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Abstract— Boolean functions are the mathematical basis of 

modern cryptographic algorithms. However, in practice, a set 

of interrelated Boolean functions is often used to construct a 

cryptographic algorithm. This circumstance makes the task of 

research of cryptographic quality, in particular, the distance of 

the nonlinearity of the sum of few Boolean functions important. 

The nonlinearity distance of a Boolean function is determined 

by the maximum value of its Walsh-Hadamard transform 

coefficients. In this paper, we proposed a formula that is the 

equivalent of the summation of Boolean functions in the 

Walsh-Hadamard transform domain. The application of this 

formula, as well as the Walsh-Hadamard spectral classification 

made it possible to determine the structure of Walsh-

Hadamard transform coefficients, and the distance of the 

nonlinearity when summing the Boolean functions lengths 

8N =  and 16N =  , indicating valuable practical application 

for information protection. 

 
Index Terms — Boolean Function; Walsh-Hadamard Trans-

Form; Distance of Nonlinearity; Cryptography. 
 

I. INTRODUCTION AND BASIC DEFINITIONS 

 

Design of a modern telecommunication system is 

unthinkable without the use of access control technology 

and information protection. Modern information security 

technologies are largely based on the use of cryptographic 

algorithms, which must be constantly improved in order to 

be resistant to the modern types of cryptanalysis attacks. 

Further development of cryptographic algorithms and 

therefore, the security of modern telecommunication 

systems today is largely depending on the further 

improvement of the mathematical apparatus of Boolean 

functions in the sense of increasing their cryptographic 

quality. 

Boolean function is the most important object in modern 

cryptography. Boolean functions have found their numerous 

applications in the construction of cryptographic S-boxes, 

which are the main component of modern block symmetric 

cryptographic algorithms [1]. Boolean functions are also a 

main component of pseudo-random key sequence 

generators, which form the basis of modern stream 

encryption algorithms [2]. In the cryptographic transforms, a 

set of Boolean functions that satisfies certain quality criteria 

is used. Often the quality of each of the components of the 

set is insufficient, and it is necessary to consider their 

compatibility [3]. 

One of the main criteria for the cryptographic quality of 

Boolean functions is the distance of nonlinearity [4][5][6]. 

There are several ways to measure the distance of 

nonlinearity of a Boolean function, one of which is a 

spectral method based on the research of Walsh-Hadamard 

transform coefficients. The spectral coefficients of the 

Walsh-Hadamard transform ( )fW   of a Boolean function 

( )f x  of k  variables can be represented in the matrix form 

 

 ( )f NW fA = , 0,1,..., 1N = − , (1) 

 

where, 
NA  is the Walsh-Hadamard matrix of order 2kN = , 

which is constructed in accordance with the recurrent rule 

[7] 
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To estimate the distance of nonlinearity of Boolean 

function we have the formula 
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Note that for the Walsh-Hadamard transform coefficients 

(1), Parseval’s equality is valid [8] 
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Since the number of all coefficients is equal to 2k
, it 

follows from the equality that the maximum absolute value 

of the Walsh-Hadamard coefficient cannot be smaller than 

the value 22
k

. It is established that the minimum value of 

Walsh-Hadamard transform coefficients is equal to 22
k

 only 

if the absolute values of all Walsh-Hadamard transform 

coefficients are equal to each other. In this case, the distance 

of nonlinearity (3) is maximal, the Boolean function is 

called a bent-function, and its truth table is a bent-sequence 

[9]. Bent-functions, as nonlinearity nonpareil of the entire 

set of Boolean functions, have found their application in the 

form of the main components of many modern systems of 

information transmission and processing. High values of the 

non-linearity of Boolean bent-functions, and hence their 

maximum distance from the set of affine functions, make 

them widely used in modern cryptographic algorithms and 

their components [10,11]. 

The uniformity of the absolute values of the Walsh-

Hadamard spectral coefficients causes the use of bent-

functions in systems with code division multiple access 

(CDMA), allowing to reduce the PAPR (Peak-to-Average 
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Power Ratio) of the signals transmitted in the system to the 

lowest possible value [12,13]. 

