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Abstract—Gas source localization is an ability which has yet 

to be successfully implemented in synthetic systems although it 

is widely exhibited by various organisms. Although single robot 

implementation has been explored, it is still prone to single point 

failures and is limited in sporadic gas dispersion conditions. 

Swarm intelligence based algorithms such as Particle Swarm 

Optimization and Ant Colony Optimization has shown the 

feasibility and advantage of using multi-robot strategy for gas 

source localization. This paper explores Grey Wolf Optimizer 

(GWO) as an alternative algorithm for gas source localization. 

It was found that, although some GWO search behavior is 

favorable for gas source localization, the algorithm may fail 

when used with low numbers of robots. The algorithm was able 

to localize the peak gas concentration in approximately 30 

minutes. The best success rate is found to be 72% with 7 

searcher robots.   

 

Index Terms—Gas Source Localization; Grey Wolf 

Optimizer; Mobile Olfaction; Swarm Intelligence. 

 

I. INTRODUCTION 

 

Animals with relatively low levels of intelligence such as 

dogs, silkworm moth, lobsters and blue crab have all 

exhibited gas source localization capabilities for hunting, 

foraging and mating [1]. Remarkably, these simple beings are 

able to complete their task in an unknown environment in 

which unpredictable airflow affects the gas dispersion.  

The ability to track and find gas sources has enabled these 

animals to maintain the continuity of their species. This feat; 

although appear to be simple, is yet to be fully imitated by 

synthetic systems produced by humans. Being able to 

replicate this skill in robots may offer a deeper understanding 

of animal behavior and opens up the possibility to use the 

knowledge gained in many applications. Motivated by the 

myriad of potential applications based on gas sensing, gas 

mapping [2] and localization capability, a considerable 

amount of interest has been generated in this research field. 

Although various single agent algorithms have been 

presented, few works on swarm intelligence for gas source 

localization have been presented [3, 4]. In this paper, Grey 

Wolf Optimizer (GWO) algorithm is proposed for gas source 

localization. It is envisaged that the search behavior of Grey 

Wolves encircling the prey would be favorable for gas source 

localization. 

 

II. LITERATURE REVIEW 

 

Marjovi and Marques [5, 6] proposed a formation based 

swarm tracking algorithm derived from the findings of 

previous works [7]. Based on a probabilistic model of sensor 

coverage of the plume in laminar flow, an optimized 

formation for plume tracking was proposed to maximize the 

probability of finding an odor plume. The optimum formation 

was found to be an equally spaced diagonal robot formation 

in relative to the wind direction. The distance of the robot 

from each other is a function of wind speed and affected by 

environmental conditions such as obstacles. The method was 

tested and validated in simulations and experiments in a 

controlled environment.  

The Particle Swarm Optimization algorithm is an 

evolutionary technique inspired by the dynamics of social 

organisms while foraging [8]. This algorithm was one of the 

earliest swarm intelligence algorithm implemented for gas 

source localization [9, 10]. In this study, PSO was compared 

with biased random walk and gradient following algorithms. 

The algorithm was simulated in a turbulent dominated gas 

dispersion environment using 10 robots to locate 5 gas 

sources. Results suggest that PSO algorithm performs better 

and more stable in unstable wind conditions. However, in 

practical conditions, the robots may not be able to 

synchronize in each iteration and function asynchronously, 

prompting a modified algorithm to be proposed [11]. The 

asynchronous algorithm uses the latest information from 

surrounding robots and does not wait for the particular 

iteration to end. Even when operating asynchronously, the 

algorithm was reported to successfully locate the source of 

the gas in simulated gas dispersion conditions.  

Ferri et al. proposed Explorative PSO (EPSO) algorithm to 

increase the exploration of the immediate surrounding area of 

the robot and reducing the possibility for the swarm of being 

trapped in a local maxima [12]. In simple terms, the robot 

adjusts its position to avoid being too close with a previously 

sampled point; at the distance which is determined by the 

measured concentration peak and the frequency of the 

concentration peak. Simulations have suggested that the 

EPSO algorithm is more efficient than the normal PSO 

algorithm. 

