutions are brighter when the 
co-occurrence transitions increase off-diagonally with the 
matrix. 
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Fig. 8 Histogram distribution of each region

Two histograms which are normal and 
abnormal (lesion) are then generated. All 
normal and abnormal regions are overlap 
respectively to find the maximum number 
of pixels at each intensity level. The 
maximum number of pixels is calculated 
by using the function shown in equation 
(7).
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Fig. 7 Image splitting (16 x 16 pixels size per segment) 

Region 46 which is indicated by red circle is the lesion, 
examine by neuroradiologist.  Next, histogram is calculated at 
each region as shown in Fig. 8. The red circle shows the 
histogram distribution of lesion, whereas the others are 
histogram of normal brain area.  
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Fig. 8 Histogram distribution of each region 

Two histograms which are normal and abnormal (lesion) are 
then generated. All normal and abnormal regions are overlap 
respectively to find the maximum number of pixels at each 
intensity level. The maximum number of pixels is calculated 
by using the function shown in equation (7).  

 

n)),mR:1(R Max(PixelsPixels(n)Max  =                       (7) 

Where n is the intensity at level n, R1 and Rm are regions in 
the block histogram according to each intensity level. The 
purpose of overlapping the histogram for each block is to 
enhance the lesion for comparison with normal. This will 
produce a new histogram as shown in Fig. 9. The optimal 
threshold is determined by the ROI indicator, which the 
intensity level of normal histogram is reached zero pixels. 
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Fig 9 Optimal threshold with Gamma-law enhancement 

Fig. 10 shows the maximum block histogram, which is done 
by overlapping the histogram in all blocks including both 
normal and abnormal. By using the proposed technique, we 
can clearly characterize the lesion area because it has been 
enhanced. 
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Fig 10 Maximum block histogram 

The statistical features representing the hyperintense and 
hypointense regions are then calculated according to equation 
(8), where Toptimal is the threshold value to obtain the 
segmentation. 
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VI.  SEGMENTATION PROCESS USING GLCM 
Fig. 11 shows an example of GLCM for image in Fig. 1(c). 

The image has hyperintense lesion due to acute infarction. The 
GLCM is computed for Ng=128, d=1 and at average 
orientations, and is represented in a contour plot. Colour 
intensity represents the co-occurrence frequencies, or the 
number of repetitions between each pixel pair, u and v. It can 
be seen that hypointense region and CSF occur at smaller co-
occurrence entry; normal brain tissue is located in the middle 
of the matrix, while hyperintense region exists at higher entry.  
The red dash-line shows a cross-section at u=v. At this line, 
the co-occurrence frequency is the highest. The plot also 
shows that the co-occurrence frequencies are diagonally 
symmetry and the gray level resolutions are brighter when the 
co-occurrence transitions increase off-diagonally with the 
matrix. 
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Fig. 7 Image splitting (16 x 16 pixels size per segment) 

Region 46 which is indicated by red circle is the lesion, 
examine by neuroradiologist.  Next, histogram is calculated at 
each region as shown in Fig. 8. The red circle shows the 
histogram distribution of lesion, whereas the others are 
histogram of normal brain area.  
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Fig. 8 Histogram distribution of each region 

Two histograms which are normal and abnormal (lesion) are 
then generated. All normal and abnormal regions are overlap 
respectively to find the maximum number of pixels at each 
intensity level. The maximum number of pixels is calculated 
by using the function shown in equation (7).  

 

n)),mR:1(R Max(PixelsPixels(n)Max  =                       (7) 

Where n is the intensity at level n, R1 and Rm are regions in 
the block histogram according to each intensity level. The 
purpose of overlapping the histogram for each block is to 
enhance the lesion for comparison with normal. This will 
produce a new histogram as shown in Fig. 9. The optimal 
threshold is determined by the ROI indicator, which the 
intensity level of normal histogram is reached zero pixels. 
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Fig 9 Optimal threshold with Gamma-law enhancement 

Fig. 10 shows the maximum block histogram, which is done 
by overlapping the histogram in all blocks including both 
normal and abnormal. By using the proposed technique, we 
can clearly characterize the lesion area because it has been 
enhanced. 
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Fig 10 Maximum block histogram 

The statistical features representing the hyperintense and 
hypointense regions are then calculated according to equation 
(8), where Toptimal is the threshold value to obtain the 
segmentation. 

          
 

      elsewhere  0
),(for   1

int),(
⎩
⎨
⎧ ≥= optimalTyxI

ensehyperyxI     (8) 

VI.  SEGMENTATION PROCESS USING GLCM 
Fig. 11 shows an example of GLCM for image in Fig. 1(c). 

The image has hyperintense lesion due to acute infarction. The 
GLCM is computed for Ng=128, d=1 and at average 
orientations, and is represented in a contour plot. Colour 
intensity represents the co-occurrence frequencies, or the 
number of repetitions between each pixel pair, u and v. It can 
be seen that hypointense region and CSF occur at smaller co-
occurrence entry; normal brain tissue is located in the middle 
of the matrix, while hyperintense region exists at higher entry.  
The red dash-line shows a cross-section at u=v. At this line, 
the co-occurrence frequency is the highest. The plot also 
shows that the co-occurrence frequencies are diagonally 
symmetry and the gray level resolutions are brighter when the 
co-occurrence transitions increase off-diagonally with the 
matrix. 
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Where n is the intensity at level n, R1 and 
Rm are regions in the block histogram 
according to each intensity level. The 
purpose of overlapping the histogram 
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for each block is to enhance the lesion 
for comparison with normal. This will 
produce a new histogram as shown in Fig. 
9. The optimal threshold is determined 
by the ROI indicator, which the intensity 
level of normal histogram is reached zero 
pixels.
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Fig. 7 Image splitting (16 x 16 pixels size per segment) 

Region 46 which is indicated by red circle is the lesion, 
examine by neuroradiologist.  Next, histogram is calculated at 
each region as shown in Fig. 8. The red circle shows the 
histogram distribution of lesion, whereas the others are 
histogram of normal brain area.  
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Fig. 8 Histogram distribution of each region 

Two histograms which are normal and abnormal (lesion) are 
then generated. All normal and abnormal regions are overlap 
respectively to find the maximum number of pixels at each 
intensity level. The maximum number of pixels is calculated 
by using the function shown in equation (7).  

 

n)),mR:1(R Max(PixelsPixels(n)Max  =                       (7) 

Where n is the intensity at level n, R1 and Rm are regions in 
the block histogram according to each intensity level. The 
purpose of overlapping the histogram for each block is to 
enhance the lesion for comparison with normal. This will 
produce a new histogram as shown in Fig. 9. The optimal 
threshold is determined by the ROI indicator, which the 
intensity level of normal histogram is reached zero pixels. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

 
Fig 9 Optimal threshold with Gamma-law enhancement 

Fig. 10 shows the maximum block histogram, which is done 
by overlapping the histogram in all blocks including both 
normal and abnormal. By using the proposed technique, we 
can clearly characterize the lesion area because it has been 
enhanced. 
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Fig 10 Maximum block histogram 

The statistical features representing the hyperintense and 
hypointense regions are then calculated according to equation 
(8), where Toptimal is the threshold value to obtain the 
segmentation. 
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VI.  SEGMENTATION PROCESS USING GLCM 
Fig. 11 shows an example of GLCM for image in Fig. 1(c). 

The image has hyperintense lesion due to acute infarction. The 
GLCM is computed for Ng=128, d=1 and at average 
orientations, and is represented in a contour plot. Colour 
intensity represents the co-occurrence frequencies, or the 
number of repetitions between each pixel pair, u and v. It can 
be seen that hypointense region and CSF occur at smaller co-
occurrence entry; normal brain tissue is located in the middle 
of the matrix, while hyperintense region exists at higher entry.  
The red dash-line shows a cross-section at u=v. At this line, 
the co-occurrence frequency is the highest. The plot also 
shows that the co-occurrence frequencies are diagonally 
symmetry and the gray level resolutions are brighter when the 
co-occurrence transitions increase off-diagonally with the 
matrix. 
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Fig 9 Optimal threshold with Gamma-law 
enhancement

Fig. 10 shows the maximum block 
histogram, which is done by overlapping 
the histogram in all blocks including 
both normal and abnormal. By using 
the proposed technique, we can clearly 
characterize the lesion area because it has 
been enhanced. 
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Fig. 7 Image splitting (16 x 16 pixels size per segment) 

Region 46 which is indicated by red circle is the lesion, 
examine by neuroradiologist.  Next, histogram is calculated at 
each region as shown in Fig. 8. The red circle shows the 
histogram distribution of lesion, whereas the others are 
histogram of normal brain area.  
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Fig. 8 Histogram distribution of each region 

Two histograms which are normal and abnormal (lesion) are 
then generated. All normal and abnormal regions are overlap 
respectively to find the maximum number of pixels at each 
intensity level. The maximum number of pixels is calculated 
by using the function shown in equation (7).  

 

n)),mR:1(R Max(PixelsPixels(n)Max  =                       (7) 

Where n is the intensity at level n, R1 and Rm are regions in 
the block histogram according to each intensity level. The 
purpose of overlapping the histogram for each block is to 
enhance the lesion for comparison with normal. This will 
produce a new histogram as shown in Fig. 9. The optimal 
threshold is determined by the ROI indicator, which the 
intensity level of normal histogram is reached zero pixels. 
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Fig 9 Optimal threshold with Gamma-law enhancement 

Fig. 10 shows the maximum block histogram, which is done 
by overlapping the histogram in all blocks including both 
normal and abnormal. By using the proposed technique, we 
can clearly characterize the lesion area because it has been 
enhanced. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

 
Fig 10 Maximum block histogram 

The statistical features representing the hyperintense and 
hypointense regions are then calculated according to equation 
(8), where Toptimal is the threshold value to obtain the 
segmentation. 
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VI.  SEGMENTATION PROCESS USING GLCM 
Fig. 11 shows an example of GLCM for image in Fig. 1(c). 

