
ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Implementing the Controller Area Network (CAN) Protocol for Multiplex System

35

Abstract

Controller Area Network (CAN) protocol can
be implemented in networking a system by
the application of PIC18F458 microcontroller
and MCP2551 transceiver. For successful
transmission, design specification concerning
the CAN node identifier assignment, message
reception pattern and time synchronization
must be determined accordingly. The CAN
network developed in this article performs a
simple application of transmitting a one-byte
data through a three-node network. This eye-
opener CAN system realization may act as a
platform for researchers who are interested in
the application of CAN protocol in networking
a multiplex system. The work can also be used
for analyzing purposes concerning the CAN
usage in domestic embedded system application
networking.

Keywords: communication protocol,
Controller Area Network (CAN), networking,
synchronization.

I. INTRODUCTION

Previously developed for In-Vehicle
Network (IVN) protocol, CAN
application had been extended to factory
automation, industrial machine control,
lifts and escalators, building automation,
medical equipment and devices, and non-
industrial control and equipment [1]. It is a
technology that is guaranteed well into the
future as large numbers of semiconductor
manufacturers such as Philips, Motorola,
Microchip, and National Semiconductors
are now producing CAN devices due to
its widespread use [2].

ImplemeNTINg The CONTROlleR AReA NeTwORk (CAN)
pROTOCOl fOR mUlTIplex SySTem

Zarina mohd. Noh1, muhammad Nasir Ibrahim2, muzalifah mohd. Said1,
Norhidayah mohamad yatim1, Rostam Affendi Hamzah1

1Faculty of Electronics & Computer Engineering, Universiti Teknikal
Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka

2Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM),
81310 Skudai, Johor

zarina.noh@utem.edu.my
As a low cost networking alternative, CAN
is a powerful tool for general-purpose
sensor/actuator bus system for distributed
real time control which can be utilized with
any microcontroller-based system [1]. It
allows the application of multi-master
architecture on a broadcast shared bus,
operating over a simple twisted pair wire
imposing the simplicity of the network
cabling [2][3]. With CAN Version 2.0A, a
single network (theoretically) may consist
of up to 2032 nodes while CAN Version
2.0B may consists of more that 500 million
nodes in a single network [4]. Specifically
concern on layer 2 (data link layer) and
part of layer 1 (physical layer) in the
ISO/OSI (International Standardization
Organization/Open System
Interconnection) model, this networking
technology imposes some advantages
in its arbitration technique, message
framing and filtering, error confinement,
and also in its bit representation [4]. All of
those suggest the use of CAN protocol as
a reliable embedded system networking
solution.

In the communication point of view, CAN
have its own specialties and strengths.
Among those is the absence of indication
of the originating or destination addresses
for each of its messages. Instead, an
identifier is embedded in the message
and each controller in the network is
responsible in determining the receipt
of messages by deciphering the headers
of the messages. The advantages of such
scheme are one can add a controller to the

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

36

network without stopping the operation
and the network allows multi-casting
capabilities [5].

As an event-triggered protocol, signal
transmission on the bus only happened if
there is any messages need to be sent by
any nodes in the CAN network [6]. This is
another specialties of CAN protocol which
ensures efficient bandwidth utilization
through the bus network.

In accessing the network, CAN employs
the Carrier Sense, Multiple Access
with Collision Avoidance (CSMA/CA)
mechanism in providing the arbitration
access to the bus [7]. The bits in the
identifier of CAN messages which are
categories into either dominant (logic
zero) or recessive (logic one), plays
an important role in handling the bit
collision happened during simultaneous
transmission by two or more nodes. The
CAN network is structured such that the
dominant bit stays on the bus while the
recessive bit lost its arbitration. Hence, the
highest priority identifier will always win
the arbitration and successfully control
the bus. This offers message prioritization
and access conflict resolution in the
network, which is important for a
dependable system.

The CAN protocol also provides a high-
level of error detection and correction
[2]. The built-in error detection of the
CAN controller together with the error
signaling ensures that the information
transmitted is correct and consistent.
When a CAN controller detects an error
(either bit errors or message errors), an
error frame is immediately transmitted
in the network. The message (in error)
is then cancelled at all nodes and the
correct message is then retransmitted. A
continuous retransmission of messages
(in error) caused the faulty node to fall
to a mode where it will not disturb the
traffic on the bus. This is called as ‘bus-off’
state and no messages can be received or
transmitted until the host microcontroller
reset the node. The automatic handling
of error ensures the reliability of CAN
protocol.

The following section in this article
discusses on the CAN protocol design
issues for a network, the hardware
implementation related, the network
system operation and recommendation
for future research work.

II. CAN ImplemeNTATION

To implement the CAN protocol in a
network, the network must consists of a
group of CAN nodes, connected to each
other via the CAN-bus. For a node to be
regarded as a CAN node, it must comprises
of its own controller, CAN protocol
handler and the CAN line interface. Fig.
1 illustrates a CAN node for a system,
disregard to the type of controller used in
the networking system.

CAN-bus

CAN protocol.
The following section in this article discusses on the CAN

protocol design issues for a network, the hardware
implementation related, the network system operation and
recommendation for future research work.

II. CAN IMPLEMENTATION

To implement the CAN protocol in a network, the network
must consists of a group of CAN nodes, connected to each
other via the CAN-bus. For a node to be regarded as a CAN
node, it must comprises of its own controller, CAN protocol
handler and the CAN line interface. Fig. 1 illustrates a CAN
node for a system, disregard to the type of controller used in
the networking system.

Fig. 1. CAN node

In Fig. 1, the controller in the CAN node acts as the main
processing unit of the node, which performs functions and
operations as needed. The CAN protocol handler will
configure the node, such that its configuration specification is
as intended for the networking purposes. The CAN line
interface convert the data (receives from the CAN network or
transmits by the node’s controller) into the form that can be
understood by the CAN network and the intended node. The
data can be sent up to 8-bytes length in a single CAN message
through the CAN network [4].

