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Abstract—In this paper, an algorithm to estimate the gait 

parameters based upon EMG signal is proposed. The algorithm 

is developed using extreme learning machine (ELM). 

Experiments were conducted to acquire the gait parameters 

from 18 healthy human subjects. EMG signals from Tibialis 

Anterior (TA) and Gastrocnemius Lateral (GL) muscles were 

obtained during the gait cycle. The target temporal gait 

parameters are gait speed and stance/swing phase which were 

measured using inertia sensor and camera system. The ELM 

algorithm was developed using a single hidden layer 

feedforward network architecture where the weights from the 

input layer to the hidden layer are randomized and not updated 

during the run. Results obtained from ELM were compared 

with artificial neural network (ANN) model with the same 

architecture as the ELM algorithm. In ELM, the mean 

estimation errors of gait speed, stance percentage, and swing 

percentage were 11.86%, 7.62%, and 6.07% respectively. This 

was compared to the errors of 12.92%, 11.75% and 9.56% using 

ANN. Besides that, ELM achieved shorter training and testing 

time. The robustness of ELM algorithm demonstrated the 

capability of real-time computation due to superior computing 

performance compared to conventional ANN models.    

 

Index Terms—Artificial Neural Network; Extreme Learning 

Machine; Gait Analysis. 

 

I. INTRODUCTION 

 

Human gaits describe patterns in which human walk. They 

are dependent on various factors such as walking speed, 

forces and other personal factors (e.g., age, joint impairment, 

etc.). Observation and analysis of these gaits provide a vital 

aspect on the diagnosis of gait impairment so as to devise a 

proper treatment plan for the patient (e.g., gait rehabilitation 

after stroke). Gait profile and parameters such as gait 

velocity, cycle time, stride length etc., could be acquired via 

camera or inertia sensor systems. Meanwhile, 

electromyography (EMG) signals record electrical activities 

of the muscle as active muscles produce electrical current and 

this can be correlated to the level of muscle strength. 

In recent years, doctors conduct objective assessment 

utilizing machine learning technologies, and this has been 

applied to gait analysis [1]. Artificial neural network (ANN) 

could distinguish normal and impaired gait due to its strong 

nonlinear learning ability [2]. However, one of the problems 

ANN faces is that it could either reach a global minimum or 

get stuck at a local minimum. The accuracy of the ANN 

classifier could also decrease through the over-trained of 

training samples. In addition, to apply the techniques of ANN 

techniques on real-time gait analysis is undesirable as it 

requires a huge gait database and the process of getting a huge 

database would be time-consuming. As a result, the system 

would become more complex with the greater computational 

burden and longer training time.  

The emergence of machine learning techniques such as 

extreme learning machine (ELM) has become a popular area 

of research over the past years. It is a learning algorithm for 

single-hidden layer feed-forward neural networks (SLFNs) 

where the weights connecting inputs to hidden nodes are 

randomly chosen whereas the output weights of SLFNs are 

determined through iterations [3]. ELM has been found to 

overcome some of the bottlenecks faced by the classical 

neural network and ever since then; it has been applied in 

several unique problem-solving applications areas, including 

engineering, biomedical and forensic science [4-10], often 

with promising results. 

This paper aims to develop an algorithm to estimate the 

temporal gait parameters from EMG signals alone. The 

results obtained from ELM are compared with the 

feedforward ANN so as to investigate the robustness of ELM 

model to predict the gait parameters in real-time. Section II 

describes the ELM and ANN theory required in this work. 

Section III outlines the experimental methodology where 

EMG signals acquired from commercial EMG sensor is used 

as input data while gait parameters measured from inertia 

sensor and camera system serve as the target data. The gait 

parameters investigated in this study are gait speed, % swing 

phase, and % stance phase. Section IV discusses the results, 

and Section V concludes the paper. Results indicated that 

ELM could perform function approximation in a faster and 

more efficient way than conventional ANN. In this study, 

ELM yielded lower root mean squared error (RMSE), shorter 

training time and lower mean estimation error compared to 

conventional ANN. 

