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Abstract—Stroke patients suffer from emotional and 

behavioral changes. The emotion assessment of stroke patients 

is helpful to carry out appropriate treatment. Emotion 

assessment through Electroencephalogram (EEG) is reliable 

and can be applied to stroke patients. Fractal analysis using 

Detrended Fluctuation Analysis (DFA) is applied to detect the 

temporal correlation and the simplicity of EEG signals. Emotion 

contained-EEG signals of two groups of stroke patients, with left 

brain damage (LBD) and right brain damage (RBD), and a 

group of normal control (NC) were assessed using DFA in alpha, 

beta and gamma frequency bands. The EEG signals of the three 

groups show different degrees of temporal anti-correlation. 

Moreover, alpha and beta bands which exhibit larger brain 

oscillation have better performance in emotion classification 

than gamma band. The overall performance of DFA has 

achieved 92.00% classification accuracy in LBD, and 91.75% in 

RBD. Thus, DFA is useful in emotion assessment of stroke 

patients. 

 

Index Terms—Electroencephalogram (EEG); Emotion; 

Detrended Fluctuation Analysis (DFA); Stroke. 

 

I. INTRODUCTION 

 

According to the statistic, there will be a person in the world 

has a stroke attack every two seconds [1]. Stroke survivors 

need to undergo the rehabilitation process to relearn skills and 

return to normal life. Meanwhile, stroke patients often suffer 

from emotional changes and depression following a stroke 

attack [2–4]. During the rehabilitation process, understanding 

the emotional states of stroke patients and their ability to 

recognize emotion helps physiologists to carry out 

appropriate treatment. Emotional assessment of stroke 

patients is made by carrying out the interview with patients, 

or standardized measures for mood disorder are used [5,6]. 

There is less engineering approach, and signal processing 

based method was reported for emotional assessment of 

stroke patients.  

Recent years, researchers have been assessed emotion 

through Electroencephalogram (EEG) signals, they reported 

that EEG signals were able to classify emotional states of 

normal people [7,8] and has been used in classifying the 

emotion in Parkinson’s disease patient [9]. In past studies, 

researchers studied the ability of emotion recognition of 

stroke patients by using Event-Related Potentials (ERP) 

components in a stroke patient with right brain damage [10], 

also EEG signals have been analyzed for left brain damage 

stroke patient in [11]. This work proposed the use of EEG 

signals to assess the emotion recognition of stroke patients 

with left brain damage (LBD), right brain damage (RBD) and 

normal control (NC). 

This paper is organized as follows: Section I Introduction, 

Section II Literature Review, Section III Method, Section IV 

Results and Discussion, and Section V Conclusion. 

 

II. LITERATURE REVIEW 

 

The brain is a complex network with many different types 

of neurons, and the different connections between the neurons 

carry out functional interactions [12]. To study the 

complexity of the neural network, researchers have been 

applied fractal theory on EEG signals [13–15]. Fractal is 

characterized as self-similarity and scale-independent. One 

example that best illustrates the fractal geometry is the fern 

leaf, if the examination is taken in the detail of the fern leaf, 

the magnified detail is similar as the original shape of the fern 

leaf. The applications of fractal geometry in natural 

phenomenon, including biological sciences, were used to 

study the self-similarity and correlation of the phenomenon. 

In EEG signal processing, different fractal analysis has been 

applied, for example, Higuchi’s Fractal dimension (FD) has 

been used by Klonowski [13], and the study has proven that 

fractal analysis is useful in EEG analysis. Furthermore, 

Krakovská used the power spectrum to analyze the 

exponential and power-law decay in EEG signals [14]. Hu 

Sheng et. al. studied the Hurst exponent (H) and Hӧlder 

exponent, H(t) as the scaling properties of fluctuations in the 

human sleep EEG signals [15].  