The image has hyperintense lesion due to acute infarction. The 
GLCM is computed for Ng=128, d=1 and at average 
orientations, and is represented in a contour plot. Colour 
intensity represents the co-occurrence frequencies, or the 
number of repetitions between each pixel pair, u and v. It can 
be seen that hypointense region and CSF occur at smaller co-
occurrence entry; normal brain tissue is located in the middle 
of the matrix, while hyperintense region exists at higher entry.  
The red dash-line shows a cross-section at u=v. At this line, 
the co-occurrence frequency is the highest. The plot also 
shows that the co-occurrence frequencies are diagonally 
symmetry and the gray level resolutions are brighter when the 
co-occurrence transitions increase off-diagonally with the 
matrix. 
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Fig 10 Maximum block histogram

The statistical features representing the 
hyperintense and hypointense regions 
are then calculated according to equation 
(8), where Toptimal is the threshold value to 
obtain the segmentation.
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Fig. 7 Image splitting (16 x 16 pixels size per segment) 

Region 46 which is indicated by red circle is the lesion, 
examine by neuroradiologist.  Next, histogram is calculated at 
each region as shown in Fig. 8. The red circle shows the 
histogram distribution of lesion, whereas the others are 
histogram of normal brain area.  
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Fig. 8 Histogram distribution of each region 

Two histograms which are normal and abnormal (lesion) are 
then generated. All normal and abnormal regions are overlap 
respectively to find the maximum number of pixels at each 
intensity level. The maximum number of pixels is calculated 
by using the function shown in equation (7).  

 

n)),mR:1(R Max(PixelsPixels(n)Max  =                       (7) 

Where n is the intensity at level n, R1 and Rm are regions in 
the block histogram according to each intensity level. The 
purpose of overlapping the histogram for each block is to 
enhance the lesion for comparison with normal. This will 
produce a new histogram as shown in Fig. 9. The optimal 
threshold is determined by the ROI indicator, which the 
intensity level of normal histogram is reached zero pixels. 
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Fig 9 Optimal threshold with Gamma-law enhancement 

Fig. 10 shows the maximum block histogram, which is done 
by overlapping the histogram in all blocks including both 
normal and abnormal. By using the proposed technique, we 
can clearly characterize the lesion area because it has been 
enhanced. 
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Fig 10 Maximum block histogram 

The statistical features representing the hyperintense and 
hypointense regions are then calculated according to equation 
(8), where Toptimal is the threshold value to obtain the 
segmentation. 
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VI.  SEGMENTATION PROCESS USING GLCM 
Fig. 11 shows an example of GLCM for image in Fig. 1(c). 

The image has hyperintense lesion due to acute infarction. The 
GLCM is computed for Ng=128, d=1 and at average 
orientations, and is represented in a contour plot. Colour 
intensity represents the co-occurrence frequencies, or the 
number of repetitions between each pixel pair, u and v. It can 
be seen that hypointense region and CSF occur at smaller co-
occurrence entry; normal brain tissue is located in the middle 
of the matrix, while hyperintense region exists at higher entry.  
The red dash-line shows a cross-section at u=v. At this line, 
the co-occurrence frequency is the highest. The plot also 
shows that the co-occurrence frequencies are diagonally 
symmetry and the gray level resolutions are brighter when the 
co-occurrence transitions increase off-diagonally with the 
matrix. 
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Fig. 7 Image splitting (16 x 16 pixels size per segment) 

Region 46 which is indicated by red circle is the lesion, 
examine by neuroradiologist.  Next, histogram is calculated at 
each region as shown in Fig. 8. The red circle shows the 
histogram distribution of lesion, whereas the others are 
histogram of normal brain area.  
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Fig. 8 Histogram distribution of each region 

Two histograms which are normal and abnormal (lesion) are 
then generated. All normal and abnormal regions are overlap 
respectively to find the maximum number of pixels at each 
intensity level. The maximum number of pixels is calculated 
by using the function shown in equation (7).  

 

n)),mR:1(R Max(PixelsPixels(n)Max  =                       (7) 

Where n is the intensity at level n, R1 and Rm are regions in 
the block histogram according to each intensity level. The 
purpose of overlapping the histogram for each block is to 
enhance the lesion for comparison with normal. This will 
produce a new histogram as shown in Fig. 9. The optimal 
threshold is determined by the ROI indicator, which the 
intensity level of normal histogram is reached zero pixels. 
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Fig 9 Optimal threshold with Gamma-law enhancement 

Fig. 10 shows the maximum block histogram, which is done 
by overlapping the histogram in all blocks including both 
normal and abnormal. By using the proposed technique, we 
can clearly characterize the lesion area because it has been 
enhanced. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

 
Fig 10 Maximum block histogram 

The statistical features representing the hyperintense and 
hypointense regions are then calculated according to equation 
(8), where Toptimal is the threshold value to obtain the 
segmentation. 
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VI.  SEGMENTATION PROCESS USING GLCM 
Fig. 11 shows an example of GLCM for image in Fig. 1(c). 

The image has hyperintense lesion due to acute infarction. The 
GLCM is computed for Ng=128, d=1 and at average 
orientations, and is represented in a contour plot. Colour 
intensity represents the co-occurrence frequencies, or the 
number of repetitions between each pixel pair, u and v. It can 
be seen that hypointense region and CSF occur at smaller co-
occurrence entry; normal brain tissue is located in the middle 
of the matrix, while hyperintense region exists at higher entry.  
The red dash-line shows a cross-section at u=v. At this line, 
the co-occurrence frequency is the highest. The plot also 
shows that the co-occurrence frequencies are diagonally 
symmetry and the gray level resolutions are brighter when the 
co-occurrence transitions increase off-diagonally with the 
matrix. 
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Fig. 11 shows an example of GLCM 
for image in Fig. 1(c). The image has 
hyperintense lesion due to acute 
infarction. The GLCM is computed for 
Ng=128, d=1 and at average orientations, 
and is represented in a contour plot. 
Colour intensity represents the co-
occurrence frequencies, or the number of 
repetitions between each pixel pair, u and 
v. It can be seen that hypointense region 
and CSF occur at smaller co-occurrence 
entry; normal brain tissue is located in the 
middle of the matrix, while hyperintense 
region exists at higher entry.  The red 
dash-line shows a cross-section at u=v. At 
this line, the co-occurrence frequency is 
the highest. The plot also shows that the 
co-occurrence frequencies are diagonally 
symmetry and the gray level resolutions 
are brighter when the co-occurrence 
transitions increase off-diagonally with 
the matrix.
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Fig. 11  GLCM for DWI in Fig. 1(c)

A. Minimum and Maximum Threshold 
The GLCM G(u,v) is basically shows a representation of a 

second-order histogram in which the (u,v)th element is the 
frequency that pixel pair u co-occurs with v. GLCM cross-
section can be constructed in which each entry at u=v is 
plotted versus the frequency. Fig. 12 shows the GLCM cross-
section from the contour plot in Fig. 11.  

The maximum peak of the cross-section shows the normal 
brain region. The CSF and the hyperintense lesion are 
indicated by very small peaks at the smaller and higher entry, 
respectively. The magnitudes of the peaks depend on the size 
of lesions. To find the minimum and maximum   threshold 
values, the gradient function, or the divergence slope is 
calculated. The gradient reach maximum when the GLCM 
frequency is the greatest rate of change, and vice versa. The 
minimum and maximum threshold (T1 and T2) is set at the first 
zero-gradient before and after the maximum peak, 
respectively.  

0 20 40 60 80 100
-400

-200

0

200

400

600

800

1000
Divergence of smooth GLCM

co-occurrence u=v

fre
qu

en
cy

Fig. 12  GLCM Cross-section and the divergence slope to 
determine the minimum and maximum threshold values  

B. Region and Boundary Information from GLCM  
In this research, the region and boundary information are 

based on the partition of nine regions, which are separated by 
the minimum and maximum threshold values, T1 and T2. 
Referring to Fig. 13, region 1 represents hypointense; region 2 
represents normal brain tissue while region 3 represents 
hyperintense. The boundary between each region is then 
represented in region 1, 2; 1, 3 and 2, 3. Each boundary has 
two regions due to the symmetrical feature of the GLCM. 
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Fig. 13  Gray level region and boundary information

C. Segmentation 
The statistical features representing the hyperintense and 

hypointense regions are then calculated according to equation 
(9) and (10) as follow: 
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where G(u,v)3 and G(u,v)1 is the region for hyperintense and 
hypointense, respectively. Segmentation image for 
hyperintense and hypointense lesions are then computed. For 
hyperintense, its segmentation image I3(x,y) is computed for 
1≤x≤Nx ; 1≤y≤Ny  and   0≤u,v≤Ng-1, as below: 
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where u=I(x,y) and v is the nearest-neighbour pixels as in 
equation (3). Similar computation can be done for the 
hypointense lesion. In general, the example of the 
segmentation for d=1 and φ=0o is as follow: 
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Fig. 11  GLCM for DWI in Fig. 1(c)

a. minimum and maximum 
threshold

The GLCM G(u,v) is basically shows 
a representation of a second-order 
histogram in which the (u,v)th element 
is the frequency that pixel pair u co-
occurs with v. GLCM cross-section can 
be constructed in which each entry at u=v 
is plotted versus the frequency. Fig. 12 
shows the GLCM cross-section from the 
contour plot in Fig. 11. 

The maximum peak of the cross-section 
shows the normal brain region. The CSF 
and the hyperintense lesion are indicated 
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by very small peaks at the smaller and 
higher entry, respectively. The magnitudes 
of the peaks depend on the size of lesions. 
To find the minimum and maximum   
threshold values, the gradient function, 
or the divergence slope is calculated. 
The gradient reach maximum when the 
GLCM frequency is the greatest rate of 
change, and vice versa. The minimum 
and maximum threshold (T1 and T2) is set 
at the first zero-gradient before and after 
the maximum peak, respectively. 
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Fig. 11  GLCM for DWI in Fig. 1(c)

A. Minimum and Maximum Threshold 
The GLCM G(u,v) is basically shows a representation of a 

second-order histogram in which the (u,v)th element is the 
frequency that pixel pair u co-occurs with v. GLCM cross-
section can be constructed in which each entry at u=v is 
plotted versus the frequency. Fig. 12 shows the GLCM cross-
section from the contour plot in Fig. 11.  