Fig. 2. CAN network

Each of the CAN node connected together to form a
network via the CAN-bus as illustrated in Fig. 2. In this
article, the CAN system hardware is implemented by the use
of PIC18F458 as the controller for the CAN node in the
network, as the chip is readily integrated with the CAN
protocol handler. The chosen chip proves to save space as
well as programming hassles as most of the CAN system
specification are made to be easily used by the CAN protocol

users. The CAN line interface which is also known as the
CAN transceiver is realized by the use of MCP2551 chip. It is
chosen as the MCP2551 chip is compatible with the ISO-
11898 which defines the CAN and its physical layer
implementation [8]. Together, the PIC18F458 and MCP2551
chip make up the CAN node. The CAN-bus in Fig. 2 can be
developed by the usage of a simple twisted pair wire,
connected to each of the CAN nodes in the network.

Fig. 3 illustrates the CAN hardware implementation used
for the purpose of this research article.

Fig. 3. CAN hardware implementation

III. DESIGN ISSUES

In ensuring successful data transmission in the system, the
CAN protocol handler (also known as CAN module) of
PIC18F458 is fully accessed in designing its application
operation. Among the issues that need to be taken into
consideration in the designing phase are the node identifier
assignment, the message reception specification for each node,
and also the time synchronization between the nodes in the
network.

As each of the node is differentiated by its unique identifier,
a higher priority node will be given the bit value (as its
identifier) that will win arbitration most of the time in the
network. In this case, whenever there are two or more nodes
tries to transmit messages through the network at the same
time, the higher priority node will always wins the network
bus and the lower priority node will need to wait for the next
turn. In CAN network, ‘0’ binary bit is regarded to have a
higher priority than the ‘1’ binary bit value.

In this article, the CAN network is designed such that the
identifiers are assigned randomly as the network is assumed to
be constructed in an ad-hoc manner. The identifier is chosen
from the combination of 29-bit value as the network deals
with an extended CAN data frame format (CAN version
2.0B). The identifier value for each of the node in the CAN
network developed is as shown in Table 1. It can be seen that
the Node 2 has higher priority than Node 1 and Node 3. In
case where transmission occurred at the same time from all the
nodes, Node 2 will always win the arbitration.

Node 1

Controller

CAN
protocol
handler

CAN
line

interface

Node 2

PIC18F458

MCP2551

Node 3

PIC18F458

MCP2551

CAN-bus

CAN
Node 1

CAN
Node 2

CAN
Node 3

CAN
Node 4

CAN
Node 5

Controller

CAN
protocol
handler

CAN
line

interface

Fig. 1. CAN node

In Fig. 1, the controller in the CAN node
acts as the main processing unit of the
node, which performs functions and
operations as needed. The CAN protocol
handler will configure the node, such
that its configuration specification is as
intended for the networking purposes.
The CAN line interface convert the data
(receives from the CAN network or
transmits by the node’s controller) into the
form that can be understood by the CAN
network and the intended node. The data
can be sent up to 8-bytes length in a single
CAN message through the CAN network
[4].

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Implementing the Controller Area Network (CAN) Protocol for Multiplex System

37

CAN-bus

CAN protocol.
The following section in this article discusses on the CAN

protocol design issues for a network, the hardware
implementation related, the network system operation and
recommendation for future research work.

II. CAN IMPLEMENTATION

To implement the CAN protocol in a network, the network
must consists of a group of CAN nodes, connected to each
other via the CAN-bus. For a node to be regarded as a CAN
node, it must comprises of its own controller, CAN protocol
handler and the CAN line interface. Fig. 1 illustrates a CAN
node for a system, disregard to the type of controller used in
the networking system.

Fig. 1. CAN node

In Fig. 1, the controller in the CAN node acts as the main
processing unit of the node, which performs functions and
operations as needed. The CAN protocol handler will
configure the node, such that its configuration specification is
as intended for the networking purposes. The CAN line
interface convert the data (receives from the CAN network or
transmits by the node’s controller) into the form that can be
understood by the CAN network and the intended node. The
data can be sent up to 8-bytes length in a single CAN message
through the CAN network [4].

Fig. 2. CAN network

Each of the CAN node connected together to form a
network via the CAN-bus as illustrated in Fig. 2. In this
article, the CAN system hardware is implemented by the use
of PIC18F458 as the controller for the CAN node in the
network, as the chip is readily integrated with the CAN
protocol handler. The chosen chip proves to save space as
well as programming hassles as most of the CAN system
specification are made to be easily used by the CAN protocol

users. The CAN line interface which is also known as the
CAN transceiver is realized by the use of MCP2551 chip. It is
chosen as the MCP2551 chip is compatible with the ISO-
11898 which defines the CAN and its physical layer
implementation [8]. Together, the PIC18F458 and MCP2551
chip make up the CAN node. The CAN-bus in Fig. 2 can be
developed by the usage of a simple twisted pair wire,
connected to each of the CAN nodes in the network.

Fig. 3 illustrates the CAN hardware implementation used
for the purpose of this research article.

Fig. 3. CAN hardware implementation

III. DESIGN ISSUES

In ensuring successful data transmission in the system, the
CAN protocol handler (also known as CAN module) of
PIC18F458 is fully accessed in designing its application
operation. Among the issues that need to be taken into
consideration in the designing phase are the node identifier
assignment, the message reception specification for each node,
and also the time synchronization between the nodes in the
network.

As each of the node is differentiated by its unique identifier,
a higher priority node will be given the bit value (as its
identifier) that will win arbitration most of the time in the
network. In this case, whenever there are two or more nodes
tries to transmit messages through the network at the same
time, the higher priority node will always wins the network
bus and the lower priority node will need to wait for the next
turn. In CAN network, ‘0’ binary bit is regarded to have a
higher priority than the ‘1’ binary bit value.