Moreover, researchers reported that there is evidence of 

long-range temporal correlation (LRTC) in EEG signals by 

using fractal analysis [16–18], LRTC indicates that the event 

in the past had an effect on the future event, which implies 

that the neuronal dynamics are self-similar on a different time 

scale. Therefore, the LRTC in EEG signals infers that the 

interaction of the underlying neuronal population is able to 

operate over a broad temporal scale. The evidence of the 

existence of LRTC in EEG signals suggested that the 

oscillation of brain activity shows correlations after at least 

five seconds [16]. LRTC also has been used in the study of 

depression; the study shows there is an association between 

the LRTC and the severity of depression [18]. The LRTC in 

EEG signals can be characterized using scaling exponent, 

such as Hurst exponent[15,19] and detrended fluctuation 

analysis (DFA) [18–21]. In this paper, DFA is used to analyze 

the emotion-contained EEG signals of stroke patients. 

Detrended Fluctuation Analysis (DFA) is a useful method 

to analyze the long-range dependency of a time series, the 

scaling exponent, α, of DFA works as an indicator for the self-

affinity of the EEG signal. DFA was first proposed by Peng 

et. al. in analyzing the organization of DNA [22]. DFA is a 

modified version of root mean square analysis of a random 

walk and has been applied to non-stationary time series such 
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as DNA sequences and heartbeat [22, 23]. The authors 

reported that DFA reveals the long-range power-law 

correlations in DNA sequences. Therefore, fractal analysis of 

non-stationary biomedical signals can be analyzed through 

DFA. Moreover, DFA algorithm has been reported as a useful 

method in the study of neuronal dynamics of EEG signals [19, 

20]. 

The α value of DFA is defined as anti-correlation of the 

time series if the α value is between 0 and 0.5, α between 0.5 

and 1 indicates the long-range correlation of the time series, 

whereas α equal to 0.5 indicates no correlation in the time 

series. 

The scaling exponent, α of DFA can be computed as 

follows [1–3]: 

Let 𝑥(𝑛) be a time series with length N, where n = 1, 2, 3, 

…., N. First, integrate the time series 𝑥(𝑛), the integrated 

time series, 𝑦(𝑘) is then divide into boxes of equal length, 𝑙. 
Then, a least square line is fit to the data in each box of length 

𝑙, which represent the local trend, 𝑦𝑙(𝑘) in that box. Next, 

detrend the integrated time series 𝑦(𝑘), by subtracting the 

local trend, 𝑦𝑙(𝑘), in every box, the detrended series is Y(k). 

The root mean square fluctuation of this integrated and 

detrended time series is calculated by 

 

𝐹(𝑙) =  √
1

𝑁
∑[𝑌(𝑘)]2

𝑁

𝑘=1

 (1) 

 

F(l) is calculated for all window sizes, then a log-log plot 

is plotted for F(l) vs l. The plot is expected to be a positive 

linear line, and the slope of the line is calculated as α, the 

scaling exponent of DFA. 

 

III. METHOD 

 

A. EEG Data 

EEG database used in this study was collected from the 

stroke patients at Hospital Canselor Tuanku Muhriz (HCTM), 

Kuala Lumpur with formal approval from UKM Medical 

Center and Ethics committee for human research. The 

analysis was done on 15 subjects from each group, stroke 

patients with left brain damage (LBD), right brain damage 

(RBD) and normal control (NC), respectively. All the 

subjects passed the Mini-Mental State Examination (MMSE) 

and the Beck Depression Inventory (BDI), to exclude the 

subjects with dementia and psychological problems.  

The stimuli used to evoke the emotions in subjects were 

audio-visual stimuli in the form of video clips, the source of 

the video clips were from International Affective Picture 

System (IAPS) and International Affective Digital Sound 

(IADS). The video clips were used to stimulate six discrete 

emotions, anger (A), disgust (D), fear (F), happiness (H), 

sadness (S), and surprise (SU). The EEG device used for data 

collection was a 14 channel wireless EEG Epoc Emotiv 

headset with sampling frequency 128 Hz, the electrode 

placement was the international standard 10-20 system. The 

experimental setup and procedures have been described 

in[25]. 