The maximum peak of the cross-section shows the normal 
brain region. The CSF and the hyperintense lesion are 
indicated by very small peaks at the smaller and higher entry, 
respectively. The magnitudes of the peaks depend on the size 
of lesions. To find the minimum and maximum   threshold 
values, the gradient function, or the divergence slope is 
calculated. The gradient reach maximum when the GLCM 
frequency is the greatest rate of change, and vice versa. The 
minimum and maximum threshold (T1 and T2) is set at the first 
zero-gradient before and after the maximum peak, 
respectively.  
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Fig. 12  GLCM Cross-section and the divergence slope to 
determine the minimum and maximum threshold values  

B. Region and Boundary Information from GLCM  
In this research, the region and boundary information are 

based on the partition of nine regions, which are separated by 
the minimum and maximum threshold values, T1 and T2. 
Referring to Fig. 13, region 1 represents hypointense; region 2 
represents normal brain tissue while region 3 represents 
hyperintense. The boundary between each region is then 
represented in region 1, 2; 1, 3 and 2, 3. Each boundary has 
two regions due to the symmetrical feature of the GLCM. 
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Fig. 13  Gray level region and boundary information

C. Segmentation 
The statistical features representing the hyperintense and 

hypointense regions are then calculated according to equation 
(9) and (10) as follow: 
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where G(u,v)3 and G(u,v)1 is the region for hyperintense and 
hypointense, respectively. Segmentation image for 
hyperintense and hypointense lesions are then computed. For 
hyperintense, its segmentation image I3(x,y) is computed for 
1≤x≤Nx ; 1≤y≤Ny  and   0≤u,v≤Ng-1, as below: 
 

∑∑
= = ⎩

⎨
⎧ >

=
x yN

x

N

y

vu
yxI

1 1

3
3 elsewhere   0

0 ),G(   if    1
),(

         (11) 
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where u=I(x,y) and v is the nearest-neighbour pixels as in 
equation (3). Similar computation can be done for the 
hypointense lesion. In general, the example of the 
segmentation for d=1 and φ=0o is as follow: 
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Fig. 12  GLCM Cross-section and the 
divergence slope to determine the minimum 

and maximum threshold values

B. region and Boundary information 
from gLCm 

In this research, the region and boundary 
information are based on the partition 
of nine regions, which are separated by 
the minimum and maximum threshold 
values, T1 and T2. Referring to Fig. 13, 
region 1 represents hypointense; region 
2 represents normal brain tissue while 
region 3 represents hyperintense. The 
boundary between each region is then 
represented in region 1, 2; 1, 3 and 2, 3. 
Each boundary has two regions due to the 
symmetrical feature of the GLCM.
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Fig. 11  GLCM for DWI in Fig. 1(c)

A. Minimum and Maximum Threshold 
The GLCM G(u,v) is basically shows a representation of a 

second-order histogram in which the (u,v)th element is the 
frequency that pixel pair u co-occurs with v. GLCM cross-
section can be constructed in which each entry at u=v is 
plotted versus the frequency. Fig. 12 shows the GLCM cross-
section from the contour plot in Fig. 11.  

The maximum peak of the cross-section shows the normal 
brain region. The CSF and the hyperintense lesion are 
indicated by very small peaks at the smaller and higher entry, 
respectively. The magnitudes of the peaks depend on the size 
of lesions. To find the minimum and maximum   threshold 
values, the gradient function, or the divergence slope is 
calculated. The gradient reach maximum when the GLCM 
frequency is the greatest rate of change, and vice versa. The 
minimum and maximum threshold (T1 and T2) is set at the first 
zero-gradient before and after the maximum peak, 
respectively.  
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Fig. 12  GLCM Cross-section and the divergence slope to 
determine the minimum and maximum threshold values  

B. Region and Boundary Information from GLCM  
In this research, the region and boundary information are 

based on the partition of nine regions, which are separated by 
the minimum and maximum threshold values, T1 and T2. 
Referring to Fig. 13, region 1 represents hypointense; region 2 
represents normal brain tissue while region 3 represents 
hyperintense. The boundary between each region is then 
represented in region 1, 2; 1, 3 and 2, 3. Each boundary has 
two regions due to the symmetrical feature of the GLCM. 
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Fig. 13  Gray level region and boundary information

C. Segmentation 
The statistical features representing the hyperintense and 

hypointense regions are then calculated according to equation 
(9) and (10) as follow: 
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where G(u,v)3 and G(u,v)1 is the region for hyperintense and 
hypointense, respectively. Segmentation image for 
hyperintense and hypointense lesions are then computed. For 
hyperintense, its segmentation image I3(x,y) is computed for 
1≤x≤Nx ; 1≤y≤Ny  and   0≤u,v≤Ng-1, as below: 
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where u=I(x,y) and v is the nearest-neighbour pixels as in 
equation (3). Similar computation can be done for the 
hypointense lesion. In general, the example of the 
segmentation for d=1 and φ=0o is as follow: 
 

loop end
end          

;1),(              

0),(  if          
);1,(        

);,(        
,  loop

=

>
+=

=

yxI

vuG
yxIv
yxIu

yx

segm

segm  

Hypointense 
region  

Normal brain 
tissue 

Hyperintense 
region 

Min 
threshold, 
T1 

Max  
Threshold,  
T2 

Max Peak 

T1

T1

T2 

T2

1

2 

3

1, 2

1, 3

 3, 2

3, 12, 1 

2, 3 

Fig. 13  Gray level region and boundary 
information

C. segmentation

The statistical features representing the 
hyperintense and hypointense regions 
are then calculated according to equation 
(9) and (10) as follow:
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Fig. 11  GLCM for DWI in Fig. 1(c)

A. Minimum and Maximum Threshold 
The GLCM G(u,v) is basically shows a representation of a 

second-order histogram in which the (u,v)th element is the 
frequency that pixel pair u co-occurs with v. GLCM cross-
section can be constructed in which each entry at u=v is 
plotted versus the frequency. Fig. 12 shows the GLCM cross-
section from the contour plot in Fig. 11.  

The maximum peak of the cross-section shows the normal 
brain region. The CSF and the hyperintense lesion are 
indicated by very small peaks at the smaller and higher entry, 
respectively. The magnitudes of the peaks depend on the size 
of lesions. To find the minimum and maximum   threshold 
values, the gradient function, or the divergence slope is 
calculated. The gradient reach maximum when the GLCM 
frequency is the greatest rate of change, and vice versa. The 
minimum and maximum threshold (T1 and T2) is set at the first 
zero-gradient before and after the maximum peak, 
respectively.  
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determine the minimum and maximum threshold values  

B. Region and Boundary Information from GLCM  
In this research, the region and boundary information are 

based on the partition of nine regions, which are separated by 
the minimum and maximum threshold values, T1 and T2. 
Referring to Fig. 13, region 1 represents hypointense; region 2 
represents normal brain tissue while region 3 represents 
hyperintense. The boundary between each region is then 
represented in region 1, 2; 1, 3 and 2, 3. Each boundary has 
two regions due to the symmetrical feature of the GLCM. 
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Fig. 13  Gray level region and boundary information

C. Segmentation 
The statistical features representing the hyperintense and 

hypointense regions are then calculated according to equation 
(9) and (10) as follow: 
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where G(u,v)3 and G(u,v)1 is the region for hyperintense and 
hypointense, respectively. Segmentation image for 
hyperintense and hypointense lesions are then computed. For 
hyperintense, its segmentation image I3(x,y) is computed for 
1≤x≤Nx ; 1≤y≤Ny  and   0≤u,v≤Ng-1, as below: 
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where u=I(x,y) and v is the nearest-neighbour pixels as in 
equation (3). Similar computation can be done for the 
hypointense lesion. In general, the example of the 
segmentation for d=1 and φ=0o is as follow: 
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Fig. 11  GLCM for DWI in Fig. 1(c)

A. Minimum and Maximum Threshold 
The GLCM G(u,v) is basically shows a representation of a 

second-order histogram in which the (u,v)th element is the 
frequency that pixel pair u co-occurs with v. GLCM cross-
section can be constructed in which each entry at u=v is 
plotted versus the frequency. Fig. 12 shows the GLCM cross-
section from the contour plot in Fig. 11.  

The maximum peak of the cross-section shows the normal 
brain region. The CSF and the hyperintense lesion are 
indicated by very small peaks at the smaller and higher entry, 
respectively. The magnitudes of the peaks depend on the size 
of lesions. To find the minimum and maximum   threshold 
values, the gradient function, or the divergence slope is 
calculated. The gradient reach maximum when the GLCM 
frequency is the greatest rate of change, and vice versa. The 
minimum and maximum threshold (T1 and T2) is set at the first 
zero-gradient before and after the maximum peak, 
respectively.  
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B. Region and Boundary Information from GLCM  
In this research, the region and boundary information are 

based on the partition of nine regions, which are separated by 
the minimum and maximum threshold values, T1 and T2. 
Referring to Fig. 13, region 1 represents hypointense; region 2 
represents normal brain tissue while region 3 represents 
hyperintense. The boundary between each region is then 
represented in region 1, 2; 1, 3 and 2, 3. Each boundary has 
two regions due to the symmetrical feature of the GLCM. 
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C. Segmentation 
The statistical features representing the hyperintense and 

hypointense regions are then calculated according to equation 
(9) and (10) as follow: 
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where G(u,v)3 and G(u,v)1 is the region for hyperintense and 
hypointense, respectively. Segmentation image for 
hyperintense and hypointense lesions are then computed. For 
hyperintense, its segmentation image I3(x,y) is computed for 
1≤x≤Nx ; 1≤y≤Ny  and   0≤u,v≤Ng-1, as below: 
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where u=I(x,y) and v is the nearest-neighbour pixels as in 
equation (3). Similar computation can be done for the 
hypointense lesion. In general, the example of the 
segmentation for d=1 and φ=0o is as follow: 
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where G(u,v)3 and G(u,v)1 is the region 
for hyperintense and hypointense, 
respectively. Segmentation image for 
hyperintense and hypointense lesions 
are then computed. For hyperintense, its 
segmentation image I3(x,y) is computed 
for 1≤x≤Nx ; 1≤y≤Ny  and   0≤u,v≤Ng-1, as 
below:
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A. Minimum and Maximum Threshold 
The GLCM G(u,v) is basically shows a representation of a 

second-order histogram in which the (u,v)th element is the 
frequency that pixel pair u co-occurs with v. GLCM cross-
section can be constructed in which each entry at u=v is 
plotted versus the frequency. Fig. 12 shows the GLCM cross-
section from the contour plot in Fig. 11.  

