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Abstract—In this paper, a biometric human recognition system 

based on Electrocardiography (ECG) signal is proposed. Three 

processes i.e., pre-processing, feature extraction and classification is 

discussed. A combination of enhanced start and end point detection 

namely short time energy (STE) and short time average zero 

crossing rate (STAZCR) is employed in the pre-processing. 
Subsequently, an autocorrelation method is applied in feature 

extraction. For the classification process, the kernel sparse 

representation classifier (KSRC) is proposed as a classifier to 

increase the system performance in high dimensional feature space. 

79 recorded signals from 79 subjects are used are employed in this 

study. To validate the performance of the KSRC, several classifiers, 

i.e. sparse representation classifier (SRC), k nearest neighbor (kNN) 

and support vector machine (SVM) are compared. An experiment 

based on different sizes of feature dimensions is conducted. The 

classification performance for four classifiers are found to be 

90.93%, 92.8%, 94.24%, 62.9%, 97.23% and 95.87% for the kNN, 

SVM (Polynomial and RBF), SRC and KSRC (Polynomial and 

RBF), respectively. The results reveal that the KSRC is a promising 

classifier for the ECG biometric system compared to the existing 

reference classifiers. 

 

Index Terms—Autocorrelation Method; ECG Signal; KSRC; 

SRC; STE and STAZCR. 

 

I. INTRODUCTION 

 

Electrocardiography is a transthoracic interpretation of 

electrical activity of the heart over a period of time as sensed 

by electrodes attached to the surface of the skin and recorded 

by an external device which attached on the body. The 

recording formed by this noninvasive procedure is termed an 

electrocardiogram (ECG), which used to measure the heart’s 

electrical conduction system. In recent times, some studies 

show that the use internal feature i.e. heartbeat signal which 

is known as electrocardiogram (ECG) signal has been 

documented to be suitable for biometric human recognition 

[1]. The validity of using ECG for biometric recognition is 

supported by the fact that the physiological and pathological 

of the heart in different individuals display certain uniqueness 

in their ECG signals [2]. 

In previous study, several methods in pre-processing and 

feature extraction have been suggested by researchers to 

prove the reliability and the robustness of ECG biometric for 

person recognition. However, less attention has been paid in 

the literature to their use for classification based on ECG 

signal. Therefore, this paper explores an approach that is 

different from the majority of the existing methods where a 

sparse representation classifier (SRC) is used as classifier for 

person identification system based on heartbeat signal. This 

classifier is a non-parametric learning method and it can 

directly assign a class label to a test sample without the 

training process [3]. Generally, sparse representations take 

account of most or all information of a signal with a linear 

combination of a small number of elementary signals called 

atoms. Often, the atoms are chosen from a so-called over-

complete dictionary. The advantage of a scale-embedded 

dictionary is that it reduces the need to run the detector across 

various scales and the computation time for object detection 

[4]. Recently, the SRC is reported to outperform music genre 

recognition, phone recognition and speaker identification [5, 

6]. The reason for this classifier increasingly becoming 

recognized in audio signal classification is because many 

signals are either naturally sparse, or they can be made sparse 

in some specific domain by using some predefined transforms 

such as the discrete Fourier transform (DFT) or the discrete 

cosine transform (DCT). This inherent or manufactured 

sparsity of audio signals will lead potentially to a lower 

computational complexity and less demand on resources [7]. 

Hence, this paper proposes the feasibility of using the sparse 

representation classifier (SRC) to identify person based on 

ECG signal. Nevertheless, the SRC is unable to classify a test 

sample successfully if the training samples belong to many 

different classes, as reported in Yin et al. [3]. Therefore, the 

kernel sparse representation classifier (KSRC) is proposed in 

this paper. Originally, the idea of the kernel function was used 

to construct the nonlinear SVM where the samples were 

mapped into a high dimensional feature space by nonlinear 

mapping [8]. Hence, the inner product does not need to be 

evaluated in the feature space and this provides a way of 

addressing the curse of dimensionality [3]. 

In order to identify the person based on ECG signal, a 

template matching is compared by two data which are called 

the enrolment or training and recognition or testing data. 

Successful template matching recognizes an individual’s 

identity and we represent it as score as shown in Figure 1. 