In this article, the CAN network is designed such that the
identifiers are assigned randomly as the network is assumed to
be constructed in an ad-hoc manner. The identifier is chosen
from the combination of 29-bit value as the network deals
with an extended CAN data frame format (CAN version
2.0B). The identifier value for each of the node in the CAN
network developed is as shown in Table 1. It can be seen that
the Node 2 has higher priority than Node 1 and Node 3. In
case where transmission occurred at the same time from all the
nodes, Node 2 will always win the arbitration.

Node 1

Controller

CAN
protocol
handler

CAN
line

interface

Node 2

PIC18F458

MCP2551

Node 3

PIC18F458

MCP2551

CAN-bus

CAN
Node 1

CAN
Node 2

CAN
Node 3

CAN
Node 4

CAN
Node 5

Controller

CAN
protocol
handler

CAN
line

interface

Fig. 2. CAN network

Each of the CAN node connected together
to form a network via the CAN-bus as
illustrated in Fig. 2. In this article, the
CAN system hardware is implemented
by the use of PIC18F458 as the controller
for the CAN node in the network, as the
chip is readily integrated with the CAN
protocol handler. The chosen chip proves
to save space as well as programming
hassles as most of the CAN system
specification are made to be easily used
by the CAN protocol users. The CAN
line interface which is also known as the
CAN transceiver is realized by the use of
MCP2551 chip. It is chosen as the MCP2551
chip is compatible with the ISO-11898
which defines the CAN and its physical
layer implementation [8]. Together, the
PIC18F458 and MCP2551 chip make up
the CAN node. The CAN-bus in Fig. 2
can be developed by the usage of a simple
twisted pair wire, connected to each of
the CAN nodes in the network.

Fig. 3 illustrates the CAN hardware
implementation used for the purpose of
this research article.

CAN-bus

CAN protocol.
The following section in this article discusses on the CAN

protocol design issues for a network, the hardware
implementation related, the network system operation and
recommendation for future research work.

II. CAN IMPLEMENTATION

To implement the CAN protocol in a network, the network
must consists of a group of CAN nodes, connected to each
other via the CAN-bus. For a node to be regarded as a CAN
node, it must comprises of its own controller, CAN protocol
handler and the CAN line interface. Fig. 1 illustrates a CAN
node for a system, disregard to the type of controller used in
the networking system.

Fig. 1. CAN node

In Fig. 1, the controller in the CAN node acts as the main
processing unit of the node, which performs functions and
operations as needed. The CAN protocol handler will
configure the node, such that its configuration specification is
as intended for the networking purposes. The CAN line
interface convert the data (receives from the CAN network or
transmits by the node’s controller) into the form that can be
understood by the CAN network and the intended node. The
data can be sent up to 8-bytes length in a single CAN message
through the CAN network [4].

Fig. 2. CAN network

Each of the CAN node connected together to form a
network via the CAN-bus as illustrated in Fig. 2. In this
article, the CAN system hardware is implemented by the use
of PIC18F458 as the controller for the CAN node in the
network, as the chip is readily integrated with the CAN
protocol handler. The chosen chip proves to save space as
well as programming hassles as most of the CAN system
specification are made to be easily used by the CAN protocol

users. The CAN line interface which is also known as the
CAN transceiver is realized by the use of MCP2551 chip. It is
chosen as the MCP2551 chip is compatible with the ISO-
11898 which defines the CAN and its physical layer
implementation [8]. Together, the PIC18F458 and MCP2551
chip make up the CAN node. The CAN-bus in Fig. 2 can be
developed by the usage of a simple twisted pair wire,
connected to each of the CAN nodes in the network.

Fig. 3 illustrates the CAN hardware implementation used
for the purpose of this research article.

Fig. 3. CAN hardware implementation

III. DESIGN ISSUES

In ensuring successful data transmission in the system, the
CAN protocol handler (also known as CAN module) of
PIC18F458 is fully accessed in designing its application
operation. Among the issues that need to be taken into
consideration in the designing phase are the node identifier
assignment, the message reception specification for each node,
and also the time synchronization between the nodes in the
network.

As each of the node is differentiated by its unique identifier,
a higher priority node will be given the bit value (as its
identifier) that will win arbitration most of the time in the
network. In this case, whenever there are two or more nodes
tries to transmit messages through the network at the same
time, the higher priority node will always wins the network
bus and the lower priority node will need to wait for the next
turn. In CAN network, ‘0’ binary bit is regarded to have a
higher priority than the ‘1’ binary bit value.

In this article, the CAN network is designed such that the
identifiers are assigned randomly as the network is assumed to
be constructed in an ad-hoc manner. The identifier is chosen
from the combination of 29-bit value as the network deals
with an extended CAN data frame format (CAN version
2.0B). The identifier value for each of the node in the CAN
network developed is as shown in Table 1. It can be seen that
the Node 2 has higher priority than Node 1 and Node 3. In
case where transmission occurred at the same time from all the
nodes, Node 2 will always win the arbitration.

Node 1

Controller

CAN
protocol
handler

CAN
line

interface

Node 2

PIC18F458

MCP2551

Node 3

PIC18F458

MCP2551

CAN-bus

CAN
Node 1

CAN
Node 2

CAN
Node 3

CAN
Node 4

CAN
Node 5

Controller

CAN
protocol
handler

CAN
line

interface

Fig. 3. CAN hardware implementation

III. DeSIgN ISSUeS

In ensuring successful data transmission
in the system, the CAN protocol handler
(also known as CAN module) of
PIC18F458 is fully accessed in designing
its application operation. Among
the issues that need to be taken into
consideration in the designing phase
are the node identifier assignment, the
message reception specification for each
node, and also the time synchronization
between the nodes in the network.

As each of the node is differentiated by its
unique identifier, a higher priority node
will be given the bit value (as its identifier)
that will win arbitration most of the time
in the network. In this case, whenever
there are two or more nodes tries to
transmit messages through the network
at the same time, the higher priority node
will always wins the network bus and the
lower priority node will need to wait for
the next turn. In CAN network, ‘0’ binary
bit is regarded to have a higher priority
than the ‘1’ binary bit value.