The maximum peak of the cross-section shows the normal 
brain region. The CSF and the hyperintense lesion are 
indicated by very small peaks at the smaller and higher entry, 
respectively. The magnitudes of the peaks depend on the size 
of lesions. To find the minimum and maximum   threshold 
values, the gradient function, or the divergence slope is 
calculated. The gradient reach maximum when the GLCM 
frequency is the greatest rate of change, and vice versa. The 
minimum and maximum threshold (T1 and T2) is set at the first 
zero-gradient before and after the maximum peak, 
respectively.  
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B. Region and Boundary Information from GLCM  
In this research, the region and boundary information are 

based on the partition of nine regions, which are separated by 
the minimum and maximum threshold values, T1 and T2. 
Referring to Fig. 13, region 1 represents hypointense; region 2 
represents normal brain tissue while region 3 represents 
hyperintense. The boundary between each region is then 
represented in region 1, 2; 1, 3 and 2, 3. Each boundary has 
two regions due to the symmetrical feature of the GLCM. 
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C. Segmentation 
The statistical features representing the hyperintense and 

hypointense regions are then calculated according to equation 
(9) and (10) as follow: 
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where G(u,v)3 and G(u,v)1 is the region for hyperintense and 
hypointense, respectively. Segmentation image for 
hyperintense and hypointense lesions are then computed. For 
hyperintense, its segmentation image I3(x,y) is computed for 
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where u=I(x,y) and v is the nearest-neighbour pixels as in 
equation (3). Similar computation can be done for the 
hypointense lesion. In general, the example of the 
segmentation for d=1 and φ=0o is as follow: 
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The GLCM G(u,v) is basically shows a representation of a 

second-order histogram in which the (u,v)th element is the 
frequency that pixel pair u co-occurs with v. GLCM cross-
section can be constructed in which each entry at u=v is 
plotted versus the frequency. Fig. 12 shows the GLCM cross-
section from the contour plot in Fig. 11.  

The maximum peak of the cross-section shows the normal 
brain region. The CSF and the hyperintense lesion are 
indicated by very small peaks at the smaller and higher entry, 
respectively. The magnitudes of the peaks depend on the size 
of lesions. To find the minimum and maximum   threshold 
values, the gradient function, or the divergence slope is 
calculated. The gradient reach maximum when the GLCM 
frequency is the greatest rate of change, and vice versa. The 
minimum and maximum threshold (T1 and T2) is set at the first 
zero-gradient before and after the maximum peak, 
respectively.  
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B. Region and Boundary Information from GLCM  
In this research, the region and boundary information are 

based on the partition of nine regions, which are separated by 
the minimum and maximum threshold values, T1 and T2. 
Referring to Fig. 13, region 1 represents hypointense; region 2 
represents normal brain tissue while region 3 represents 
hyperintense. The boundary between each region is then 
represented in region 1, 2; 1, 3 and 2, 3. Each boundary has 
two regions due to the symmetrical feature of the GLCM. 
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C. Segmentation 
The statistical features representing the hyperintense and 

hypointense regions are then calculated according to equation 
(9) and (10) as follow: 
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where G(u,v)3 and G(u,v)1 is the region for hyperintense and 
hypointense, respectively. Segmentation image for 
hyperintense and hypointense lesions are then computed. For 
hyperintense, its segmentation image I3(x,y) is computed for 
1≤x≤Nx ; 1≤y≤Ny  and   0≤u,v≤Ng-1, as below: 
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where u=I(x,y) and v is the nearest-neighbour pixels as in 
equation (3). Similar computation can be done for the 
hypointense lesion. In general, the example of the 
segmentation for d=1 and φ=0o is as follow: 
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The GLCM G(u,v) is basically shows a representation of a 

second-order histogram in which the (u,v)th element is the 
frequency that pixel pair u co-occurs with v. GLCM cross-
section can be constructed in which each entry at u=v is 
plotted versus the frequency. Fig. 12 shows the GLCM cross-
section from the contour plot in Fig. 11.  

The maximum peak of the cross-section shows the normal 
brain region. The CSF and the hyperintense lesion are 
indicated by very small peaks at the smaller and higher entry, 
respectively. The magnitudes of the peaks depend on the size 
of lesions. To find the minimum and maximum   threshold 
values, the gradient function, or the divergence slope is 
calculated. The gradient reach maximum when the GLCM 
frequency is the greatest rate of change, and vice versa. The 
minimum and maximum threshold (T1 and T2) is set at the first 
zero-gradient before and after the maximum peak, 
respectively.  
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B. Region and Boundary Information from GLCM  
In this research, the region and boundary information are 

based on the partition of nine regions, which are separated by 
the minimum and maximum threshold values, T1 and T2. 
Referring to Fig. 13, region 1 represents hypointense; region 2 
represents normal brain tissue while region 3 represents 
hyperintense. The boundary between each region is then 
represented in region 1, 2; 1, 3 and 2, 3. Each boundary has 
two regions due to the symmetrical feature of the GLCM. 
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C. Segmentation 
The statistical features representing the hyperintense and 

hypointense regions are then calculated according to equation 
(9) and (10) as follow: 
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where G(u,v)3 and G(u,v)1 is the region for hyperintense and 
hypointense, respectively. Segmentation image for 
hyperintense and hypointense lesions are then computed. For 
hyperintense, its segmentation image I3(x,y) is computed for 
1≤x≤Nx ; 1≤y≤Ny  and   0≤u,v≤Ng-1, as below: 
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where u=I(x,y) and v is the nearest-neighbour pixels as in 
equation (3). Similar computation can be done for the 
hypointense lesion. In general, the example of the 
segmentation for d=1 and φ=0o is as follow: 
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A. Minimum and Maximum Threshold 
The GLCM G(u,v) is basically shows a representation of a 

second-order histogram in which the (u,v)th element is the 
frequency that pixel pair u co-occurs with v. GLCM cross-
section can be constructed in which each entry at u=v is 
plotted versus the frequency. Fig. 12 shows the GLCM cross-
section from the contour plot in Fig. 11.  

The maximum peak of the cross-section shows the normal 
brain region. The CSF and the hyperintense lesion are 
indicated by very small peaks at the smaller and higher entry, 
respectively. The magnitudes of the peaks depend on the size 
of lesions. To find the minimum and maximum   threshold 
values, the gradient function, or the divergence slope is 
calculated. The gradient reach maximum when the GLCM 
frequency is the greatest rate of change, and vice versa. The 
minimum and maximum threshold (T1 and T2) is set at the first 
zero-gradient before and after the maximum peak, 
respectively.  
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B. Region and Boundary Information from GLCM  
In this research, the region and boundary information are 

based on the partition of nine regions, which are separated by 
the minimum and maximum threshold values, T1 and T2. 
Referring to Fig. 13, region 1 represents hypointense; region 2 
represents normal brain tissue while region 3 represents 
hyperintense. The boundary between each region is then 
represented in region 1, 2; 1, 3 and 2, 3. Each boundary has 
two regions due to the symmetrical feature of the GLCM. 
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C. Segmentation 
The statistical features representing the hyperintense and 

hypointense regions are then calculated according to equation 
(9) and (10) as follow: 
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where G(u,v)3 and G(u,v)1 is the region for hyperintense and 
hypointense, respectively. Segmentation image for 
hyperintense and hypointense lesions are then computed. For 
hyperintense, its segmentation image I3(x,y) is computed for 
1≤x≤Nx ; 1≤y≤Ny  and   0≤u,v≤Ng-1, as below: 
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where u=I(x,y) and v is the nearest-neighbour pixels as in 
equation (3). Similar computation can be done for the 
hypointense lesion. In general, the example of the 
segmentation for d=1 and φ=0o is as follow: 
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where u=I(x,y) and v is the nearest-
neighbour pixels as in equation (3). 
Similar computation can be done for 
the hypointense lesion. In general, the 
example of the segmentation for d=1 and 
φ=0o is as follow:
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A. Minimum and Maximum Threshold 
The GLCM G(u,v) is basically shows a representation of a 

second-order histogram in which the (u,v)th element is the 
frequency that pixel pair u co-occurs with v. GLCM cross-
section can be constructed in which each entry at u=v is 
plotted versus the frequency. Fig. 12 shows the GLCM cross-
section from the contour plot in Fig. 11.  