The overall architecture design of heartbeat biometric 

system is shown in Figure 2 [9]. The system consists of three 

important procedures, i.e. pre-processing or syllable 

segmentation, feature extraction and classification. . In the 

signal segmentation, the Short Time Energy (STE) and Short 

Time Average Zero Crossing Rate (STAZCR) are employed 

in this process. Consequently, in the feature extraction 

process, an autocorrelation method is used to find out 

similarity or relationship features. Finally, the KSRC is used 

as a classifier in the pattern matching process. 
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Figure 1: A typical ECG signal 

 

 
 

Figure 2: An architecture design of heartbeat biometric system 

 

II. METHODOLOGY 

 

A. Data Acquisition 

The ECG database is obtained freely from public heart 

sound database, assembled for an international competition, 

the PhysioNet/Computing in Cardiology (CinC) Challenge 

2016. The archive comprises nine different heart sound 

databases sourced from multiple research groups around the 

world. In this study, the Shiraz University adult heart sounds 

database (SUAHSDB) was used where this database was 

constructed using recordings made from 79 healthy subjects 

and 33 patients (total 69 female and 43 male, aged from 16 to 

88 years). During the recording, the subjects were asked to 

relax and breathe normally during the recording session. The 

database consists of 114 recordings (81 normal recordings 

and 33 pathological recordings). The recording length varied 

from approximately 30s–60s. The sampling rate was 8000 Hz 

with 16-bit quantization except for three recordings at 44 100 

Hz and one at 384000 Hz. The data were recorded in the 

wideband mode of the digital stethoscope, with a frequency 

response of 20 Hz–1 kHz [10]. 

 

B. Signal Segmentation  

Two other techniques based on time-domain which are the 

Short Time Energy (STE) and Short Time Average Zero 

Crossing Rate (STAZCR) have been applied in this study 

[11]. The STE is the energy of a short desired signal segment. 

It is used to estimate the initial signal in the detection of 

desired and undesired signal segments. In the meantime, the 

STAZCR indicates the presence or absence of sound in the 

input signal [11]. If the value of STAZCR is high, the frame 

is considered to be undesired signal and if it is low, the frame 

is considered to be desired signal frame. 

The STE function is defined by the following expression: 
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where: Em  = Function which measures the change of 

voice signal amplitude 

 x(m)  = Input signal in one frame 

 m  = Temporal length of each frame 

 w(m-k)  = Operator that represents a frequency 

shifted window sequence  

 

On the other hand, the STAZCR is defined as: 
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where:  Zm  = Function which defines the zero 

crossing count.  

 

C. Feature Extraction  

Once the ECG signals have been segmented, the signals 

which consist of regular and irregular heartbeat segments will 

be divided into training and testing sets. A training set is used 

for parameter estimation and it is implemented to build up a 

model, while a test (or validation) set is to validate the model 

built [12]. Since heartbeat signals contain the useful feature, 

redundant features and leftover noises. It is important to pick 

only features that are unique, significant and least corrupted 

noise. For this propose, an autocorrelation method is used to 

find out similarity or relationship features among records of 

the same subject.  
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(3) 

 

With regard to the series which successive observations are 

correlated, the first-order autocorrelation, the lag is one time 

unit. It is merely the correlation coefficient of the first N-1 

observations, Xt ,t=1,2...N-1 and the next N-1observations 

Xt+1 ,t=1,2...N-1. The correlation between Xt and Xt+1 is given 

by: 
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where: (1)x   = Mean of the first N-1 observations 

(2)x   = Mean of the last N-1 observations 

 

Since the autocorrelation space is a high dimensional space, 

an algorithm such as principle component analysis (PCA) is 

applied to the autocorrelation coefficients for dimensionality 

reduction [12]. 

 

III. ARCHITECTURE OF KSRC 

 

SRC is a non-parametric learning process and this method 

directly assigns a class label to the test sample without the 

training model. Given a set of training and test samples, the 

basic idea of the SRC is to compute the sparse representation 

of the test sample on the training data. Then, the test sample 

is assigned to the class that minimizes the residual between 

itself and is reconstructed by the sparse representation that is 

associated with the training samples of each class [13]. In 

brief, the SRC can be formulated to solve the following 

optimization problem [14]:  

 

1 2min || || || ||x subject to y Ax    (5) 

 

where: 1|| ||x   = l1-norm 

A   = Matrix of training sample 

y   = Matrix of test sample 

 

The test sample can be classified by minimizing the 

residual and yield: 

 

2min ( ) || ( ) ||k kr y y A x    (6) 

 

where: k  = Characteristic function to select the 

coefficient of the sample belonging to class k 

 

Theoretically, the step finding sparse representation in the 

SRC is fast and behaves well in pattern recognition. However, 

it requires more effort to apply the SRC, particularly in 

multiclass data, since the data in the same direction would 

overlap each other after the normalization process. To 

overcome the problem, the KSRC is proposed where the 

kernel method is used to map samples into a high dimensional 

feature space; hence it gives better accuracy in classification 

[3]. 