However, the extreme nonlinearity of bent-functions has a 

reverse side. Here is an example showing the existence of a 

bent-function application problem, and thereby confirming 

the actuality of the topic. We choose bent-sequences of the 

length 16N =  

 

 
1

2

[1  1  0  0  1  0  1  0  0  1  1  0  0  0  0  0];

[1  1  0  0  0  1  0  1  1  0  0  1  0  0  0  0].

B

B

=


=
 (5) 

 

Boolean functions (5) have a uniform spectrum 

1, 2 { 4}B BW =  , and accordingly, the maximum possible 

distance of nonlinearity 6fN = . We calculate the sum of 

two bent-functions (5) 

 

 
3 1 2

[0  0  0  0  1  1  1  1  1  1  1  1  0  0  0  0].

B B B=  =

=
 (6) 

 

Both functions (5) have high cryptographic quality, but 

their sum (6), as it is easy to see, has a nonlinearity distance 

0fN = , hence it is inadmissible to use it in nonlinear 

cryptographic applications. Along with such a (negative) 

example, it is easy to show the example of Boolean 

functions, the sum of which is of high quality. 

There are many modern researches devoted to the 

problems of using certain Boolean function as a single unit. 

In practice, cryptographic Boolean functions are rarely used 

as single units. This makes the problem of their 

compatibility in terms of maintaining a high level of 

nonlinearity especially relevant. However, this problem has 

been insufficiently researched in the literature. Thus, a 

complete understanding of the nonlinear properties of the 

sum of two Boolean functions is needed. 

The purpose of this paper is to research the dependence of 

the spectral properties of the sum of two Boolean functions 

from the spectral properties of the summands. 

 

II. AN ANALOGUE OF THE SUMMATION OPERATION IN 

THE DOMAIN OF THE WALSH-HADAMARD TRANSFORM 

COEFFICIENTS 

 

The structure of the spectral vector ( )fW   is rigidly 

determined by the properties of the Walsh-Hadamard 

transform. For example, for a Boolean function 

 155f = − − + − − + + −  the spectral vector has the form 

 155 2 2 2 6 2 2 2 2W = − − − − − . 

Thus, the problem of determining the nonlinearity of the 

sum of Boolean functions is equivalent to the problem of 

finding its Walsh-Hadamard transform coefficients. Despite 

the ubiquitous use of the summation operation modulo 2, the 

equivalent of this operation in the domain of Walsh-

Hadamard transform coefficients is unknown in the 

literature today. In this case, this paper proposed an 

investigation of the behavior of the coefficients of the 

Walsh-Hadamard transform, while adding Boolean 

functions modulo 2. Firstly, we consider the Boolean 

functions of length 2N = , and then gradually increase the 

length in order to prepare a transition to the general formula 

for summing the Walsh-Hadamard spectral coefficients. 

Therefore, we let the two Boolean functions 
1 2{ }f f f=  

and  1 2g g g= to be given. Then, in accordance with 

(1.1), we write down their Walsh-Hadamard transform 

coefficients 
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Similarly, we can write the Walsh-Hadamard transform 

coefficients for the sum of the considered functions f g  

above an alphabet {0,1}  that is equivalent to their product 

fg  over an alphabet { 1, 1}+ −  
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From the comparative analysis of (7) and (8), it is not 

difficult to express the coefficients of the Walsh-Hadamard 

transform of the sum of two Boolean functions in terms of 

the transform coefficients of each of them 
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Now, we can carry out similar research for Boolean 

functions of length 4N = . Let there be two given Boolean 

functions  1 2 3 4f f f f f=  and 

 1 2 3 4 .g g g g g=  Then, in accordance with (1), we 

can write down their Walsh-Hadamard transform 

coefficients 
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= =   + + − − + − −
  + − − + − − +   

 (10) 

 

In a similar way, we can write down the Walsh-Hadamard 

transform coefficients of the sum of two Boolean functions: 
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Comparing expression (10) and (11), we can express   the 

spectral coefficients of the new Boolean function fg  in 

terms of the spectral coefficients of the original functions: 
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Thus, formula (12) connects the coefficients of the 

Walsh-Hadamard transform of the sum modulo 2 of two 

Boolean functions and the Walsh-Hadamard transform 

coefficients of each of the Boolean functions separately. In 

[14], a fundamental dyadic shift operator was derived, 

which, as shown by research, it can be applied to simplify 

and generalize formula (9) and (12). 