The maximum peak of the cross-section shows the normal 
brain region. The CSF and the hyperintense lesion are 
indicated by very small peaks at the smaller and higher entry, 
respectively. The magnitudes of the peaks depend on the size 
of lesions. To find the minimum and maximum   threshold 
values, the gradient function, or the divergence slope is 
calculated. The gradient reach maximum when the GLCM 
frequency is the greatest rate of change, and vice versa. The 
minimum and maximum threshold (T1 and T2) is set at the first 
zero-gradient before and after the maximum peak, 
respectively.  
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B. Region and Boundary Information from GLCM  
In this research, the region and boundary information are 

based on the partition of nine regions, which are separated by 
the minimum and maximum threshold values, T1 and T2. 
Referring to Fig. 13, region 1 represents hypointense; region 2 
represents normal brain tissue while region 3 represents 
hyperintense. The boundary between each region is then 
represented in region 1, 2; 1, 3 and 2, 3. Each boundary has 
two regions due to the symmetrical feature of the GLCM. 

averaged GLCM contour plot

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 13  Gray level region and boundary information

C. Segmentation 
The statistical features representing the hyperintense and 

hypointense regions are then calculated according to equation 
(9) and (10) as follow: 
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where G(u,v)3 and G(u,v)1 is the region for hyperintense and 
hypointense, respectively. Segmentation image for 
hyperintense and hypointense lesions are then computed. For 
hyperintense, its segmentation image I3(x,y) is computed for 
1≤x≤Nx ; 1≤y≤Ny  and   0≤u,v≤Ng-1, as below: 
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where u=I(x,y) and v is the nearest-neighbour pixels as in 
equation (3). Similar computation can be done for the 
hypointense lesion. In general, the example of the 
segmentation for d=1 and φ=0o is as follow: 
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vii. performanCe   
 assessment metriCs

Performance assessment of the 
segmentation results is done by comparing 
the ROI obtained from the automatic 
segmentation with the reference ROI 
provided by neuroradiologists. Area 
overlap (AO) also known as Jaccard 
statistical index, false positive rate 
(FPR), false negative rate (FNR) and 
misclassified area (MA) are used as the 
performance metrics. These metrics are 
computed as follows [33]:
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where S1 represents the segmentation results obtained by the 
segmentation algorithms and S2 represents the manual 
segmentation provided by the neuroradiologists. c is the 
complement of S1 and S2.  AO computes the segmented 
similarity by comparing the overlap region between the 
manual and the automatic segmentation. FPR and FNR are 
used to quantify oversegmentation and undersegmentation 
respectively. High AO, low FPR, FNR and MA show low 
error, i.e. high accuracy of the measurement.  

Mean absolute percentage error (MAPE) was used as index 
for misclassified index for mean and number of pixels value in 
the segmentation area, while pixel absolute error ratio (rerr) 
was for misclassified pixels for normal control. MAPE is an 
index that measures the difference between actual and 
measured value and is expressed as: 
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Besides MAPE, absolute error ratio, rerr was also applied to 

quantify the accuracy of the segmentation for normal image.  
rerr is defined as the ratio between the absolute difference in 
the number of over segmented  pixels between the actual and 
the proposed segmentation method, ndiff, and the total number 
of pixels, N, of an image.  Normal image should result 0 
number of pixel in the segmented image.  Otherwise the result 
is over segmented. 
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Low MAPE and rerr show low error, i.e high similarity with 
respect to the expert judgment. The testing dataset consist of 3 
abscess, 4 haemorrhage, 11 acute infarction, and 2 tumour 
cases. In total, 23 samples are used for evaluation. 
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Table 3 shows the performance evaluation between 
thresholding with Gamma-law transformation and contrast 
stretching algorithm.   

Table 3 Performance evaluation for each lesion: Comparison between 
Gamma-law transformation and contrast stretching algorithm 
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by comparing the ROI obtained from the automatic 
segmentation with the reference ROI provided by 
neuroradiologists. Area overlap (AO) also known as Jaccard 
statistical index, false positive rate (FPR), false negative rate 
(FNR) and misclassified area (MA) are used as the 
performance metrics. These metrics are computed as follows 
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where S1 represents the segmentation results obtained by the 
segmentation algorithms and S2 represents the manual 
segmentation provided by the neuroradiologists. c is the 
complement of S1 and S2.  AO computes the segmented 
similarity by comparing the overlap region between the 
manual and the automatic segmentation. FPR and FNR are 
used to quantify oversegmentation and undersegmentation 
respectively. High AO, low FPR, FNR and MA show low 
error, i.e. high accuracy of the measurement.  

Mean absolute percentage error (MAPE) was used as index 
for misclassified index for mean and number of pixels value in 
the segmentation area, while pixel absolute error ratio (rerr) 
was for misclassified pixels for normal control. MAPE is an 
index that measures the difference between actual and 
measured value and is expressed as: 
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Table 3 shows the performance evaluation between 
thresholding with Gamma-law transformation and contrast 
stretching algorithm.   

Table 3 Performance evaluation for each lesion: Comparison between 
Gamma-law transformation and contrast stretching algorithm 
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where S1 represents the segmentation 
results obtained by the segmentation 
algorithms and S2 represents the 
manual segmentation provided by the 
neuroradiologists. c is the complement of 
S1 and S2.  AO computes the segmented 
similarity by comparing the overlap 
region between the manual and the 
automatic segmentation. FPR and FNR 
are used to quantify oversegmentation 
and undersegmentation respectively. 
High AO, low FPR, FNR and MA show 
low error, i.e. high accuracy of the 
measurement. 

Mean absolute percentage error (MAPE) 
was used as index for misclassified 
index for mean and number of pixels 
value in the segmentation area, while 
pixel absolute error ratio (rerr) was for 
misclassified pixels for normal control. 
MAPE is an index that measures the 
difference between actual and measured 
value and is expressed as:
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where S1 represents the segmentation results obtained by the 
segmentation algorithms and S2 represents the manual 
segmentation provided by the neuroradiologists. c is the 
complement of S1 and S2.  AO computes the segmented 
similarity by comparing the overlap region between the 
manual and the automatic segmentation. FPR and FNR are 
used to quantify oversegmentation and undersegmentation 
respectively. High AO, low FPR, FNR and MA show low 
error, i.e. high accuracy of the measurement.  

Mean absolute percentage error (MAPE) was used as index 
for misclassified index for mean and number of pixels value in 
the segmentation area, while pixel absolute error ratio (rerr) 
was for misclassified pixels for normal control. MAPE is an 
index that measures the difference between actual and 
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Besides MAPE, absolute error ratio, rerr was also applied to 

quantify the accuracy of the segmentation for normal image.  
rerr is defined as the ratio between the absolute difference in 
the number of over segmented  pixels between the actual and 
the proposed segmentation method, ndiff, and the total number 
of pixels, N, of an image.  Normal image should result 0 
number of pixel in the segmented image.  Otherwise the result 
is over segmented. 
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Table 3 shows the performance evaluation between 
thresholding with Gamma-law transformation and contrast 
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VII. PERFORMANCE ASSESSMENT METRICS 
Performance assessment of the segmentation results is done 

by comparing the ROI obtained from the automatic 
segmentation with the reference ROI provided by 
neuroradiologists. Area overlap (AO) also known as Jaccard 
statistical index, false positive rate (FPR), false negative rate 
(FNR) and misclassified area (MA) are used as the 
performance metrics. These metrics are computed as follows 
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where S1 represents the segmentation results obtained by the 
segmentation algorithms and S2 represents the manual 
segmentation provided by the neuroradiologists. c is the 
complement of S1 and S2.  AO computes the segmented 
similarity by comparing the overlap region between the 
manual and the automatic segmentation. FPR and FNR are 
used to quantify oversegmentation and undersegmentation 
respectively. High AO, low FPR, FNR and MA show low 
error, i.e. high accuracy of the measurement.  

Mean absolute percentage error (MAPE) was used as index 
for misclassified index for mean and number of pixels value in 
the segmentation area, while pixel absolute error ratio (rerr) 
was for misclassified pixels for normal control. MAPE is an 
index that measures the difference between actual and 
measured value and is expressed as: 
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Besides MAPE, absolute error ratio, rerr was also applied to 

quantify the accuracy of the segmentation for normal image.  
rerr is defined as the ratio between the absolute difference in 
the number of over segmented  pixels between the actual and 
the proposed segmentation method, ndiff, and the total number 
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number of pixel in the segmented image.  Otherwise the result 
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Table 3 shows the performance evaluation between 
thresholding with Gamma-law transformation and contrast 
stretching algorithm.   

Table 3 Performance evaluation for each lesion: Comparison between 
Gamma-law transformation and contrast stretching algorithm 
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Rate (over-
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Rate (under-
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Tech-
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Besides MAPE, absolute error ratio, rerr 
was also applied to quantify the accuracy 
of the segmentation for normal image.  
rerr is defined as the ratio between the 
absolute difference in the number of over 
segmented  pixels between the actual and 
the proposed segmentation method, ndiff, 
and the total number of pixels, N, of an 
image.  Normal image should result 0 
number of pixel in the segmented image.  
Otherwise the result is over segmented.

VII. PERFORMANCE ASSESSMENT METRICS 
Performance assessment of the segmentation results is done 

by comparing the ROI obtained from the automatic 
segmentation with the reference ROI provided by 
neuroradiologists. Area overlap (AO) also known as Jaccard 
statistical index, false positive rate (FPR), false negative rate 
(FNR) and misclassified area (MA) are used as the 
performance metrics. These metrics are computed as follows 
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where S1 represents the segmentation results obtained by the 
segmentation algorithms and S2 represents the manual 
segmentation provided by the neuroradiologists. c is the 
complement of S1 and S2.  AO computes the segmented 
similarity by comparing the overlap region between the 
manual and the automatic segmentation. FPR and FNR are 
used to quantify oversegmentation and undersegmentation 
respectively. High AO, low FPR, FNR and MA show low 
error, i.e. high accuracy of the measurement.  

Mean absolute percentage error (MAPE) was used as index 
for misclassified index for mean and number of pixels value in 
the segmentation area, while pixel absolute error ratio (rerr) 
was for misclassified pixels for normal control. MAPE is an 
index that measures the difference between actual and 
measured value and is expressed as: 
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Besides MAPE, absolute error ratio, rerr was also applied to 

quantify the accuracy of the segmentation for normal image.  
rerr is defined as the ratio between the absolute difference in 
the number of over segmented  pixels between the actual and 
the proposed segmentation method, ndiff, and the total number 
of pixels, N, of an image.  Normal image should result 0 
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cases. In total, 23 samples are used for evaluation. 