In this article, the CAN network is
designed such that the identifiers are
assigned randomly as the network is
assumed to be constructed in an ad-hoc
manner. The identifier is chosen from
the combination of 29-bit value as the
network deals with an extended CAN
data frame format (CAN version 2.0B).
The identifier value for each of the node in
the CAN network developed is as shown
in Table 1. It can be seen that the Node 2
has higher priority than Node 1 and Node
3. In case where transmission occurred at
the same time from all the nodes, Node 2
will always win the arbitration.

Table 1. Node identifier valueTable 1. Node identifier value
 Identifier
Node 1 12111
Node 2 3
Node 3 113

Because all nodes in a CAN network will receive all the
messages transmitted over the CAN-bus, the receiving buffer
in a node should be restricted to receive only the message of
its interest. Fig. 4 shows the block diagram of a CAN node
receiving buffer offered by the CAN module of PIC18F458.
Different types of CAN protocol handler might have different
diagram of receiving buffer block, but all of them can be
specified to receive only messages of its interest.

Fig. 4. Receive buffer block diagram [9]

As illustrated in Fig. 4, any messages detected on the CAN-
bus will be checked for errors and loaded into the Message
Assembly Buffer. It is done by manipulating the mask and
acceptance filter bit value in each node. In PIC18F458, 6
acceptance filters are available for this purpose (RXF0-
RXF5). The received message is matched against the filters to
see if it should be received and stored in one of the receiving
buffers (RXB0 or RXB1) of the node. Otherwise, the received
message will be discarded. Table 2 shows the specification of
the Acceptance Filter RXF1 for each of the nodes in the CAN
network developed.

Table 2. Acceptance Filter RXF1 specification
Receiving Node Acceptance Filter value
Node 1 113
Node 2 12111
Node 3 3

In this article, the designed network will make use only one
of the 6 acceptance filter in its specification. Only messages
originated from the specified identifier value (node) will be
meaningful to the respective receiving node.

Another issue that needs to be considered in the designing
phase of the CAN network is the time synchronization of the
system. Practically, the oscillators used in a node and time
transmission in the other node may differ in each other due to
different clock speed and device propagation time delay. The

receiving node needs to synchronize its clock to the
transmitting node, so that the transmitted data may be
recovered. In PIC18F458, the synchronization of the incoming
data is done by the Digital Phase Lock Loop (DPLL) which
also provides the nominal bit timing for the transmitted data
[9]. The nominal bit time is divided into 4 non-overlapping
time segments (represented by multiple of time quanta or TQ)
as shown in Fig. 5.

Fig. 5. Nominal bit time division [9]

TQ is a fixed unit derived from the oscillator period while
the nominal bit time is needed to indicate the nominal bit rate
of the network. The nominal bit rate specifies the number of
bit transmitted per second for an ideal system where no
synchronization is needed in the network [9]. By specifying
the nominal bit rate needed for a CAN network, the oscillator
value that should be used by a CAN node in the network can
be obtained. In this article, the nominal bit timing is specified
according to the requirement needed for successful CAN
network synchronization as shown in Table 3 [7].

Table 3. Nominal bit timing specification
 tQ

SyncSeg 1
PropSeg 1
PhaseSeg1 3
PhaseSeg2 3

IV. SYSTEM SPECIFICATION & OPERATION

A. Hardware Realization
The functional block diagram of the developed CAN

network is as shown in Fig. 6. Each node has 4 LEDs
connected to Port C (I/O port) of PIC18F458 which displays
the data received from the CAN network. These LEDs served
as the output of each node. Once the ‘Reset Switch’ in the first
node is activated, the Node 1 will start sending the data to the
CAN network. The network operation is as shown in Fig. 9.
This simple configuration can be further extended to an
application specific system to fully utilize the advantages of
CAN protocol.

B. CAN Module Specification
The utilization of the CAN module in handling the design

issues as mentioned in previous section is done by using the
mikroC software. The software supports C-language for PIC
implementation, which also has the CAN related functions in
its library definition. Among those defined CAN functions
available are CANInitialize(…), CANSetOperationMode(…),

Because all nodes in a CAN network will
receive all the messages transmitted over
the CAN-bus, the receiving buffer in a
node should be restricted to receive only

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

38

the message of its interest. Fig. 4 shows the
block diagram of a CAN node receiving
buffer offered by the CAN module of
PIC18F458. Different types of CAN
protocol handler might have different
diagram of receiving buffer block, but all
of them can be specified to receive only
messages of its interest.

Table 1. Node identifier value
 Identifier
Node 1 12111
Node 2 3
Node 3 113

Because all nodes in a CAN network will receive all the
messages transmitted over the CAN-bus, the receiving buffer
in a node should be restricted to receive only the message of
its interest. Fig. 4 shows the block diagram of a CAN node
receiving buffer offered by the CAN module of PIC18F458.
Different types of CAN protocol handler might have different
diagram of receiving buffer block, but all of them can be
specified to receive only messages of its interest.

Fig. 4. Receive buffer block diagram [9]

As illustrated in Fig. 4, any messages detected on the CAN-
bus will be checked for errors and loaded into the Message
Assembly Buffer. It is done by manipulating the mask and
acceptance filter bit value in each node. In PIC18F458, 6
acceptance filters are available for this purpose (RXF0-
RXF5). The received message is matched against the filters to
see if it should be received and stored in one of the receiving
buffers (RXB0 or RXB1) of the node. Otherwise, the received
message will be discarded. Table 2 shows the specification of
the Acceptance Filter RXF1 for each of the nodes in the CAN
network developed.

Table 2. Acceptance Filter RXF1 specification
Receiving Node Acceptance Filter value
Node 1 113
Node 2 12111
Node 3 3

In this article, the designed network will make use only one
of the 6 acceptance filter in its specification. Only messages
originated from the specified identifier value (node) will be
meaningful to the respective receiving node.