Definition [14]. The operator of the dyadic shift (dyadic 

permutation) is represented by the following construction: 
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where 1, 2(2)
2,1

 =
  

Dyad . 

Thus, in accordance with (13), for the order 4N = , we 

have the following dyadic shift matrix: 

 

 

1 2 3 4
2 1 4 3

(4)
3 4 1 2
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Dyad . (14) 

 

It is easy to see that the indices 
giw  from (12) completely 

coincide with the dyadic permutations (14). Thus, we can 

write down the general formula for the spectrum of the sum 

of the two Boolean functions.  

Proposition. The transform coefficients of the sum of the 

two Boolean functions can be represented in terms of the 

transform coefficients of each of them, as follows: 
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N

fg k f i g N

i

w w w
N =

=  Dyad , (15) 

 

or, equivalently, in a matrix form: 

 

 
1

( ( ))fg f gW W W N
N

=  Dyad , (16) 

 

where the parentheses denote the application of the dyadic 

shift operator (13) to the transform coefficients. For all 

possible pairs of the Boolean functions of two, three, and 

four variables, the validity of the formula (16) is established 

with the help of direct calculations. 

We note the practical significance of the case of Boolean 

functions of four variables. Thus, in the algorithm GOST 

28147-89, which is considered to be cryptographically 

strong now, the substitution boxes are constructed from 

Boolean functions of four variables. Earlier, in [3], a 

reasonable method for selecting such substitution boxes was 

proposed. The method was implemented in software, and it 

was justified in terms of the nonlinearity of Boolean 

functions.  

We also note that formula (16) allows us to find the 

Walsh-Hadamard transform coefficients of the sum of any 

number of Boolean functions. Thus, the application of 

formula (16) greatly simplifies the construction of 

substitution boxes for the algorithm GOST 28147-89, and 

with simple changes, for other algorithms of this class. 

It seems important to us to prove algebraically formula 

(16) for an arbitrary number of variables. However, it is 

beyond the scope of this paper.  

Let us consider an example. Let there be given two 

Boolean functions of length 16N =  

 

 
 

 

0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 ;

0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 .

f

g

=

=
 (17) 

In accordance with (1), we find their Walsh-Hadamard 

transform coefficients 
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.

f

g

W

W
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 (18) 

In accordance with (16), we find the spectrum of a 

Boolean function f g  
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 (19) 

 

Calculating the coefficients of the Walsh-Hadamard 

transform of the sum of two Boolean functions provides the 

same result: 
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 

 
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H

=  → + −  =
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= −   − −  −      − −  

 (20) 

 

 

III. NONLINEARITY OF THE SUM OF TWO BOOLEAN 

FUNCTIONS AND THE RESULTS OF MODELING 

 

The results of the experiments carried out in [15] made it 

possible to establish that the entire set of Walsh-Hadamard 

transform vectors is divided into classes depending on the 

elementary structure of the vector. 

Definition [15]. The elementary structure of a spectral 

vector 
iW  is the set of absolute values of its spectral 

components.  

For example, the vector 
155W  considered above has an 

elementary structure  6(1), 2(7) , where the number in 

parentheses indicates the number of times the specified 

spectral component appears in the spectral vector.  

Thus, for 8N = , a set of vectors 
iW , 80,1,...,2 1i = −  is 

divided into three equivalent classes (Table 1). 

 
Table 1 

The classification of the complete set of spectral vectors 
iW  of length 

8N =  

 

Number of 

a class of 

spectral 

vectors 

A set of absolute 

values of the 

spectral 

components 

Distance of 

nonlinearity 

The 

cardinality 

of class 

1  8(1), 0(7)  0 16 

2  6(1), 2(7)   1 128 

3  4(4), 0(4)  2 112 

 

 

Thus, when summing two Boolean functions f  and g  of 

the length 8N = , the resulting Boolean function h f g= 

will belong to one of the classes, as indicated in Table 1. In 

this case, the dependence of the spectral class (and, 

respectively, the value of nonlinearity) of the resulting 

Boolean function from the summands is established, which 

is shown in the form of a table of class numbers. 