VIII. RESULTS  

A. Thresholding Technique 
Table 2 shows intensity of lesions on histogram 

thresholding.  The threshold values are compared between 
Gamma-law transformation and contrast stretching. Minimum 
0.48 and 0.28 are the optimal threshold value for the Gamma-
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Table 3 shows the performance evaluation between 
thresholding with Gamma-law transformation and contrast 
stretching algorithm.   
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Gamma-law transformation and contrast stretching algorithm 

 Index Area Overlap False Positive 
Rate (over-

segmentation) 

False Negative 
Rate (under-

segmentation) 
Tech-
nique 

Gamma
-law 

Contrast 
Stretch 

Gamma-
law 

Contrast 
Stretch 

Gamma-
law 

Contrast 
Stretch 

Abscess 0.7042 0.6842 0.0296 0.0435 0.2662 0.2723 
Haemor
-rhage 0.6926 0.6763 0.1436 0.0909 0.1638 0.2328 
Infarc-
tion 0.7016 0.6492 0.1792 0.2213 0.1192 0.1404 

Tumour 0.4893 0.2645 0.0923 0.0140 0.4183 0.7214 

Average 0.6789 0.6214 0.1410 0.1478 0.1801 0.2308 

VII. PERFORMANCE ASSESSMENT METRICS 
Performance assessment of the segmentation results is done 

by comparing the ROI obtained from the automatic 
segmentation with the reference ROI provided by 
neuroradiologists. Area overlap (AO) also known as Jaccard 
statistical index, false positive rate (FPR), false negative rate 
(FNR) and misclassified area (MA) are used as the 
performance metrics. These metrics are computed as follows 
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where S1 represents the segmentation results obtained by the 
segmentation algorithms and S2 represents the manual 
segmentation provided by the neuroradiologists. c is the 
complement of S1 and S2.  AO computes the segmented 
similarity by comparing the overlap region between the 
manual and the automatic segmentation. FPR and FNR are 
used to quantify oversegmentation and undersegmentation 
respectively. High AO, low FPR, FNR and MA show low 
error, i.e. high accuracy of the measurement.  

Mean absolute percentage error (MAPE) was used as index 
for misclassified index for mean and number of pixels value in 
the segmentation area, while pixel absolute error ratio (rerr) 
was for misclassified pixels for normal control. MAPE is an 
index that measures the difference between actual and 
measured value and is expressed as: 
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quantify the accuracy of the segmentation for normal image.  
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the number of over segmented  pixels between the actual and 
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of pixels, N, of an image.  Normal image should result 0 
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Table 3 shows the performance evaluation between 
thresholding with Gamma-law transformation and contrast 
stretching algorithm.   

Table 3 Performance evaluation for each lesion: Comparison between 
Gamma-law transformation and contrast stretching algorithm 
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Tumour 0.4893 0.2645 0.0923 0.0140 0.4183 0.7214 

Average 0.6789 0.6214 0.1410 0.1478 0.1801 0.2308 

Low MAPE and rerr show low error, i.e 
high similarity with respect to the expert 
judgment. The testing dataset consist 
of 3 abscess, 4 haemorrhage, 11 acute 
infarction, and 2 tumour cases. In total, 23 
samples are used for evaluation.

viii. resuLts 

a. thresholding technique

Table 2 shows intensity of lesions on 
histogram thresholding.  The threshold 
values are compared between Gamma-
law transformation and contrast 
stretching. Minimum 0.48 and 0.28 are 
the optimal threshold value for the 
Gamma-law transformation and contrast 
stretching respectively.

Table 2 Optimal thresholding value

VII. PERFORMANCE ASSESSMENT METRICS 
Performance assessment of the segmentation results is done 

by comparing the ROI obtained from the automatic 
segmentation with the reference ROI provided by 
neuroradiologists. Area overlap (AO) also known as Jaccard 
statistical index, false positive rate (FPR), false negative rate 
(FNR) and misclassified area (MA) are used as the 
performance metrics. These metrics are computed as follows 
[33]: 
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where S1 represents the segmentation results obtained by the 
segmentation algorithms and S2 represents the manual 
segmentation provided by the neuroradiologists. c is the 
complement of S1 and S2.  AO computes the segmented 
similarity by comparing the overlap region between the 
manual and the automatic segmentation. FPR and FNR are 
used to quantify oversegmentation and undersegmentation 
respectively. High AO, low FPR, FNR and MA show low 
error, i.e. high accuracy of the measurement.  

Mean absolute percentage error (MAPE) was used as index 
for misclassified index for mean and number of pixels value in 
the segmentation area, while pixel absolute error ratio (rerr) 
was for misclassified pixels for normal control. MAPE is an 
index that measures the difference between actual and 
measured value and is expressed as: 
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Besides MAPE, absolute error ratio, rerr was also applied to 

quantify the accuracy of the segmentation for normal image.  
rerr is defined as the ratio between the absolute difference in 
the number of over segmented  pixels between the actual and 
the proposed segmentation method, ndiff, and the total number 
of pixels, N, of an image.  Normal image should result 0 
number of pixel in the segmented image.  Otherwise the result 
is over segmented. 
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Low MAPE and rerr show low error, i.e high similarity with 
respect to the expert judgment. The testing dataset consist of 3 
abscess, 4 haemorrhage, 11 acute infarction, and 2 tumour 
cases. In total, 23 samples are used for evaluation. 

VIII. RESULTS  

A. Thresholding Technique 
Table 2 shows intensity of lesions on histogram 

thresholding.  The threshold values are compared between 
Gamma-law transformation and contrast stretching. Minimum 
0.48 and 0.28 are the optimal threshold value for the Gamma-
law transformation and contrast stretching respectively. 

Table 2 Optimal thresholding value 

Optimal Threshold of Hyperintense Lesion 
Gamma-law Transformation Contrast Stretching 
Min Max Min Max 
0.48 0.8 0.28 1.0 

 
Fig. 14 shows segmentation results tested on our dataset as 

discussed in section III. The lesions are indicated by white 
circle. The first row of the images (i) represents the brain 
lesion images whereas the second row (ii) and the third row 
(iii) are the segmentation results using the enhanced images 
after Gamma-law transformation and contrast stretching 
respectively. Both image enhancement techniques can 
successfully segment the lesions using thresholding. 
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                       Fig. 14 Brain lesions and their segmentation results 

Table 3 shows the performance evaluation between 
thresholding with Gamma-law transformation and contrast 
stretching algorithm.   

Table 3 Performance evaluation for each lesion: Comparison between 
Gamma-law transformation and contrast stretching algorithm 

 Index Area Overlap False Positive 
Rate (over-

segmentation) 

False Negative 
Rate (under-

segmentation) 
Tech-
nique 

Gamma
-law 

Contrast 
Stretch 

Gamma-
law 

Contrast 
Stretch 

Gamma-
law 

Contrast 
Stretch 

Abscess 0.7042 0.6842 0.0296 0.0435 0.2662 0.2723 
Haemor
-rhage 0.6926 0.6763 0.1436 0.0909 0.1638 0.2328 
Infarc-
tion 0.7016 0.6492 0.1792 0.2213 0.1192 0.1404 

Tumour 0.4893 0.2645 0.0923 0.0140 0.4183 0.7214 

Average 0.6789 0.6214 0.1410 0.1478 0.1801 0.2308 

Fig. 14 shows segmentation results tested 
on our dataset as discussed in section III. 
The lesions are indicated by white circle. 
The first row of the images (i) represents 
the brain lesion images whereas the 
second row (ii) and the third row (iii) 
are the segmentation results using the 
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enhanced images after Gamma-law 
transformation and contrast stretching 
respectively. Both image enhancement 
techniques can successfully segment the 
lesions using thresholding.

VII. PERFORMANCE ASSESSMENT METRICS 
Performance assessment of the segmentation results is done 

by comparing the ROI obtained from the automatic 
segmentation with the reference ROI provided by 
neuroradiologists. Area overlap (AO) also known as Jaccard 
statistical index, false positive rate (FPR), false negative rate 
(FNR) and misclassified area (MA) are used as the 
performance metrics. These metrics are computed as follows 
[33]: 
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where S1 represents the segmentation results obtained by the 
segmentation algorithms and S2 represents the manual 
segmentation provided by the neuroradiologists. c is the 
complement of S1 and S2.  AO computes the segmented 
similarity by comparing the overlap region between the 
manual and the automatic segmentation. FPR and FNR are 
used to quantify oversegmentation and undersegmentation 
respectively. High AO, low FPR, FNR and MA show low 
error, i.e. high accuracy of the measurement.  

Mean absolute percentage error (MAPE) was used as index 
for misclassified index for mean and number of pixels value in 
the segmentation area, while pixel absolute error ratio (rerr) 
was for misclassified pixels for normal control. MAPE is an 
index that measures the difference between actual and 
measured value and is expressed as: 
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Besides MAPE, absolute error ratio, rerr was also applied to 

quantify the accuracy of the segmentation for normal image.  
rerr is defined as the ratio between the absolute difference in 
the number of over segmented  pixels between the actual and 
the proposed segmentation method, ndiff, and the total number 
of pixels, N, of an image.  Normal image should result 0 
number of pixel in the segmented image.  Otherwise the result 
is over segmented. 
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Low MAPE and rerr show low error, i.e high similarity with 
respect to the expert judgment. The testing dataset consist of 3 
abscess, 4 haemorrhage, 11 acute infarction, and 2 tumour 
cases. In total, 23 samples are used for evaluation. 

VIII. RESULTS  

A. Thresholding Technique 
Table 2 shows intensity of lesions on histogram 

thresholding.  The threshold values are compared between 
Gamma-law transformation and contrast stretching. Minimum 
0.48 and 0.28 are the optimal threshold value for the Gamma-
law transformation and contrast stretching respectively. 

Table 2 Optimal thresholding value 

Optimal Threshold of Hyperintense Lesion 
Gamma-law Transformation Contrast Stretching 
Min Max Min Max 
0.48 0.8 0.28 1.0 
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Table 3 shows the performance evaluation between 
thresholding with Gamma-law transformation and contrast 
stretching algorithm.   

Table 3 Performance evaluation for each lesion: Comparison between 
Gamma-law transformation and contrast stretching algorithm 
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Fig. 14 Brain lesions and their segmentation 
results

Table 3 shows the performance evaluation 
between thresholding with Gamma-law 
transformation and contrast stretching 
algorithm.  