 

II. ELM AND ANN ARCHITECTURE  

 

Extreme learning machine (ELM) has been proposed as a 

learning algorithm for single-hidden layer feed-forward 

neural networks (SLFNs). In ELM, the hidden nodes are 

randomly initiated and never updated. The only parameters to 

be updated are the weights between the hidden layer and the 

output layer. Compare to the conventional feed-forward 

neural network (FFNN), ELMs are known to shorten the 

learning time, better generalization performance, and ease of 

implementation. In general, the learning rate of FFNN is 

relatively long and this has become the bottleneck in their 

applications. According to [3], the reasons of FFNN having 

longer learning rate are firstly because it uses slow gradient 

based learning algorithms to train the network. Secondly, the 



Journal of Telecommunication, Electronic and Computer Engineering 

62 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 10 No. 1-13  

parameters must be iteratively tuned. The recently proposed 

ELM for SLFN by [3, 11, 12] was meant to overcome these 

problems as it is a simple tuning-free algorithm to achieve 

fast learning speed and provide the best generalization 

performance [12]. Therefore, ELM has great potential for 

developing the efficient and accurate model as a real-time 

predictor for applications which require better generalization 

ability. 

Nonetheless, ELM learning algorithm is different from the 

classical gradient-based learning algorithms as it tends to 

reach the minimum training error while considering the 

magnitude of weights [5] and that it can be used to train SLFN 

with non-differentiable activation functions [11]. 

 

 
 

Figure 1: ELM architecture (𝑋1and 𝑋2 are the inputs, 1…i…L are the 
activation functions, Y1, Y2  and Y3 are the output neurons) 

 

Figure 1 shows the ELM architecture used in this study. 

The input layer consists of two neurons which are EMG 

signals from two muscles, i.e. Tibialis Anterior (TA) muscle 

and Gastrocnemius Lateral (GL) muscle. As for the hidden 

layer, the number of hidden neurons are set to 250, 300, 350 

and 400 as this is the parameter to be tuned for performance 

comparison. A sigmoid activation function, L, is used to 

compute the inputs and bias. The output layer consists of 3 

output neurons since we have three parameters (gait speed, 

%stance, and %swing) to output as targets. The layers are all 

interconnected with the previous and next layer of that 

specific layer. The connections (weights) from the input layer 

to the hidden layer are initiated, randomised and never 

updated during the iterative tuning; it is only the weights from 

the hidden to the output layers that are iteratively tuned. 

Artificial neural networks are models that were developed 

from studying how biological systems work, in particular, the 

human brain. ANNs consist of an interconnected group of 

artificial neurons. The ANN’s knowledge comes from the 

experience they encounter which means that they have a 

learning process and to learn; they adapt their weights so that 

can be used for training and prediction. A multi-layered 

neural network consists of several layers of a large number of 

neurons. Each layer is interconnected with the layer 

immediately before and after it. The input layer is the first 

layer that receives the external inputs while the last layer is 

the output layer which provides the classification solution and 

in between them are an arbitrary amount of hidden layers. In 

this study, the ANN architecture has the same input, the same 

amount of hidden neurons configuration and the same target 

as the ELM model. The difference in ANN is that tanlin (L) 

and purelin (Yn) are used as the transfer function for hidden 

and output layer respectively. A three-layered network can 

accurately classify any non-linear function [13].  

III. METHODOLOGY 

 

The experiment was conducted to acquire gait profile from 

15 healthy human subjects. Ethical approval was obtained 

from the institution’s Research Ethics Committee. The 

inclusive criteria of the subjects are (i) no other known 

neurological disorder disease, (ii) understand and follow 

basic instruction. Participants were provided with written 

consent for this research. The data acquisition and 

preprocessing are divided into two parts: i) Gait parameters 

and ii) EMG signals. The data would then feed into the 

ANN/ELM model for training and testing. 

 

A. Gait Parameters 

 

 
 

Figure 2: A subject completing the gait cycle 

 

All participants (mean ± std, Age: 23 ± 1.6 years old, 

Height: 173.3 ± 6 cm, Weight: 63.7 ± 10.3 kg) were asked to 

wear the inertia sensor system (Figure 2) along with EMG 

sensor device (Shimmer Sensing – Shimmer3 EMG) and 

perform a series of walking tasks, namely slow speed 

walking, normal speed walking and fast speed walking - for 

2 minutes respectively on a 5-meter walkway. The inertia 

sensor system consists of a programmed Arduino Mini Pro 

and a MPU-6050 module (InvenSense – MPU6050) (Figure 

3). A phone camera operating at 60 frames per second was 

setup to capture walking activities concurrently. Red LED 

lights were placed on the areas of interest which include knee 

joints and heel and toe part of outsole as shown in Figure 2. 