 
Table 2 

The result of addition of classes of spectral vectors of Boolean functions of 
length 8N =  

1 2 3

1 1 2 3

2 2 1,3 2

3 3 2 1,3



 

 

In [15], a classification of spectral vectors 
iW , 

160,1,...,2 1i = −  of length 16N = , was also carried out, 

resulting in the formation of eight equivalent classes, as 

shown in Table 3. 

 

 

 

 

Table 3 

Classification of the complete set of spectral vectors 
iW  of length 16N =  

 

Number 

of a class 

of 

spectral 

vectors 

A set of absolute 

values of the 

spectral 

components 

Distance of 

nonlinearity 

The 

cardinality 

of class 

1  16(1),0(15)  0 32 

2  14(1), 2(15)  1 512 

3  12(1),4(7),0(8)  2 3840 

4  10(1),6(3),2(12)  3 17920 

5  8(2),4(8),0(6)  4 26880 

6  8(4),0(12)  4 1120 

7  6(6),2(10)  5 14336 

8  4(16)  6 896 

 

It is not difficult to find the addition table of classes of 

vectors of length 16N =  (Table 4), based on the conduct of 

the computational experiments in accordance with (2.10), 

 
Table 4 

The result of classes addition of Boolean functions spectral vectors of 
length 16N =  

 

  1 2 3 4 5 6 7 8 

1 1 2 3 4 5 6 7 8 

2 2 1,3 2,4 3,5,6 4 4,7 6,8 3,5,6 

3 3 2,4 1,3, 

5,6 

2,4,7 3,6 3,6, 

5,8 

4,7 6 

4 4 3,5, 

6 

2,4, 

7 

1,3,6, 

5,8 

2,4,7 2,4,7 3,6,8 7,4 

5 5 4 3,6 2,4,7 1,5,8 3,6 4,7 8,5 

6 6 4,7 3,6, 

5,8 

2,4,7 3,6 1,3,5, 

6,8 

2,4,7 6,3 

7 7 6,8 4,7 3,6,8 4,7 2,4,7 1,3,5, 

6,8 

4, 

7,2 

8 8 3, 

5,6 

6 7,4 8,5 6,3 4,7,2 1, 

5,8 

 

We especially note that, in accordance with (1.3), the 

nonlinearity of a Boolean function is completely determined 

by the maximum value of its Walsh-Hadamard transform 

coefficients. Thus, drawn from Table 2 and Table 4, we can 

have a priori of the information about the nonlinearity of the 

resulting Boolean function when two arbitrary Boolean 

functions are added. 

Let us consider an example: Let the Boolean functions of 

length 16N = , which belong to the spectral class No. 5 and 

No. 7 (Table 3), corresponding to the values of nonlinearity 

4 and 5, respectively. As a result, in accordance with Table 

4, we can get a new Boolean function whose elementary 

structure belongs to class No. 4 or No. 7, which corresponds 

to a nonlinearity distance value of 3 or 5. 

Thus, Table 2 and Table 4 give complete information 

about the possible values of the nonlinearity of the resulting 

Boolean function drawn from the form of the elementary 

structure of the Walsh-Hadamard transforms of the 

summands. 
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IV. CONCLUSION 

 

On the basis of the use of the regular dyadic shift 

operator, the formula for summing the Walsh-Hadamard 

transform coefficients is obtained. This formula is the direct 

equivalent in the Walsh-Hadamard transform domain of the 

addition operation modulo two in the time domain. 

Computational experiments were carried out for 

practically significant lengths of Boolean functions 8N =  

and 16N =  made it possible to understand how the 

elementary structure of Walsh-Hadamard transform 

coefficients is changed during summation of Boolean 

functions. Subsequently, it leads to the understanding of the 

changes in the distance of the nonlinearity of Boolean 

functions when summing them. 

Considering it is common to use several Boolean 

functions simultaneously in practical applications of 

information protection, the obtained results are of practical 

interest from the point of view of choosing compatible 

constructions of Boolean functions to preserve their overall 

level of the nonlinearity distance. 
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