Another issue that needs to be considered in the designing
phase of the CAN network is the time synchronization of the
system. Practically, the oscillators used in a node and time
transmission in the other node may differ in each other due to
different clock speed and device propagation time delay. The

receiving node needs to synchronize its clock to the
transmitting node, so that the transmitted data may be
recovered. In PIC18F458, the synchronization of the incoming
data is done by the Digital Phase Lock Loop (DPLL) which
also provides the nominal bit timing for the transmitted data
[9]. The nominal bit time is divided into 4 non-overlapping
time segments (represented by multiple of time quanta or TQ)
as shown in Fig. 5.

Fig. 5. Nominal bit time division [9]

TQ is a fixed unit derived from the oscillator period while
the nominal bit time is needed to indicate the nominal bit rate
of the network. The nominal bit rate specifies the number of
bit transmitted per second for an ideal system where no
synchronization is needed in the network [9]. By specifying
the nominal bit rate needed for a CAN network, the oscillator
value that should be used by a CAN node in the network can
be obtained. In this article, the nominal bit timing is specified
according to the requirement needed for successful CAN
network synchronization as shown in Table 3 [7].

Table 3. Nominal bit timing specification
 tQ

SyncSeg 1
PropSeg 1
PhaseSeg1 3
PhaseSeg2 3

IV. SYSTEM SPECIFICATION & OPERATION

A. Hardware Realization
The functional block diagram of the developed CAN

network is as shown in Fig. 6. Each node has 4 LEDs
connected to Port C (I/O port) of PIC18F458 which displays
the data received from the CAN network. These LEDs served
as the output of each node. Once the ‘Reset Switch’ in the first
node is activated, the Node 1 will start sending the data to the
CAN network. The network operation is as shown in Fig. 9.
This simple configuration can be further extended to an
application specific system to fully utilize the advantages of
CAN protocol.

B. CAN Module Specification
The utilization of the CAN module in handling the design

issues as mentioned in previous section is done by using the
mikroC software. The software supports C-language for PIC
implementation, which also has the CAN related functions in
its library definition. Among those defined CAN functions
available are CANInitialize(…), CANSetOperationMode(…),

Fig. 4. Receive buffer block diagram [9]

As illustrated in Fig. 4, any messages
detected on the CAN-bus will be
checked for errors and loaded into the
Message Assembly Buffer. It is done by
manipulating the mask and acceptance
filter bit value in each node. In PIC18F458,
6 acceptance filters are available for this
purpose (RXF0-RXF5). The received
message is matched against the filters to
see if it should be received and stored
in one of the receiving buffers (RXB0 or
RXB1) of the node. Otherwise, the received
message will be discarded. Table 2 shows
the specification of the Acceptance Filter
RXF1 for each of the nodes in the CAN
network developed.

Table 2. Acceptance Filter RXF1 specification

Table 1. Node identifier value
 Identifier
Node 1 12111
Node 2 3
Node 3 113

Because all nodes in a CAN network will receive all the
messages transmitted over the CAN-bus, the receiving buffer
in a node should be restricted to receive only the message of
its interest. Fig. 4 shows the block diagram of a CAN node
receiving buffer offered by the CAN module of PIC18F458.
Different types of CAN protocol handler might have different
diagram of receiving buffer block, but all of them can be
specified to receive only messages of its interest.

Fig. 4. Receive buffer block diagram [9]

As illustrated in Fig. 4, any messages detected on the CAN-
bus will be checked for errors and loaded into the Message
Assembly Buffer. It is done by manipulating the mask and
acceptance filter bit value in each node. In PIC18F458, 6
acceptance filters are available for this purpose (RXF0-
RXF5). The received message is matched against the filters to
see if it should be received and stored in one of the receiving
buffers (RXB0 or RXB1) of the node. Otherwise, the received
message will be discarded. Table 2 shows the specification of
the Acceptance Filter RXF1 for each of the nodes in the CAN
network developed.

Table 2. Acceptance Filter RXF1 specification
Receiving Node Acceptance Filter value
Node 1 113
Node 2 12111
Node 3 3

In this article, the designed network will make use only one
of the 6 acceptance filter in its specification. Only messages
originated from the specified identifier value (node) will be
meaningful to the respective receiving node.

Another issue that needs to be considered in the designing
phase of the CAN network is the time synchronization of the
system. Practically, the oscillators used in a node and time
transmission in the other node may differ in each other due to
different clock speed and device propagation time delay. The

receiving node needs to synchronize its clock to the
transmitting node, so that the transmitted data may be
recovered. In PIC18F458, the synchronization of the incoming
data is done by the Digital Phase Lock Loop (DPLL) which
also provides the nominal bit timing for the transmitted data
[9]. The nominal bit time is divided into 4 non-overlapping
time segments (represented by multiple of time quanta or TQ)
as shown in Fig. 5.

Fig. 5. Nominal bit time division [9]

TQ is a fixed unit derived from the oscillator period while
the nominal bit time is needed to indicate the nominal bit rate
of the network. The nominal bit rate specifies the number of
bit transmitted per second for an ideal system where no
synchronization is needed in the network [9]. By specifying
the nominal bit rate needed for a CAN network, the oscillator
value that should be used by a CAN node in the network can
be obtained. In this article, the nominal bit timing is specified
according to the requirement needed for successful CAN
network synchronization as shown in Table 3 [7].

Table 3. Nominal bit timing specification
 tQ

SyncSeg 1
PropSeg 1
PhaseSeg1 3
PhaseSeg2 3

IV. SYSTEM SPECIFICATION & OPERATION

A. Hardware Realization
The functional block diagram of the developed CAN

network is as shown in Fig. 6. Each node has 4 LEDs
connected to Port C (I/O port) of PIC18F458 which displays
the data received from the CAN network. These LEDs served
as the output of each node. Once the ‘Reset Switch’ in the first
node is activated, the Node 1 will start sending the data to the
CAN network. The network operation is as shown in Fig. 9.
This simple configuration can be further extended to an
application specific system to fully utilize the advantages of
CAN protocol.