 

B. Preprocessing 

The artifacts due to eyes blink were removed by offsetting 

the potential higher than 80μV and lower than -80μV from 

each EEG raw signal[26]. A 6th order Butterworth bandpass 

filter was used to filter the EEG signals with cut-off 

frequencies from 0.5Hz to 49Hz to extract the delta to gamma 

frequency band[26]. 

 

C. Feature Extraction 

The preprocessed EEG signals had a length of 5000-time 

series data per channel. Each of the channels was segmented 

into six seconds length and refers as an epoch, each epoch 

contained 768 data. The alpha (8-13) Hz, beta (13-30) Hz and 

gamma (30-49) Hz frequency bands were selected for 

analysis. DFA was calculated from each epoch with the 

smallest window size as 4, and the largest window size as 76, 

in this work, the maximum window size is 1/10 of the epoch 

length[19,24], the increment of the window size is 4. Thus, 

there were total 19 different window sizes analyzed in each 

epoch. 

 

D. Statistical Analysis 

The DFA in the three groups (LBD, RBD and NC) were 

analyzed by using one-way ANOVA. The ANOVA test is to 

reject the null hypothesis that all the variances are the same 

in the six emotional states in the three groups, respectively. If 

the p-value is smaller or equal to 0.05, the null hypothesis will 

be rejected. 

 

E. Classification 

A Probabilistic Neural Network (PNN) classifier was used 

to classify the six emotional states of LBD, RBD and NC. 

Spread values of 0.01 to 2.00 with an increment of 0.01 were 

used to obtain the most suitable spread value for the 

probabilistic distribution function (PDF) of PNN[27,28]. The 

performance of the classifier in classifying the emotional 

states was validated by using a 10-fold cross-validation and 

the sensitivity of the classifier. 

 

IV. RESULTS AND DISCUSSION 

 

Figures 1 to 3 show the average values of the scaling 

exponents, α, of the three groups (LBD, RBD and NC) in 

alpha, beta and gamma bands, respectively. The α values 

indicate that the EEG signals exhibit anti-correlation in 

temporal scale. The three frequency bands have a different 

range of average α value for all groups. The average α values 

of the three groups are in the range between 0.48 and 0.50 in 

alpha band, the average α values in the beta band are in the 

range of 0.18 to 0.20, whereas, the average α values of gamma 

band range from 0.03 to 0.04.  Therefore, gamma band is the 

most anti-correlated frequency band since the average α 

values are the most near to 0. Next, the beta band is the second 

in the degree of anti-correlation, and the least anti-correlated 

frequency band is the alpha band. 

 

 
 

Figure 1: Average DFA scaling exponents in alpha band 
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Figure 2: Average DFA scaling exponents in the beta band 

 

 
 

Figure 3: Average DFA scaling exponents in the gamma band 

 

From Figure 1 and 2, the LBD and RBD have higher DFA 

exponent values compared to NC in all frequency bands. 

Also, RBD patients’ EEG signals exhibit less anti-correlation 

(larger α) in alpha and beta bands, and the most anti-

correlation (smaller α) occurred in NC in alpha and beta 

frequency bands. In Figure 3, RBD exhibits least anti-

correlation whereas LBD and NC have a higher degree of 

anti-correlation compared to RBD in the gamma band.  

The anti-correlation in the temporal scales of the EEG 

signals implies that for larger time scale, the fluctuations are 

smaller. In past studies, researchers have been revealed the 

autocorrelation in the temporal scale (α>0.5) of depressive 

patients’ EEG signals[18]. However, in a related study of 

emotional states of stroke patients has also reported the anti-

correlation in EEG signals by using Hurst exponents in time-

frequency domain [25], unlikely, the researchers stated that 

the LBD group exhibit highest degree of anti-correlation 

compared to RBD and NC. 

The anti-correlation shows persistent in beta and gamma 

bands in all three groups. Although, the average DFA 

exponents of alpha band for all groups exhibit anti-

correlation, however, some EEG channels in LBD and RBD 

patients, particularly in frontal region (F3, F4, F8 and AF4) 

have α values that are approximate to 0.5, which indicates no 

correlation in the temporal scale, as shown in Figures 4 to 6. 