Table 3 Performance evaluation for each 
lesion: Comparison between Gamma-law 

transformation and contrast stretching 
algorithm

VII. PERFORMANCE ASSESSMENT METRICS 
Performance assessment of the segmentation results is done 

by comparing the ROI obtained from the automatic 
segmentation with the reference ROI provided by 
neuroradiologists. Area overlap (AO) also known as Jaccard 
statistical index, false positive rate (FPR), false negative rate 
(FNR) and misclassified area (MA) are used as the 
performance metrics. These metrics are computed as follows 
[33]: 
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where S1 represents the segmentation results obtained by the 
segmentation algorithms and S2 represents the manual 
segmentation provided by the neuroradiologists. c is the 
complement of S1 and S2.  AO computes the segmented 
similarity by comparing the overlap region between the 
manual and the automatic segmentation. FPR and FNR are 
used to quantify oversegmentation and undersegmentation 
respectively. High AO, low FPR, FNR and MA show low 
error, i.e. high accuracy of the measurement.  

Mean absolute percentage error (MAPE) was used as index 
for misclassified index for mean and number of pixels value in 
the segmentation area, while pixel absolute error ratio (rerr) 
was for misclassified pixels for normal control. MAPE is an 
index that measures the difference between actual and 
measured value and is expressed as: 
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Besides MAPE, absolute error ratio, rerr was also applied to 

quantify the accuracy of the segmentation for normal image.  
rerr is defined as the ratio between the absolute difference in 
the number of over segmented  pixels between the actual and 
the proposed segmentation method, ndiff, and the total number 
of pixels, N, of an image.  Normal image should result 0 
number of pixel in the segmented image.  Otherwise the result 
is over segmented. 
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Low MAPE and rerr show low error, i.e high similarity with 
respect to the expert judgment. The testing dataset consist of 3 
abscess, 4 haemorrhage, 11 acute infarction, and 2 tumour 
cases. In total, 23 samples are used for evaluation. 

VIII. RESULTS  

A. Thresholding Technique 
Table 2 shows intensity of lesions on histogram 

thresholding.  The threshold values are compared between 
Gamma-law transformation and contrast stretching. Minimum 
0.48 and 0.28 are the optimal threshold value for the Gamma-
law transformation and contrast stretching respectively. 

Table 2 Optimal thresholding value 

Optimal Threshold of Hyperintense Lesion 
Gamma-law Transformation Contrast Stretching 
Min Max Min Max 
0.48 0.8 0.28 1.0 

 
Fig. 14 shows segmentation results tested on our dataset as 

discussed in section III. The lesions are indicated by white 
circle. The first row of the images (i) represents the brain 
lesion images whereas the second row (ii) and the third row 
(iii) are the segmentation results using the enhanced images 
after Gamma-law transformation and contrast stretching 
respectively. Both image enhancement techniques can 
successfully segment the lesions using thresholding. 
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                       Fig. 14 Brain lesions and their segmentation results 

Table 3 shows the performance evaluation between 
thresholding with Gamma-law transformation and contrast 
stretching algorithm.   

Table 3 Performance evaluation for each lesion: Comparison between 
Gamma-law transformation and contrast stretching algorithm 

 Index Area Overlap False Positive 
Rate (over-

segmentation) 

False Negative 
Rate (under-

segmentation) 
Tech-
nique 

Gamma
-law 

Contrast 
Stretch 

Gamma-
law 

Contrast 
Stretch 

Gamma-
law 

Contrast 
Stretch 

Abscess 0.7042 0.6842 0.0296 0.0435 0.2662 0.2723 
Haemor
-rhage 0.6926 0.6763 0.1436 0.0909 0.1638 0.2328 
Infarc-
tion 0.7016 0.6492 0.1792 0.2213 0.1192 0.1404 

Tumour 0.4893 0.2645 0.0923 0.0140 0.4183 0.7214 

Average 0.6789 0.6214 0.1410 0.1478 0.1801 0.2308 

The results show the segmentation of 
abscess, haemorrhage and infarction 
provide very good segmentation results. 
Thresholding with both algorithms 
provide high AO with low FPR and low 
FNR. These lesions were successfully 
segment by using our proposed 
thresholding technique because the 
lesions are very bright in DWI.  From the 
table, the technique provides the worst 
result for all evaluation measurements for 
tumour. This is because, in DWI, the lesion 
for tumour is cannot fully characterized 
by its brightness. In addition, some 
tumour lesions in DWI comprise dark 
area in the middle or surrounding its 

hyperintense lesion which is failed 
to detect by histogram. Therefore, 
histogram thresholding provides low 
performance for tumour segmentation in 
DWI. The errors for under-segmentation 
(FNR) are bigger than over-segmentation 
(FPR) for all cases. The shaded areas 
show the best average performance. Fig. 
15 shows average performance of lesion 
segmentation by using both Gamma-law 
transformation and contrast stretching 
algorithm.

The results show the segmentation of abscess, haemorrhage 
and infarction provide very good segmentation results. 
Thresholding with both algorithms provide high AO with low 
FPR and low FNR. These lesions were successfully segment 
by using our proposed thresholding technique because the 
lesions are very bright in DWI.  From the table, the technique 
provides the worst result for all evaluation measurements for 
tumour. This is because, in DWI, the lesion for tumour is 
cannot fully characterized by its brightness. In addition, some 
tumour lesions in DWI comprise dark area in the middle or 
surrounding its hyperintense lesion which is failed to detect by 
histogram. Therefore, histogram thresholding provides low 
performance for tumour segmentation in DWI. The errors for 
under-segmentation (FNR) are bigger than over-segmentation 
(FPR) for all cases. The shaded areas show the best average 
performance. Fig. 15 shows average performance of lesion 
segmentation by using both Gamma-law transformation and 
contrast stretching algorithm.

 

Fi
g. 15 Average performance of the thresholding algorithm 

Gamma-law transformation algorithm provides higher AO 
which means better similarity to the manual segmentation 
provided by neuroradiologists.  For over-segmentation (FPR) 
and under-segmentation (FNR) evaluation, gamma-law 
transformation provides higher performance, while contrast 
stretching gives poorer result. Overall, gamma-law 
transformation algorithm provides better segmentation results 
compared to contrast stretching.

B. GLCM  
The proposed method has been tested with ten patients, as 

shown in Fig. 16.  The images are normal; solid tumour, acute 
infarction, abscess and haemorrhage which represent 
hyperintense lesion; haemorrhage and chronic infarction 
which represent hypointense lesion. 
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Fig. 16 Segmentation results. From top to bottom: (a) DWI for normal 
patient and segmentation result of normal CSF, (b-g) Segmentation of 

hyperintense lesions, (h-f) Segmentation of hypointense lesions 

For normal patient in Fig. 16(a), the DWI is separated into two 
parts which are brain tissue and CSF in the middle of the 
brain. The results show that the normal brain tissue is well 
separated from the CSF. No hyperintense lesion is detected. 
Fig. 16 (b-g) shows several hyperintense lesions and their 
segmentation results. As seen in the figures, the lesions are 
well segmented using the approach method. Similar evaluation 
is made for the hypointense lesions in Fig. 16 (h-f). Since the 
hypointense lesions and CSF share similar characteristics, 
hence both regions fall under the hypointense regions. Normal 
CSF can be characterized by looking at the symmetrical shape 
in the middle of the brain while for hypointense lesion, the 
shape is irregular. 

C. Segmentation Performance Comparison 
Fig. 17 shows average performance of lesion segmentation 

by using both GLCM and thresholding. As discussed in the 
chapter VII, low MA, MAPE and rerr show low error, i.e high 
similarity with respect to the expert judgment. GLCM 
provides lower MA, MAPE and rerr compared to thresholding 
technique, which means more accurate. Overall, GLCM 
provides better segmentation results compared to thresholding 
technique. 

 

Fig. 17 Performance comparison between GLCM and thresholding 

Fig. 15 Average performance of the 
thresholding algorithm

Gamma-law transformation algorithm 
provides higher AO which means better 
similarity to the manual segmentation 
provided by neuroradiologists.  For 
over-segmentation (FPR) and under-
segmentation (FNR) evaluation, gamma-
law transformation provides higher 
performance, while contrast stretching 
gives poorer result. Overall, gamma-
law transformation algorithm provides 
better segmentation results compared to 
contrast stretching.

B. gLCm 

The proposed method has been tested 
with ten patients, as shown in Fig. 16.  The 
images are normal; solid tumour, acute 
infarction, abscess and haemorrhage 
which represent hyperintense lesion; 
haemorrhage and chronic infarction 
which represent hypointense lesion.
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The results show the segmentation of abscess, haemorrhage 
and infarction provide very good segmentation results. 
Thresholding with both algorithms provide high AO with low 
FPR and low FNR. These lesions were successfully segment 
by using our proposed thresholding technique because the 
lesions are very bright in DWI.  From the table, the technique 
provides the worst result for all evaluation measurements for 
tumour. This is because, in DWI, the lesion for tumour is 
cannot fully characterized by its brightness. In addition, some 
tumour lesions in DWI comprise dark area in the middle or 
surrounding its hyperintense lesion which is failed to detect by 
histogram. Therefore, histogram thresholding provides low 
performance for tumour segmentation in DWI. The errors for 
under-segmentation (FNR) are bigger than over-segmentation 
(FPR) for all cases. The shaded areas show the best average 
performance. Fig. 15 shows average performance of lesion 
segmentation by using both Gamma-law transformation and 
contrast stretching algorithm.

 

Fi
g. 15 Average performance of the thresholding algorithm 

Gamma-law transformation algorithm provides higher AO 
which means better similarity to the manual segmentation 
provided by neuroradiologists.  For over-segmentation (FPR) 
and under-segmentation (FNR) evaluation, gamma-law 
transformation provides higher performance, while contrast 
stretching gives poorer result. Overall, gamma-law 
transformation algorithm provides better segmentation results 
compared to contrast stretching.