B. CAN Module Specification
The utilization of the CAN module in handling the design

issues as mentioned in previous section is done by using the
mikroC software. The software supports C-language for PIC
implementation, which also has the CAN related functions in
its library definition. Among those defined CAN functions
available are CANInitialize(…), CANSetOperationMode(…),

In this article, the designed network will
make use only one of the 6 acceptance
filter in its specification. Only messages
originated from the specified identifier
value (node) will be meaningful to the
respective receiving node.

Another issue that needs to be considered
in the designing phase of the CAN
network is the time synchronization of
the system. Practically, the oscillators
used in a node and time transmission in
the other node may differ in each other
due to different clock speed and device
propagation time delay. The receiving
node needs to synchronize its clock to the
transmitting node, so that the transmitted
data may be recovered. In PIC18F458,
the synchronization of the incoming data
is done by the Digital Phase Lock Loop
(DPLL) which also provides the nominal
bit timing for the transmitted data [9]. The
nominal bit time is divided into 4 non-
overlapping time segments (represented
by multiple of time quanta or TQ) as
shown in Fig. 5.

Table 1. Node identifier value
 Identifier
Node 1 12111
Node 2 3
Node 3 113

Because all nodes in a CAN network will receive all the
messages transmitted over the CAN-bus, the receiving buffer
in a node should be restricted to receive only the message of
its interest. Fig. 4 shows the block diagram of a CAN node
receiving buffer offered by the CAN module of PIC18F458.
Different types of CAN protocol handler might have different
diagram of receiving buffer block, but all of them can be
specified to receive only messages of its interest.

Fig. 4. Receive buffer block diagram [9]

As illustrated in Fig. 4, any messages detected on the CAN-
bus will be checked for errors and loaded into the Message
Assembly Buffer. It is done by manipulating the mask and
acceptance filter bit value in each node. In PIC18F458, 6
acceptance filters are available for this purpose (RXF0-
RXF5). The received message is matched against the filters to
see if it should be received and stored in one of the receiving
buffers (RXB0 or RXB1) of the node. Otherwise, the received
message will be discarded. Table 2 shows the specification of
the Acceptance Filter RXF1 for each of the nodes in the CAN
network developed.

Table 2. Acceptance Filter RXF1 specification
Receiving Node Acceptance Filter value
Node 1 113
Node 2 12111
Node 3 3

In this article, the designed network will make use only one
of the 6 acceptance filter in its specification. Only messages
originated from the specified identifier value (node) will be
meaningful to the respective receiving node.

Another issue that needs to be considered in the designing
phase of the CAN network is the time synchronization of the
system. Practically, the oscillators used in a node and time
transmission in the other node may differ in each other due to
different clock speed and device propagation time delay. The

receiving node needs to synchronize its clock to the
transmitting node, so that the transmitted data may be
recovered. In PIC18F458, the synchronization of the incoming
data is done by the Digital Phase Lock Loop (DPLL) which
also provides the nominal bit timing for the transmitted data
[9]. The nominal bit time is divided into 4 non-overlapping
time segments (represented by multiple of time quanta or TQ)
as shown in Fig. 5.

Fig. 5. Nominal bit time division [9]

TQ is a fixed unit derived from the oscillator period while
the nominal bit time is needed to indicate the nominal bit rate
of the network. The nominal bit rate specifies the number of
bit transmitted per second for an ideal system where no
synchronization is needed in the network [9]. By specifying
the nominal bit rate needed for a CAN network, the oscillator
value that should be used by a CAN node in the network can
be obtained. In this article, the nominal bit timing is specified
according to the requirement needed for successful CAN
network synchronization as shown in Table 3 [7].

Table 3. Nominal bit timing specification
 tQ

SyncSeg 1
PropSeg 1
PhaseSeg1 3
PhaseSeg2 3

IV. SYSTEM SPECIFICATION & OPERATION

A. Hardware Realization
The functional block diagram of the developed CAN

network is as shown in Fig. 6. Each node has 4 LEDs
connected to Port C (I/O port) of PIC18F458 which displays
the data received from the CAN network. These LEDs served
as the output of each node. Once the ‘Reset Switch’ in the first
node is activated, the Node 1 will start sending the data to the
CAN network. The network operation is as shown in Fig. 9.
This simple configuration can be further extended to an
application specific system to fully utilize the advantages of
CAN protocol.

B. CAN Module Specification
The utilization of the CAN module in handling the design

issues as mentioned in previous section is done by using the
mikroC software. The software supports C-language for PIC
implementation, which also has the CAN related functions in
its library definition. Among those defined CAN functions
available are CANInitialize(…), CANSetOperationMode(…),

Fig. 5. Nominal bit time division [9]

TQ is a fixed unit derived from the
oscillator period while the nominal bit
time is needed to indicate the nominal bit
rate of the network. The nominal bit rate
specifies the number of bit transmitted
per second for an ideal system where no
synchronization is needed in the network
[9]. By specifying the nominal bit rate
needed for a CAN network, the oscillator
value that should be used by a CAN node
in the network can be obtained. In this
article, the nominal bit timing is specified
according to the requirement needed for
successful CAN network synchronization
as shown in Table 3 [7].

Table 3. Nominal bit timing specification

Table 1. Node identifier value
 Identifier
Node 1 12111
Node 2 3
Node 3 113

Because all nodes in a CAN network will receive all the
messages transmitted over the CAN-bus, the receiving buffer
in a node should be restricted to receive only the message of
its interest. Fig. 4 shows the block diagram of a CAN node
receiving buffer offered by the CAN module of PIC18F458.
Different types of CAN protocol handler might have different
diagram of receiving buffer block, but all of them can be
specified to receive only messages of its interest.