In this case, no correlation implies that the activity of the 

underlying neuronal population does not have a pattern that 

can be recognized on a larger timescale. 

The frontal region has been related to emotional control 

[29,30], people with frontal lobe deficits were observed to 

suffer from emotional problems, such as anxiety and 

depression [31]. Moreover, past studies have been revealed 

that stroke patients are suffering from emotional problems[2–

4]. Therefore, the difference between the correlation of LBD, 

RBD stroke patients, and NC can be inferred as the presence 

of the emotional impairment in stroke patients. 

 

 
 

Figure 4: DFA scaling exponents for LBD in the alpha band 

 

 
 

Figure 5: DFA scaling exponents for RBD in the alpha band 

 

 
 

Figure 6: DFA scaling exponents for NC in the alpha band 

 

From Table 1, the ANOVA results showed that only alpha 

and beta bands are statistically significant in the DFA 

exponents in different emotional states for all three groups 

(LBD, RBD, and NC), with p-values that less than 0.05. The 

gamma band does not show statistical significance in NC and 

LBD groups (the shaded values). However, gamma band is 

analyzed by using a PNN classifier to prevent the Type II 

error of ANOVA, which is the error when failing to reject a 

false null hypothesis.  

 
Table 1 

ANOVA Test Between Emotions, Statistically Significant at p ≤ 0.05 

 

Frequency band 
Group 

p-value 

Alpha Beta Gamma 

NC <0.001 <0.001 0.214 

LBD <0.001 <0.001 0.488 
RBD <0.001 <0.001 <0.001 

 

The PNN classification of the DFA exponents was 

conducted by using the three individual frequency bands 

(alpha, beta and gamma) and the four different combinations 

of the frequency bands, which were alpha and beta (Al + Be), 

alpha and gamma (Al + Ga), beta and gamma (Be + Ga), and 

also alpha, beta and gamma (Al + Be + Ga). 

The sensitivity of the classifier was tabulated in Tables 2 to 

4. The PNN classifier has achieved 90-95% accuracy in 

classifying the six emotional states. The classification results 

of gamma band for all three groups were above 90%. 
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However, the gamma band shows the lowest in classification 

accuracy among all frequency bands. 

Previous studies have shown that alpha band and beta 

bands are more oscillatory [20, 21]. Hence the temporal 

correlation can be analyzed in the alpha and beta bands. In 

this work, the α values for gamma band are so small and 

approximate to 0. Hence, the variations of α values in gamma 

band are small and therefore not oscillatory as alpha and beta 

bands. Furthermore, although the gamma band is significant 

in classification, it is not statistically significant in ANOVA 

test. 

 

 
Table 2 

Performances of the Emotion Classification of LBD Patients 

 

Frequency bands 
Accuracy (%) 

A D F H S SU Mean 

Alpha 91.17 91.23 90.98 91.36 94.49 91.44 91.78 

Beta 92.55 92.85 92.01 91.84 94.23 91.08 92.43 
Gamma 92.75 90.92 91.53 92.48 90.90 90.96 91.59 

Al + Be 92.42 91.55 92.34 93.47 93.94 91.66 92.56 

Al + Ga 92.63 90.59 91.89 91.27 91.46 92.28 91.69 
Be + Ga 92.12 90.83 91.88 94.25 91.55 91.25 91.98 

Al + Be + Ga 91.73 91.59 91.32 93.39 91.29 92.46 91.96 

 
Table 3 

Performances of the Emotion Classification of RBD Patients 

 

Frequency bands 
Accuracy (%) 

A D F H S SU Mean 

Alpha 91.12 91.91 91.35 93.40 91.68 90.44 91.65 

Beta 92.82 91.95 91.50 92.86 93.42 91.03 92.26 

Gamma 93.71 90.76 90.56 91.29 91.71 90.89 91.49 
Al + Be 92.06 92.72 91.30 92.50 92.39 90.56 91.92 

Al + Ga 90.61 93.39 90.33 91.48 93.06 90.47 91.56 

Be + Ga 92.82 91.93 90.91 91.62 92.66 90.11 91.67 
Al + Be + Ga 91.11 92.84 90.32 92.10 92.75 90.89 91.67 