Let the test sample
mx R and   be the nonlinear mapping 

functions corresponding to a kernel function. Suppose the 

samples are mapped from original feature space 
mR  into high 

dimensional feature space, F, by a non-linear mapping   as 

below: 

 

( )x x  (7) 

 

Let 1 2[ ( ), ( ),..., ( )]TkD x x x    represent the matrix for 

the training sample after the mapping  . Since in the SRC, 

the test sample can linearly be represented by the training 

sample, the test sample in the KSRC can similarly be 

represented by the training sample and is given as:  

 

1min || || ( )subject to y D    (8) 

 

where:    = Coefficient corresponding to the training 

samples 

( )y  = Test sample in the high dimensional feature 

space, which corresponds to y in the original 

feature space 

 

However, it is not practical to directly solve the 

optimization problem in Equation (8). This is because the 

dimensionality of the feature space, F is far greater than the 

original feature space 
mR  and required a huge computation. 

This cause the system may slow down terribly or run out 

memory. Moreover, it has been observed that a large number 

of features may actually degrade the performance of 

classifiers if the number of training samples is small relative 

to the number of features [15]. For this reason, it is necessary 

to reduce the dimensionality in feature space F into low-

dimensional subspace and this is given as:  

 

( )T TP y P D   (9) 

 

Consider the representation of the transformation matrix. P 

in the kernel-based dimensionality reduction method, the 

transformation matrix can be expressed as: 

 

P DB  (10) 

 

where: B  = Pseudo-transformation matrix 

 

Substituting Equation (9) into (10) yields:  

 

( ) ( ) ( )T TDB y DB D   (11) 

 

where: (DB)Tϕ(y) = k(x, y) = Kernel function defined as the 

inner product 

 k(x, y) = ϕ(x)Tϕ(y) 

 Z  = DTD 

 D  = ϕ(x) 

 

Hence, Equation (11) can be obtained as: 

 

( , )T TB k x y B Z  (12) 

 

Substituting Equation (12) into Equation (8), the 

optimization problem is given as: 

 

1min || || ( , )T Tsubject to B k x y B Z   (13) 

 

By considering the noise data, Equation (11) can be 

modified as: 

 

1 2min || || || ( , ) ||T Tsubject to B k x y B Z     (14) 
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The test sample can be classified by assigning Equation (6) 

to the kth object class that minimizes the residual between 

itself and this yield: 

 

2min | ( ) || ( , ) ||T T
k kr y B k x y B Z      (15) 

 

The following algorithm summarizes the proposed 

recognition framework. 

 

Algorithm: Kernel sparse representation classifier (KSC) 

1. Input: a matrix of training sample 
m n

kA R   and 

test sample 
my R  

2. Normalize the column of A to have l2-norm 

3. Determine the kernel function ( , )k x y  

4. Solve the l1 problem in 

1min || || ( , )T Tsubject to B k x y B Z   or 

1 2min || || || ( , ) ||T Tsubject to B k x y B Z     

5. Compute the residual 

2min | ( ) || ( , ) ||T T
k kr y B k x y B Z      

6. Output : Identification of (y) 

 

IV. EXPERIMENTAL RESULTS 

 

In this paper, the principle component analysis with 

autocorrelation method is selected as a feature extraction due 

to the fact that the feature is more robust to noise compared 

to other feature extractions [12]. The proposed methods have 

been implemented in Matlab R2010(b) and have been tested 

in Intel Core i5, 2.1GHz CPU, 6G RAM and Windows 7 

operating system. The database consists of the selected signal 

from 79 healthy subjects with 79 recording.  In all 

experiments, the performance was evaluated based on the 

classification accuracy (CA) which is calculated as; 

 

%100
T

C
A

N

N
C  (16) 

 

where: Nc  = Number of syllables which is recognized 

correctly  

NT  = Total number of test syllables 

 

The comprehensive experiment was conducted to evaluate 

the effectiveness of the proposed classifier and compare it 

with other state-of-the-art classifiers such as the kNN, SVM, 

and KSRC after feature extraction. Two major experiments 

were conducted to evaluate the proposed methods. 

In the first experiment, the optimal values of k for kNN and 

optimal kernel parameters for KSRC and SVM were firstly 

obtained. For KSRC and SVM, two popular kernels are 

obtained. One is the polynomial kernel, and the other is radial 

basis function (RBF) kernel 
2

( , ) exp /k x y x y  
. 

Two 

aspects were compared in this experiment: (1) the 

performance of classifiers in different sizes of feature 

dimensions and (2) the performance of classifiers in different 

numbers of training samples. 