Dorigo, Maniezzo and Colomi proposed an optimizing 

algorithm inspired by the social foraging behaviour of ants 

[13]. This algorithm was abstracted and then applied a 
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modified variant to gas source localization task in the 

diffusion-dominated environment [14]. There are two types 

of robots, searchers and residents. The searcher searches for 

higher concentrations of gas in the search space. The search 

task was broken into three stages; local traversal search, 

global search and pheromone update. The pheromone is a 

function of the measured concentration gain when moving 

towards another robot. Once a candidate source location is 

found by the searcher, it becomes a resident and does not 

search for other possible solutions. The robot with the lowest 

measured concentration will revert back to the searcher 

behavior. The location where the ants converge is the source 

location. The algorithm was able to locate two gas sources in 

the tested search space. However, more realistic conditions 

are required to verify the algorithm’s reliability in variable 

airflow conditions. 

GWO is a recently developed optimizing algorithm which 

is divided into three stages; tracking the prey, encircling the 

prey, and attacking the prey [15]. The search behavior is 

envisaged to be favourable for gas source localization as the 

robot swarm will try to surround the gas source before closing 

in on the source. The gas dispersion where airflow is present, 

produces an elongated plume from the source downwind with 

unpredictable peaks in the plume [5]. Hence, the swarm will 

not overshoot the gas source as reported by other algorithms 

[12, 13]. The GWO search mechanism will be discussed in 

the Methodology section. 
 

III. METHODOLOGY 

 

The GWO algorithm is inspired by grey wolves (Canis 

lupus); mimicking its leadership hierarchy and hunting 

mechanism [15]. This recently proposed algorithm has been 

implemented in a number of applications such as unit 

commitment problem [16], assembly flow shop scheduling 

problem [17] and training multi-layer perceptron [18]. In this 

research, GWO is implemented for gas source localization 

task. 

Robots are divided based on social hierarchy, where the 

best solution is named as the alpha (α), the second best beta 

(β) and third best delta (δ) based on continuously sampled 

data. The other robots are assumed to be omega (ω). The ω 

robots generally are guided by the α, β and δ robots. The 

robots will encircle the prey (source); described as: 

 

𝐷⃗⃗ (𝑡) = |𝐶 ⋅ 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| (1) 

  

𝑋 (𝑡 + 1) = 𝑋 𝑝(𝑡) − 𝐴 ⋅ 𝐷⃗⃗ (𝑡) (2) 

 

where:   𝐷⃗⃗   = Encirclement vector of the robot 

 𝑋 𝑝 = Predicted position of the gas source 

 𝑋   =  Movement vector of the robot 

 

𝐴  and 𝐶  are coefficient vectors which are calculated as: 
 

𝐴 = 2𝑎 ⋅ 𝑟 1(𝑡) − 𝑎  (3) 

  

𝐶 = 2 ⋅ 𝑟 2 (4) 

 

where:  𝑎  = Components that are linearly decreased 

from 2 to 0 during each iterations 

𝑟 1 and 𝑟 2  = Random variables in [0,1] 

The result of these equations is the robots will encircle the 

point where the source is predicted to be. The reduction of 𝑎  

will cause the robots behaviour to slowly transition from 

exploring (𝐴 ≥ 1) to exploitation (𝐴 < 0). 

Based on Equations (5) to (7), the hunting behaviour of the 

wolves may be described. It is assumed that the three fittest 

wolves guide the rest of the wolves in the hunt; in this 

research, the α, β and δ robots. The fitness of the robots is 

determined by the measured gas concentration of each robot; 

higher concentration values mean higher fitness. The 

waypoint updates for these three robots may be described as:  

 

𝐷⃗⃗ ∝ = |𝐶 1 ⋅ 𝑋 ∝ − 𝑋 | 

𝐷⃗⃗ 𝛽 = |𝐶 2 ⋅ 𝑋 𝛽 − 𝑋 | 

𝐷⃗⃗ 𝛿 = |𝐶 3 ⋅ 𝑋 𝛿 − 𝑋 | 

(5) 

  

𝑋 1 = 𝑋 𝛼 − 𝐴 1 ⋅ 𝐷⃗⃗ 𝛼 

𝑋 2 = 𝑋 𝛽 − 𝐴 2 ⋅ 𝐷⃗⃗ 𝛽 

𝑋 3 = 𝑋 𝛿 − 𝐴 3 ⋅ 𝐷⃗⃗ 𝛿 

(6) 

  

𝑋 (𝑡 + 1) =
𝑋 1 + 𝑋 2 + 𝑋 3

3
 (7) 

 

In conclusion, the set of equations presented allows the 

robots to explore the search space guided by the α, β and δ 

robots. Based on the positions of these three robots, a possible 

solution is proposed and the robots encircle the possible 

solutions. As the robots perform each iteration, the linear 

reduction of 𝑎  and thus, 𝐴 , the robots will gradually converge 

on the source. In this research, the coefficient 𝑎  is reduced by 

0.1 after each iteration, allowing a maximum of 20  iteration 

steps before |𝑎  | = 0. Figure 1 depicts the pseudocode for the 

GWO algorithm. 