 
Table 4 

Performances of the Emotion Classification of NC 
 

Frequency bands 
Accuracy (%) 

A D F H S SU Mean 

Alpha 91.63 92.80 91.54 91.65 92.77 92.81 92.20 
Beta 91.65 91.45 92.42 93.01 91.95 92.48 92.16 

Gamma 94.95 90.54 91.28 90.68 91.45 91.17 91.68 

Al + Be 92.94 92.44 91.06 92.45 91.39 91.27 91.93 
Al + Ga 93.19 91.97 91.46 90.39 91.91 91.39 91.72 

Be + Ga 92.45 92.35 91.01 92.63 95.05 90.78 92.38 

Al + Be + Ga 91.89 93.71 92.09 91.85 93.11 91.58 92.37 

 
Table 5 

Overall Performances of the PNN Classifier in Classifying the Six Emotional States 

 

Group 
Average Accuracy (%) 

A D F H S SU Average 

LBD 92.20 91.36 91.71 92.58 92.55 91.59 92.00 

RBD 92.04 92.22 90.90 92.18 92.52 90.63 91.75 
NC 92.67 92.18 91.55 91.81 92.52 91.64 92.06 

 
Table 6 

Ranking of Emotional States in LBD, RBD and NC 
 

Rank LBD RBD NC 

1 Happiness Sadness Anger 

2 Sadness Disgust Sadness 
3 Anger Happiness Disgust 

4 Fear Anger Happiness 

5 Surprise Fear Surprise 
6 Disgust Surprise Fear 

 

Table 5 shows the average accuracy of all the frequency 

bands to classify each emotional state. The group that 

achieved the highest average accuracy to classify the six 

emotions is the NC, which has 92.06% average accuracy, 

following by LBD, 92.00% average accuracy and RBD, 

91.75% average accuracy. Meanwhile, an emotion ranking as 

shown in Table 6 is made based on the average accuracy of 

the emotional states recognized for the three groups; each 

group has a different ranking of the six emotions. Happiness, 

sadness and anger emotions are ranked as the first in LBD, 

RBD, and NC, respectively. The sadness emotion is ranked 

in the top three emotions in the three groups, which achieved 

first ranking in RBD, and the second ranking in LBD and NC, 

respectively. 
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V. CONCLUSION 

 

In this work, DFA has been used as the fractal analysis in 

the analysis of emotional states of the EEG signals of stroke 

patients (LBD and RBD) and normal controls (NC). The DFA 

analysis of the temporal correlation in the emotions contained 

in EEG signals show anti-correlation in the six emotional 

states and the three frequency bands, alpha, beta, and gamma. 

The anti-correlation in the temporal scale is persistent in beta 

and gamma bands for all emotional states. However, some 

EEG channels in the frontal region show no correlation in 

alpha band in LBD and RBD. Since all the channels in NC 

are anti-correlated in alpha band, the EEG signals that show 

no correlation in the frontal region are inferred as the 

consequences of emotion deficit in stroke patients. 

The frequency bands have a different range of correlation 

in the three groups since the variation of the α values between 

the six emotional states for all frequency bands is small. 

Hence no comparison is made between the degree of 

correlation of the emotional states. However, it is worth 

mentioning that the degree of anti-correlation between the 

LBD, RBD, and NC have significant differences in alpha and 

beta bands. In gamma band, only RBD has a remarkably 

different degree of anti-correlation compared to LBD and 

NC. Therefore, the degree of correlation given by DFA is 

associated with the types of the group (LBD, RBD, and NC), 

particularly in alpha and beta bands. In this work, the ranking 

of anti-correlation is NC, LBD, and then RBD. 

In spite of that, the simplicity of EEG signals can be done 

by applying the DFA algorithm. The PNN classification rate 

for all frequency bands and all groups show average accuracy 

above 91%. Therefore, the assessment of emotional states of 

stroke patients can be analyzed through EEG signals. 
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