These experiments were performed by ten-fold cross-

validation by means of the CA rate. 15 training samples were 

randomly chosen from each ECG recording of ECG dataset, 

while the remaining samples formed the testing set. On each 

dataset, the experiments were repeated 10 times, and then 

nine different training and testing sets were attained for 

performance evaluation. The samples were extracted by 

MFCC and the dimension was fixed at 4,096 and were 

normalized to the unit norm. Here, in the kNN classifier, the 

values of k are presented in the odd numbers ranging from 1 

to 15. The polynomial and RBF kernel were applied in the 

KSRC and SVM. To find the optimal kernel parameters for 

KSRC, the intervals were tested from 1 to 10 for both 

parameters d of the polynomial kernel and C of the RBF 

kernel. Meanwhile, various pairs of (C,  ) were tried for the 

SVM with the RBF kernel and the one with the best cross-

validation accuracy was selected. Subsequently, the values of 

C and   were used to determine parameter d in the 

polynomial kernel. Here, for the parameter d of the 

polynomial kernel, the candidate interval is from 1 to 10. 

Figure 3(a) shows the CA rates of kNN in variation values 

of k. It was found the optimal CA rates were achieved when 

k=3. Meanwhile, the CA rates for SVM with the RBF kernel 

and polynomial kernel are shown in Figures 3(b) and 3(c), 

respectively. It was observed that the optimal parameter (C,

 ) for RBF kernel was (25, 2-9) and d for polynomial kernel 

was 3. Figures 3(d) and 3(e) show the CA rates for KSRC 

with the polynomial kernel and RBF kernel, respectively. 

From Figures 3(d) and 3(e), the optimal parameter   was 2 

and the optimal parameter d was 4. 

In the second experiment, a comparison between KSRC 

with kNN, SVM and SRC was made after determining the 

optimal value of k for kNN and parameters for KSRC and 

SVM. Here, the sizes of feature dimensions were computed 

at 100, 256, 1024, 4096, 6400, 7225 and 8100. Ten-fold 

cross-validation was applied and the experiment was repeated 

ten times. 

Figure 4 shows the classification performance at different 

sizes of feature dimensions for each classifier, i.e. kNN, 

SVM, SRC and KSRC. Table 1 lists the maximal CA rates 

and the standard deviation of each classifier. 

 
Table 1 

Maximal CA Rates Based on Different Sizes of Feature Dimensions 

 

Classifier Parameter CA rate (%) 

kNN k=3 90.93 ± 3.13 
SVM (Polynomial) d = 3 92.8 ± 3.78 

SVM (RBF) (C, ) =(25, 2-9) 94.24 ± 3.07 

SRC - 62.9 ± 2.24 
KSRC (Polynomial) d = 4 97.23 ± 3.02 

KSRC (RBF)  = 2 95.87 ± 3.26 

 

By examining Figure 4 and Table 1, some interesting points 

were found. First, they show the supremacy of KSRC over 

other classifiers. For added feature dimensions, the KSRC 

performs better as compared to other classifiers. The result 

also shows that the KSRC significantly performs better than 

the SVM and kNN for the 100 feature dimensions. However, 

most signals of practical interest have some noise in the 

feature that causes the trade-off in the SVM and kNN 

classifiers’ increased computational complexity. The results 

also show that the KSRC outperforms the SRC for every 

feature dimension. It is clear to see that the KSRC can also 

obtain competitive classification results on high-dimensional 

data. Second, the kernel was able to improve the CA rates for 
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both SVM and KSRC over the kNN and SRC. When 

compared with the polynomial kernel and RBF kernel, the 

KSRC (polynomial) performs better than KSRC (RBF). 

However, in the SVM, it it is inapplicable to the RBF kernel. 

Lastly, the SRC has the poorest performance which only 

achieves CA rates less 50% at 100 and 256 feature 

dimensions. This weakness indicates that the SRC is unable 

to handle many different classes compared than the KSRC as 

discussed in Section III. 

 
 

(a) kNN 

 

 
(b) SVM RBF kernel 

 

 
(c) 

 

 
(d) KSRC RBF kernel 

 

 
(e) KSRC polynomial kernel 

 

Figure 3: CA rates of classifiers under the variation of parameters 
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Figure 4: Performances of kNN, SVM, SRC and KSRC based on different sizes of feature dimensions 

 

V. CONCLUSION 

 

This paper presents a system which is able to perform 

biometrics recognition by using ECG signals.  A combination 

of STE and STAZCR in signal segmentation has been 

employed.  In the classification process, the KSRC has been 

proposed to map the samples into a high dimensional feature 

space. In this process, the segmented signals are first 

extracted with the autocorrelation method.  Subsequently, 

three well-known classifiers, i.e. kNN, SVM and SRC, are 

used to validate the effectiveness of the KSRC. A series of 

experiments, based on different sizes of feature dimensions 

has been performed to determine the competence of the 

proposed classifier. For these experiments, the classification 

accuracies are up to 90.93%, 92.8%, 94.24%, 62.9%, 97.23% 

and 95.87% for kNN, SVM (polynomial), SVM(RBF), SRC 

and KSRC(polynomial) and KSRC(RBF), respectively. The 

results indicate that the KSRC with the polynomial kernel 

provides the best classification among the four classifiers.  
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