Fig. 4. Receive buffer block diagram [9]

As illustrated in Fig. 4, any messages detected on the CAN-
bus will be checked for errors and loaded into the Message
Assembly Buffer. It is done by manipulating the mask and
acceptance filter bit value in each node. In PIC18F458, 6
acceptance filters are available for this purpose (RXF0-
RXF5). The received message is matched against the filters to
see if it should be received and stored in one of the receiving
buffers (RXB0 or RXB1) of the node. Otherwise, the received
message will be discarded. Table 2 shows the specification of
the Acceptance Filter RXF1 for each of the nodes in the CAN
network developed.

Table 2. Acceptance Filter RXF1 specification
Receiving Node Acceptance Filter value
Node 1 113
Node 2 12111
Node 3 3

In this article, the designed network will make use only one
of the 6 acceptance filter in its specification. Only messages
originated from the specified identifier value (node) will be
meaningful to the respective receiving node.

Another issue that needs to be considered in the designing
phase of the CAN network is the time synchronization of the
system. Practically, the oscillators used in a node and time
transmission in the other node may differ in each other due to
different clock speed and device propagation time delay. The

receiving node needs to synchronize its clock to the
transmitting node, so that the transmitted data may be
recovered. In PIC18F458, the synchronization of the incoming
data is done by the Digital Phase Lock Loop (DPLL) which
also provides the nominal bit timing for the transmitted data
[9]. The nominal bit time is divided into 4 non-overlapping
time segments (represented by multiple of time quanta or TQ)
as shown in Fig. 5.

Fig. 5. Nominal bit time division [9]

TQ is a fixed unit derived from the oscillator period while
the nominal bit time is needed to indicate the nominal bit rate
of the network. The nominal bit rate specifies the number of
bit transmitted per second for an ideal system where no
synchronization is needed in the network [9]. By specifying
the nominal bit rate needed for a CAN network, the oscillator
value that should be used by a CAN node in the network can
be obtained. In this article, the nominal bit timing is specified
according to the requirement needed for successful CAN
network synchronization as shown in Table 3 [7].

Table 3. Nominal bit timing specification
 tQ

SyncSeg 1
PropSeg 1
PhaseSeg1 3
PhaseSeg2 3

IV. SYSTEM SPECIFICATION & OPERATION

A. Hardware Realization
The functional block diagram of the developed CAN

network is as shown in Fig. 6. Each node has 4 LEDs
connected to Port C (I/O port) of PIC18F458 which displays
the data received from the CAN network. These LEDs served
as the output of each node. Once the ‘Reset Switch’ in the first
node is activated, the Node 1 will start sending the data to the
CAN network. The network operation is as shown in Fig. 9.
This simple configuration can be further extended to an
application specific system to fully utilize the advantages of
CAN protocol.

B. CAN Module Specification
The utilization of the CAN module in handling the design

issues as mentioned in previous section is done by using the
mikroC software. The software supports C-language for PIC
implementation, which also has the CAN related functions in
its library definition. Among those defined CAN functions
available are CANInitialize(…), CANSetOperationMode(…),

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Implementing the Controller Area Network (CAN) Protocol for Multiplex System

39

IV. SySTem SpeCIfICATION &
OpeRATION

A. Hardware Realization

The functional block diagram of the
developed CAN network is as shown in
Fig. 6. Each node has 4 LEDs connected
to Port C (I/O port) of PIC18F458 which
displays the data received from the CAN
network. These LEDs served as the output
of each node. Once the ‘Reset Switch’ in
the first node is activated, the Node 1 will
start sending the data to the CAN network.
The network operation is as shown in
Fig. 9. This simple configuration can be
further extended to an application specific
system to fully utilize the advantages of
CAN protocol.

B. CAN Module Specification

The utilization of the CAN module
in handling the design issues as
mentioned in previous section is done
by using the mikroC software. The
software supports C-language for PIC
implementation, which also has the
CAN related functions in its library
definition. Among those defined CAN
functions available are CANInitialize(…),
C A N S e t O p e r a t i o n M o d e (…) ,
CANSetMask(…), CANSetFilter(…),
CANWrite(…) and CANRead(…) [10].
Some of these functions application
are as shown in Fig. 7 for the module
initialization steps.

CANSetMask(…), CANSetFilter(…), CANWrite(…) and
CANRead(…) [10]. Some of these functions application are as
shown in Fig. 7 for the module initialization steps.

Fig. 6. CAN network

Fig. 7. CAN module initialization steps [10]

In configuring a node to be one of the nodes in a CAN
network, the CAN module in the node needs to be initialized.

Fig. 7 shows the flowchart of the steps taken in performing the
CAN module initialization for a CAN node. It is at this stage
that the CAN protocol is specified to either uses which CAN
data format or how the bit timing partitioning is done in the
network. Part of the program for CAN module initialization is
as shown in Fig. 8.

Fig. 8. Software coding in C-language (CAN module)

Once the CAN module in the protocol handler had been
initialized, the node can starts transmit or receive messages
through the CAN network after assigning its node identifier
value. The remaining program may differ according to the
specific application performed by the CAN node in the
network.

C. Network Operation
The communication in the CAN network developed is

initiated by Node 1, which transmit one byte of data with
value 1 (R[0] = 1). The network is configured to use the
extended frame format, where the three nodes are specified to
transmit, receive, accept and decipher the message in terms of
CAN Version 2.0B format.