The videos are then transferred to the computer where 

MATLAB will be used to analyse the videos. An algorithm 

was coded to track the red LED lights in the video which 

outputs the co-ordinates of the LED lights against time. The 

outputs were later used to obtain the heel-strike and toe-off 

time. The purpose of camera system is mainly used to validate 

and double confirm the measurement from the inertia sensor 

system. The temporal gait parameters are derived from the 

inertia sensor system using the method described in [14] 

while gait speed is determined manually using video tracking 

process acquired from a camera system where the x-

coordinates between toe-off points are converted into metres 

and divided by its gait cycle time. The gait cycle time, 

percentage of swing phase and stance phase could be 

calculated based on the heel-strike and toe-off time obtained 

as follows: 

 

𝐺𝐶𝑖 = 𝑇𝑖+1 − 𝑇𝑖  (1) 

  

𝑆𝑇𝑖  % =
𝑇𝑖+1 − 𝐻𝑖

𝐺𝐶𝑖

 𝑥 100 (2) 

  

𝑆𝑊𝑖  % =
𝐻𝑖 − 𝑇𝑖

𝐺𝐶𝑖

 𝑥 100 (3) 
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where:  GCi  = Gait cycle time for the i-th gait cycle 

H  = Heel-strike moment (initial contact 

ground of heel) 

T = Toe-off moment (terminal of toe leaving 

from ground) 

ST%  = Stance phase percentage  

SW%  = Swing phase percentage 

 

 
 

Figure 3: Inertia sensor used for the experiment 

 

B. EMG Signal 

 

 
 

Figure 4: Shimmer3 EMG unit (ShimmerSensing) 

 

To acquire EMG signals, 2 Shimmer3 EMG (Shimmer 

Sensing – Shimmer3 EMG, Figure 4) units were used. The 

units were configured to have a sampling rate of 512 Hz to 

ensure high-quality reproducibility of the actual summation 

of the muscle’s activity. Each EMG unit is connected to five 

electrodes, namely, a positive and a negative electrode for 

each for two channels and a neutral reference electrode. The 

2 Shimmer3 EMG units were placed on the shins whereas the 

reference electrodes were placed on the knee and the other 

electrodes were placed on the two muscles, namely Tibialis 

Anterior (TA) muscle and Gastrocnemius Lateral (GL) 

muscle. The reason for using three electrodes in this way is 

that the EMG signals, typically, exhibit low signal-to-noise 

ratio. Noise interferences are usually from power lines and 

nearby electrical sources. The signal recorded up by each 

individual electrode consists of noise from the environment 

along with the local electrical signal from the muscles at the 

position of skin contact. The noise from the environment is 

common to all electrodes, whilst the local electrical signal 

depends on the electrode’s position. Thus, if one signal is 

subtracted from another, the common component (the 

undesired noise) will be cancelled by the subtraction, whilst 

the local signals (the desired EMG component) will remain 

after subtraction and can be amplified to make it easier to 

process. This process is called Common Mode Rejection 

(CMR) and is used in the Shimmer3 EMG unit. 

Understanding of anatomy of each muscle is required for 

proper EMG electrode placement. Hence, TA and GL 

muscles are selected as TA contributes to dorsiflexion and 

inversion of the foot while GL is responsible for 

plantarflexion of foot at the ankle joint and the flexing of the 

leg at the knee joint. Another reason why GL is chosen is that 

GL is primarily involved in fast movements of the leg which 

provides a contrast to slow, normal and fast speed. Quality of 

EMG signal depends on muscle’s shape, fibre directionality, 

motor points, tendon positions and insertion points. In this 

study, the placement of EMG electrodes follows the 

recommendation from SENIAM [15].  

The raw EMG signals were processed in MATLAB. To 

remove signal interference from mains electricity, notch 

filtering was used where a band-stop filter was adjusted to 

remove the local mains frequency of 50 Hz and noises at 100 

Hz and 200 Hz (noisy peaks were observed at these 

frequencies in the Fast Fourier Transform frequency 

spectrum). Next, to observe the overall level of activity in a 

particular muscle, the linear envelope of the EMG signals 

were extracted by first applying full wave rectification to the 

signal and subsequently pass it through a low pass filter of 6 

Hz.  

Normalisation is used to eliminate variability across 

subjects, electrode placement and day to day differences in 

measures of the same muscle site. In this study, the EMG 

signals were normalised against the maximum voluntary 

contraction of every subject. 

Finally, the EMG signals were segmented to each gait 

cycle. There was a total of 1471 gait cycle EMG extracted 

from 18 subjects and these data were then fed into the ANN 

and ELM networks. 

 

C. ANN and ELM Model Training 

The ANN model has been developed using built-in 

MATLAB functions while the ELM model was based upon 

the open source algorithm from [16]. All data were divided 

into 75% training, 10% testing and 15% validation. For 

effective comparisons, the training and testing accuracy was 

calculated using root mean square error (RMSE) and mean 

estimation error (in percentage), which are the measure of 

differences between estimated gait parameters and the actual 

measurement.  