 
GWO Algorithm 

Initialize parameters 

Set first waypoint away from the source 

move(first waypoint) 
while (!Max number of iterations) 

 move (next waypoint) 

 if (arrived at waypoint) 
  Sample sensor readings 

  Broadcast data 

 end 

 while (!All agents arrive at waypoint) 

  wait 

  Listen for data from other  robots 

 end 

 Update a, A, and C 

 Update fitness 
 Update  α, β and δ 

 Update waypoint 

end 

 

Figure 1: GWO pseudocode for gas source localization 

 

The algorithm is implemented and then simulated in 

Webots robot simulation software using the data stream 

collected in previous research [19]. The 3m × 6m testbed, 

communication backbone and gas sensor model was fully 

emulated in the Webots simulation. Furthermore, using a 2-

hour data stream collected in the testbed, the real gas 

dispersion can be recreated in the simulation environment, 

ensuring repeatable and accurate simulation results. 
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IV. RESULTS 

 

The algorithm was implemented using 3, 5, 7, 10 and 15 

robots. Each case was run 25 times and the performance of 

each case is compared. This section will discuss the search 

behavior first before exploring the effect of different agent 

numbers to the search performance. 

 

A. Search Behaviour 

The robot movement during gas source localization task 

using GWO (Run 1) is shown in Figure 2. Due to the nature 

of the algorithm where each agent updates its next position 

based on other alpha, beta and delta robots’ positions, the 

robots tend to move close to each other. Movement in close 

vicinity to each other while trying to encircle the solution 

causes robots to impede each other’s movements as they 

move to the next position. However, there is reduced 

avoidance when the robots are in exploring stage than when 

in constriction stage (close to source).  

Robots using GWO are able to converge on the peak 

concentration point. As reported in previous works on GWO, 

the robots are able to locate the peak concentration, due to the 

concentration based fitness function. This behavior is also 

exhibited by previous works on gas source localization using 

various versions of PSO and ACO. This highlights one of the 

difficulties in gas source localization – peak concentration 

does not necessarily occur at the source. 

 

 
Figure 2: GWO gas source localization 

 

B. Performance of Different Number of Robots 

Figures 3-6 depict the effect of different agent number on 

swarm robots using GWO algorithm. Similar to other swarm 

intelligence algorithms, the number of iteration decreases as 

a number of agent increases as shown in Figure 3. The 

average error from source also decreases slightly as agent 

number increases as shown in Figure 4. However, in Figure 

5, the time to complete the gas source localization task 

increases with agent number. The increase in time is due to 

competition for space and collision avoidance manoeuvre 

while traversing the search space. The avoidance manoeuvre 

is further exacerbated due to the encircling behaviour 

exhibited by GWO which usually causes robots path to cross 

each other. 

 

 
Figure 3: Number of iteration with different number of robots 

 

 
Figure 4: Error to a source with a different number of robots 

 

 
Figure 5: Time to completion with a different number of robots 

 

 
 

Figure 6: GWO performance with different number of robots 
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Interestingly, in Figure 6, the algorithm fails completely if 

conducted with three agents; which is why the discussion up 

to this point does not include statistics for three agent 

systems. As the robot using GWO updates their next position 

based on the position of the three fittest agents, deploying 

only three robots causes there to be lack of solutions to be 

considered. As a result, the robots update their position based 

on the same three robots including themselves, causing one 

of the 𝐷⃗⃗  in Equation (6) to be 0. This in turn destroys robot 

hierarchy and the prey circling concept which is being 

mimicked in the algorithm. The success rate improves when 

there are five and seven agents as the hierarchy is restored; as 

reported in previous works. However, increasing the agent 

number beyond seven agents caused reduction in success rate 

due to increased frequency of irrecoverable collisions 

between robots due to competition for space. 

 

V. CONCLUSION 

 

GWO algorithm was successfully implemented for gas 

source localization. It was observed that the strategy of robots 

encircling the ‘prey’ although may be useful for gas source 

localization, it causes the robot to tend to maneuver close to 

each other. This causes the performance of the algorithm to 

drop as robots need to avoid each other. It was also observed 

that the performance of the algorithm increases as the number 

of robots increases to 7 with 72% success rate. If the number 

of agents are increased beyond 7 robots, the success rate and 

time to completion decrease.  
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