B. GLCM  
The proposed method has been tested with ten patients, as 

shown in Fig. 16.  The images are normal; solid tumour, acute 
infarction, abscess and haemorrhage which represent 
hyperintense lesion; haemorrhage and chronic infarction 
which represent hypointense lesion. 
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Fig. 16 Segmentation results. From top to bottom: (a) DWI for normal 
patient and segmentation result of normal CSF, (b-g) Segmentation of 

hyperintense lesions, (h-f) Segmentation of hypointense lesions 

For normal patient in Fig. 16(a), the DWI is separated into two 
parts which are brain tissue and CSF in the middle of the 
brain. The results show that the normal brain tissue is well 
separated from the CSF. No hyperintense lesion is detected. 
Fig. 16 (b-g) shows several hyperintense lesions and their 
segmentation results. As seen in the figures, the lesions are 
well segmented using the approach method. Similar evaluation 
is made for the hypointense lesions in Fig. 16 (h-f). Since the 
hypointense lesions and CSF share similar characteristics, 
hence both regions fall under the hypointense regions. Normal 
CSF can be characterized by looking at the symmetrical shape 
in the middle of the brain while for hypointense lesion, the 
shape is irregular. 

C. Segmentation Performance Comparison 
Fig. 17 shows average performance of lesion segmentation 

by using both GLCM and thresholding. As discussed in the 
chapter VII, low MA, MAPE and rerr show low error, i.e high 
similarity with respect to the expert judgment. GLCM 
provides lower MA, MAPE and rerr compared to thresholding 
technique, which means more accurate. Overall, GLCM 
provides better segmentation results compared to thresholding 
technique. 
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The results show the segmentation of abscess, haemorrhage 

and infarction provide very good segmentation results. 
Thresholding with both algorithms provide high AO with low 
FPR and low FNR. These lesions were successfully segment 
by using our proposed thresholding technique because the 
lesions are very bright in DWI.  From the table, the technique 
provides the worst result for all evaluation measurements for 
tumour. This is because, in DWI, the lesion for tumour is 
cannot fully characterized by its brightness. In addition, some 
tumour lesions in DWI comprise dark area in the middle or 
surrounding its hyperintense lesion which is failed to detect by 
histogram. Therefore, histogram thresholding provides low 
performance for tumour segmentation in DWI. The errors for 
under-segmentation (FNR) are bigger than over-segmentation 
(FPR) for all cases. The shaded areas show the best average 
performance. Fig. 15 shows average performance of lesion 
segmentation by using both Gamma-law transformation and 
contrast stretching algorithm.
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Gamma-law transformation algorithm provides higher AO 
which means better similarity to the manual segmentation 
provided by neuroradiologists.  For over-segmentation (FPR) 
and under-segmentation (FNR) evaluation, gamma-law 
transformation provides higher performance, while contrast 
stretching gives poorer result. Overall, gamma-law 
transformation algorithm provides better segmentation results 
compared to contrast stretching.

B. GLCM  
The proposed method has been tested with ten patients, as 

shown in Fig. 16.  The images are normal; solid tumour, acute 
infarction, abscess and haemorrhage which represent 
hyperintense lesion; haemorrhage and chronic infarction 
which represent hypointense lesion. 
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Fig. 16 Segmentation results. From top to bottom: (a) DWI for normal 
patient and segmentation result of normal CSF, (b-g) Segmentation of 

hyperintense lesions, (h-f) Segmentation of hypointense lesions 

For normal patient in Fig. 16(a), the DWI is separated into two 
parts which are brain tissue and CSF in the middle of the 
brain. The results show that the normal brain tissue is well 
separated from the CSF. No hyperintense lesion is detected. 
Fig. 16 (b-g) shows several hyperintense lesions and their 
segmentation results. As seen in the figures, the lesions are 
well segmented using the approach method. Similar evaluation 
is made for the hypointense lesions in Fig. 16 (h-f). Since the 
hypointense lesions and CSF share similar characteristics, 
hence both regions fall under the hypointense regions. Normal 
CSF can be characterized by looking at the symmetrical shape 
in the middle of the brain while for hypointense lesion, the 
shape is irregular. 

C. Segmentation Performance Comparison 
Fig. 17 shows average performance of lesion segmentation 

by using both GLCM and thresholding. As discussed in the 
chapter VII, low MA, MAPE and rerr show low error, i.e high 
similarity with respect to the expert judgment. GLCM 
provides lower MA, MAPE and rerr compared to thresholding 
technique, which means more accurate. Overall, GLCM 
provides better segmentation results compared to thresholding 
technique. 
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Fig. 16 Segmentation results. From top to 
bottom: (a) DWI for normal patient and 
segmentation result of normal CSF, (b-g) 

Segmentation of hyperintense lesions, (h-f) 
Segmentation of hypointense lesions

For normal patient in Fig. 16(a), the DWI 
is separated into two parts which are 
brain tissue and CSF in the middle of the 
brain. The results show that the normal 
brain tissue is well separated from the 
CSF. No hyperintense lesion is detected. 
Fig. 16 (b-g) shows several hyperintense 
lesions and their segmentation results. 
As seen in the figures, the lesions are well 
segmented using the approach method. 
Similar evaluation is made for the 
hypointense lesions in Fig. 16 (h-f). Since 
the hypointense lesions and CSF share 
similar characteristics, hence both regions 
fall under the hypointense regions. 
Normal CSF can be characterized by 
looking at the symmetrical shape in the 
middle of the brain while for hypointense 
lesion, the shape is irregular.

C. segmentation performance 
Comparison

Fig. 17 shows average performance of 
lesion segmentation by using both GLCM 

and thresholding. As discussed in the 
chapter VII, low MA, MAPE and rerr show 
low error, i.e high similarity with respect 
to the expert judgment. GLCM provides 
lower MA, MAPE and rerr compared to 
thresholding technique, which means 
more accurate. Overall, GLCM provides 
better segmentation results compared to 
thresholding technique.

The results show the segmentation of abscess, haemorrhage 
and infarction provide very good segmentation results. 
Thresholding with both algorithms provide high AO with low 
FPR and low FNR. These lesions were successfully segment 
by using our proposed thresholding technique because the 
lesions are very bright in DWI.  From the table, the technique 
provides the worst result for all evaluation measurements for 
tumour. This is because, in DWI, the lesion for tumour is 
cannot fully characterized by its brightness. In addition, some 
tumour lesions in DWI comprise dark area in the middle or 
surrounding its hyperintense lesion which is failed to detect by 
histogram. Therefore, histogram thresholding provides low 
performance for tumour segmentation in DWI. The errors for 
under-segmentation (FNR) are bigger than over-segmentation 
(FPR) for all cases. The shaded areas show the best average 
performance. Fig. 15 shows average performance of lesion 
segmentation by using both Gamma-law transformation and 
contrast stretching algorithm.

 

Fi
g. 15 Average performance of the thresholding algorithm 

Gamma-law transformation algorithm provides higher AO 
which means better similarity to the manual segmentation 
provided by neuroradiologists.  For over-segmentation (FPR) 
and under-segmentation (FNR) evaluation, gamma-law 
transformation provides higher performance, while contrast 
stretching gives poorer result. Overall, gamma-law 
transformation algorithm provides better segmentation results 
compared to contrast stretching.

B. GLCM  
The proposed method has been tested with ten patients, as 

shown in Fig. 16.  The images are normal; solid tumour, acute 
infarction, abscess and haemorrhage which represent 
hyperintense lesion; haemorrhage and chronic infarction 
which represent hypointense lesion. 

  

  
(a) Normal (b) Solid 

tumour 
(c) Acute 
infarction 

 

 
(d) Abscess (e)Haemorrhage (f) Acute 

infarction 

 

 
(g) Acute 
Infarction 

(h)Haemorrhage (f) Chronic 
infarction 

Fig. 16 Segmentation results. From top to bottom: (a) DWI for normal 
patient and segmentation result of normal CSF, (b-g) Segmentation of 

hyperintense lesions, (h-f) Segmentation of hypointense lesions 

For normal patient in Fig. 16(a), the DWI is separated into two 
parts which are brain tissue and CSF in the middle of the 
brain. The results show that the normal brain tissue is well 
separated from the CSF. No hyperintense lesion is detected. 
Fig. 16 (b-g) shows several hyperintense lesions and their 
segmentation results. As seen in the figures, the lesions are 
well segmented using the approach method. Similar evaluation 
is made for the hypointense lesions in Fig. 16 (h-f). Since the 
hypointense lesions and CSF share similar characteristics, 
hence both regions fall under the hypointense regions. Normal 
CSF can be characterized by looking at the symmetrical shape 
in the middle of the brain while for hypointense lesion, the 
shape is irregular. 

C. Segmentation Performance Comparison 
Fig. 17 shows average performance of lesion segmentation 

by using both GLCM and thresholding. As discussed in the 
chapter VII, low MA, MAPE and rerr show low error, i.e high 
similarity with respect to the expert judgment. GLCM 
provides lower MA, MAPE and rerr compared to thresholding 
technique, which means more accurate. Overall, GLCM 
provides better segmentation results compared to thresholding 
technique. 

 

Fig. 17 Performance comparison between GLCM and thresholding Fig. 17 Performance comparison between 
GLCM and thresholding

ix. ConCLusions

This paper describes brain lesion 
segmentation in DWI using both 
thresholding technique and GLCM. 
Clinical DWI which focused on 
the hyperintense lesions which are 
infarction, acute haemorrhage, solid 
tumor and abscess are used for the study. 
Preprocessing stage is carried out for 
intensity normalization, background 
removal and intensity enhancement. 
Gamma-law transformation algorithm 
and contrast stretching are evaluated 
and compared to threshold the lesions.  
Images are segmented to 16 x 16 pixels 
size and histogram thresholding is 
applied at each region to find the 
maximum number of pixels. The result 
shows that both intensity enhancement 
techniques can be applied for successfully 
segment the hyperintense lesions using 
our proposed theresholding technique. 
However, Gamma-law transformation 
algorithm provides better segmentation 
results compared to contrast stretching. 
GLCM was also computed from the DWI. 
From the GLCM contour plot, GLCM 
cross section was constructed to compute 
the minimum and maximum threshold 
values. Region and boundary information 
from the GLCM were analyzed. The 
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GLCM regions that were according to 
hyperintense and hypointense lesions 
were segmented. The result shows that 
the proposed methods can successfully 
segment the lesions and is suitable for 
analysis of DWI and for classification 
purpose.  Overall, GLCM provides better 
segmentation accuracy compared to 
thresholding technique.
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