The conventional ANN consists of a single hidden layer 

and it is a feed-forward neural network. As EMG signals were 

segmented to each gait cycle, each set of EMG signal would 

have different data length (due to the differences in gait cycle 

time). Each set of EMG signal was then resized to 2000 

elements and they are trained based on scaled conjugate 

gradient algorithm with hyperbolic tangent sigmoid as the 

hidden layer transfer function and purelin as the output layer 

transfer function. Parameters such as learning epoch, goal 

error and learning rate are set to 1000, 0.001 and 0.01 

respectively. In the case of ELM, sigmoid activation function 

was chosen. The hidden neurons for both models were set to 

250, 300, 350 and 400. To strengthen the network and reduce 

over-fitting, a 10-fold cross validation was performed 30 

times for each set of hidden neurons and the average results 

were used. 
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IV. RESULTS AND DISCUSSION 

 

Experimental results are presented from Tables 1 to 4 and 

they represent the performance and duration for both ANN 

and ELM model. Both models output 3 parameters, namely 

Gait Speed, % Stance Phase and % Swing Phase. From 

Tables 1 to 4, it can be observed that, overall, ELM performed 

better than ANN for all the three parameters; not just in terms 

of lesser error, but also shorter training duration.  

 
Table 1 

Experimental Results of Basic ANN and ELM for the Parameter – Gait 

Speed 
 

Gait Speed (m/s) 

ANN 

Hidden 
Neurons 

Testing 

RMSE 

(m/s) 

Testing 
Time(s) 

Training 

RMSE 

(m/s) 

Training 
Time(s) 

Mean Test 

Estimation 

Error (%) 

250 0.1419 0.0354 0.0166 15.7352 12.9271 

300 0.1650 0.0511 0.0173 20.7394 13.5948 

350 0.1543 0.0580 0.0192 20.3116 13.2240 

400 0.1722 0.0614 0.0217 22.4238 14.0108 

ELM 

Hidden 

Neurons 

Testing 

RMSE 
(m/s) 

Testing 

Time(s) 

Training 

RMSE 
(m/s) 

Training 

Time(s) 

Mean Test 

Estimation 
Error (%) 

250 0.1236 0.0170 0.1020 0.1434 11.8646 

300 0.1357 0.0152 0.1003 0.2091 12.6031 
350 0.1428 0.0114 0.0987 0.2552 12.6902 

400 0.1483 0.0213 0.0935 0.2813 12.9716 

 
Table 2 

Experimental Results of Basic ANN and ELM for the Parameter – % 

Stance Phase 

 

% Stance Phase 
ANN 

Hidden 

Neurons 

Testing 

RMSE 

Testing 

Time(s) 

Training 

RMSE 

Training 

Time(s) 

Mean Test 

Estimation 
Error (%) 

250 5.1087 0.0220 1.4372 15.4622 11.7519 

300 6.1807 0.0411 1.6775 17.1960 13.1505 
350 7.2955 0.0489 1.8534 20.2427 15.1321 

400 7.9291 0.0538 1.8587 22.0761 16.4648 

ELM 

Hidden 

Neurons 

Testing 

RMSE 

Testing 

Time(s) 

Training 

RMSE 

Training 

Time(s) 

Mean Test 
Estimation 

Error (%) 

250 3.2709 0.0149 3.0043 0.0420 7.6201 
300 3.2412 0.0155 3.1441 0.0989 7.3545 

350 3.3217 0.0157 2.5674 0.0953 8.0131 

400 3.4432 0.0163 2.4719 0.1028 8.5426 

 
Table 3 

Experimental Results of Basic ANN and ELM for the Parameter – % Swing 

Phase 
 

% Swing Phase 

ANN 

Hidden 
Neurons 

Testing 
RMSE 

Testing 
Time(s) 

Training 
RMSE 

Training 
Time(s) 

Mean Test 

Estimation 

Error (%) 

250 5.0545 0.06972 0.92185 19.26792 9.55680 

300 6.16469 0.06217 1.27358 22.92138 12.20432 

350 5.81581 0.06334 1.48631 23.21076 11.86815 

400 7.39040 0.07205 1.62517 28.17323 13.40730 

ELM 

Hidden 

Neurons 

Testing 

RMSE 

Testing 

Time(s) 

Training 

RMSE 

Training 

Time(s) 

Mean Test 

Estimation 
Error (%) 

250 3.4462 0.02170 2.01872 0.24800 6.06871 

300 3.6835 0.02274 1.97239 0.23296 6.51340 
350 3.8749 0.01876 1.68943 0.25170 6.73352 

400 3.9461 0.02164 1.37365 0.21653 6.91475 

 

Table 4 

Validation Results for Gait Speed, Stance % and Swing % 
 

  Validation RMSE for 250  hidden neurons 

  Gait Speed(m/s) % Stance % Swing  

ANN 0.0925 12.5184 9.2920 
ELM 0.2939 1.6134 1.7952 

 

Another important trend shown by ELM is that as the 

amount to hidden neurons increases, the training RMSE 

decreases while the testing RMSE increases. This trend could 

not be observed from the ANN which makes ELM a more 

predictable and stable model. It also can be seen that though 

for ELM, the training RMSE is higher than that of the ANN 

for gait speed, but generally, ELM yielded better testing 

results. For 250 hidden neurons, ELM yielded 11.86%, 7.62% 

and 6.07% mean test estimation error for gait speed, % Stance 

and % Swing respectively. These were compared to 12.92%, 

11.75% and 9.56% generated by ANN. Hence, it can be 

deduced that ELM is less prone to over-fitting and can 

generalize function better than the ANN. The reason is 

because when the training RMSE is small, the function 

produced is almost exactly dedicated to the training set. So, if 

there is an unseen data being tested on the model, it will most 

likely not show appropriate result if the data is not similar to 

the data trained. This can be seen in Table 4 where the neural 

network is being validated with unknown data (data from 3 

out of 18 subjects were used in validation without training). 

The results further strengthen the view of ELM being a better 

generalizer with the validation RMSE of % Stance and % 

Swing being closer to the testing RMSE. The ELM performed 

relatively poorer for gait speed recognition during validation. 

Furthermore, it is more difficult to do a parameter search for 

ANN as the training duration is much longer than ELM. In 

addition to that, there are more parameters to be tuned (e.g. 

learning rate) for the ANN which can either be an advantage 

or a disadvantage. The advantage is that the function fits 

properly with the dataset while the disadvantage is that 

complexity brings inefficiency which leads back to a longer 

training duration and a lower performance on unseen data. 

Though, ANN triumphs in having a better training 

performance but in the end, the testing performance is the 

major consideration as better testing performance will depict 

a more robust model. 

 

 
 

Figure 5: Comparison between the actual target, and ELM and ANN max, 

min predicted values for 250 hidden neurons (gait speed). Box plots for 

individual ELM and ANN output are shown in the bottom two plots 
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Figure 6: Comparison between the actual target, and ELM and ANN max, 
min predicted values for 250 hidden neurons (%Stance). Box plots for 

individual ELM and ANN output are shown in the bottom two plots 

 

 
 

Figure 7: Comparison between the actual target, and ELM and ANN max, 
min predicted values for 250 hidden neurons (%Swing). Box plots for 

individual ELM and ANN output are shown in the bottom two plots 

 

Figure 5 to 7 shows the comparison between the actual 

target and the maximum, minimum predicted values by ELM 

and ANN for 250 hidden neurons. Box plots for individual 

ELM and ANN output (total 10 outputs for each 

sample/target data) are also included in the figures. Red 

marker represents the outlier of the 10 data and the blue color 

box represents the data in the interquartile range (between the 

first and third quartile). The reason for choosing 250 hidden 

neurons is because it shows the lowest RMSE or means 

estimation error when compared with another amount of 

neurons used. Results showed that the ELM outputs have less 

variation in value (i.e. the smaller interquartile range in the 

box plot) whereas the variation range is large for ANN 

outputs. ELM mean estimated gait parameters were also 

closer to the actual target.  

Overall, the estimation errors of both ELM and ANN 

models are still large. This might be due to using EMG signal 

as the only input data. Further improvement could be made 

by extracting useful features from EMG signals as other 

inputs to ELM and ANN models. 

 

V. CONCLUSION 

 

In this paper, ANN and ELM models are compared when 

trained and tested on a gait dataset where the EMG signal 

served as the input while the parameters – gait speed, % 

Stance and % Swing phase – serves as the target. Overall, 

ELM performs better in terms of predicting the values and it 

takes a shorter duration to train than the ANN. ELM also 

shows a more balanced value approximation as there is less 

difference between the training RMSE and the testing RMSE 

which gives rise to a robust model when compared with 

ANN. Future work would focus on further development of 

ELM model to achieve a more accurate estimation of 

temporal gait parameters. 
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