Fig. 9 shows the sequence of operation performed by the
CAN network in this article. The application starts with Node
1 sending the message which consists of data R[0] to the CAN
network. Node 2 and node 3, upon receiving the message
through the network, received the transmitted message and
compares the message identifier with their Acceptance Filter
specification. As Node 3 acceptance filter had been set to
receive only messages transmitted from Node 2, message
received from Node 1 will be discarded by Node 3 following
its acceptance filter. (Refer to the design specification in Table
2). Node 2 will receive this message and displays the data
R[0] via Port C. Node 2 will then transmit the message
received from Node 1, to the CAN network. Upon receiving
message from the network, Node 3 will display the data R[0]
through Port C. (Node 1, as it also receives the message
transmitted in the network, discards the message transmits by

Reset
Switch

LEDs

Node 1 (U1)
PIC18F458

CAN Transceiver
MCP2551

C
A

N
-b

us

Reset
Switch

LEDs

Node 2 (U2)
PIC18F458

CAN Transceiver
MCP2551

Reset
Switch

LEDs

Node 3 (U3)
PIC18F458

CAN Transceiver
MCP2551

// Initializing CAN related bits and module
Can_Init_Flags = 0;
Can_Send_Flags = 0;
Can_Rcv_Flags = 0;
RxTx_Data[0] = 1; // R[0] = 1

Can_Init_Flags = CAN_CONFIG_SAMPLE_THRICE &
CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_XTD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG;

Can_Send_Flags = CAN_TX_PRIORITY_0 &
CAN_TX_XTD_FRAME &
CAN_TX_NO_RTR_FRAME;

CANInitialize(1,3,3,3,1,Can_Init_Flags);
CANSetOperationMode(CAN_MODE_CONFIG,0xFF);
CANSetMask(CAN_MASK_B1,-1,CAN_CONFIG_XTD_MSG);
CANSetMask(CAN_MASK_B2,-1,CAN_CONFIG_XTD_MSG);
CANSetFilter(CAN_FILTER_B1_F1,113,CAN_CONFIG_XTD_MSG);

Fig. 6. CAN network

CANSetMask(…), CANSetFilter(…), CANWrite(…) and
CANRead(…) [10]. Some of these functions application are as
shown in Fig. 7 for the module initialization steps.

Fig. 6. CAN network

Fig. 7. CAN module initialization steps [10]

In configuring a node to be one of the nodes in a CAN
network, the CAN module in the node needs to be initialized.

Fig. 7 shows the flowchart of the steps taken in performing the
CAN module initialization for a CAN node. It is at this stage
that the CAN protocol is specified to either uses which CAN
data format or how the bit timing partitioning is done in the
network. Part of the program for CAN module initialization is
as shown in Fig. 8.

Fig. 8. Software coding in C-language (CAN module)

Once the CAN module in the protocol handler had been
initialized, the node can starts transmit or receive messages
through the CAN network after assigning its node identifier
value. The remaining program may differ according to the
specific application performed by the CAN node in the
network.

C. Network Operation
The communication in the CAN network developed is

initiated by Node 1, which transmit one byte of data with
value 1 (R[0] = 1). The network is configured to use the
extended frame format, where the three nodes are specified to
transmit, receive, accept and decipher the message in terms of
CAN Version 2.0B format.

Fig. 9 shows the sequence of operation performed by the
CAN network in this article. The application starts with Node
1 sending the message which consists of data R[0] to the CAN
network. Node 2 and node 3, upon receiving the message
through the network, received the transmitted message and
compares the message identifier with their Acceptance Filter
specification. As Node 3 acceptance filter had been set to
receive only messages transmitted from Node 2, message
received from Node 1 will be discarded by Node 3 following
its acceptance filter. (Refer to the design specification in Table
2). Node 2 will receive this message and displays the data
R[0] via Port C. Node 2 will then transmit the message
received from Node 1, to the CAN network. Upon receiving
message from the network, Node 3 will display the data R[0]
through Port C. (Node 1, as it also receives the message
transmitted in the network, discards the message transmits by

Reset
Switch

LEDs

Node 1 (U1)
PIC18F458

CAN Transceiver
MCP2551

C
A

N
-b

us

Reset
Switch

LEDs

Node 2 (U2)
PIC18F458

CAN Transceiver
MCP2551

Reset
Switch

LEDs

Node 3 (U3)
PIC18F458

CAN Transceiver
MCP2551

// Initializing CAN related bits and module
Can_Init_Flags = 0;
Can_Send_Flags = 0;
Can_Rcv_Flags = 0;
RxTx_Data[0] = 1; // R[0] = 1

Can_Init_Flags = CAN_CONFIG_SAMPLE_THRICE &
CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_XTD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG;

Can_Send_Flags = CAN_TX_PRIORITY_0 &
CAN_TX_XTD_FRAME &
CAN_TX_NO_RTR_FRAME;

CANInitialize(1,3,3,3,1,Can_Init_Flags);
CANSetOperationMode(CAN_MODE_CONFIG,0xFF);
CANSetMask(CAN_MASK_B1,-1,CAN_CONFIG_XTD_MSG);
CANSetMask(CAN_MASK_B2,-1,CAN_CONFIG_XTD_MSG);
CANSetFilter(CAN_FILTER_B1_F1,113,CAN_CONFIG_XTD_MSG);

Fig. 7. CAN module initialization steps [10]

In configuring a node to be one of the
nodes in a CAN network, the CAN
module in the node needs to be initialized.
Fig. 7 shows the flowchart of the steps
taken in performing the CAN module
initialization for a CAN node. It is at this
stage that the CAN protocol is specified
to either uses which CAN data format or

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

40

how the bit timing partitioning is done in
the network. Part of the program for CAN
module initialization is as shown in Fig.
8.

CANSetMask(…), CANSetFilter(…), CANWrite(…) and
CANRead(…) [10]. Some of these functions application are as
shown in Fig. 7 for the module initialization steps.

Fig. 6. CAN network

Fig. 7. CAN module initialization steps [10]

In configuring a node to be one of the nodes in a CAN
network, the CAN module in the node needs to be initialized.

Fig. 7 shows the flowchart of the steps taken in performing the
CAN module initialization for a CAN node. It is at this stage
that the CAN protocol is specified to either uses which CAN
data format or how the bit timing partitioning is done in the
network. Part of the program for CAN module initialization is
as shown in Fig. 8.

Fig. 8. Software coding in C-language (CAN module)

Once the CAN module in the protocol handler had been
initialized, the node can starts transmit or receive messages
through the CAN network after assigning its node identifier
value. The remaining program may differ according to the
specific application performed by the CAN node in the
network.

C. Network Operation
The communication in the CAN network developed is

initiated by Node 1, which transmit one byte of data with
value 1 (R[0] = 1). The network is configured to use the
extended frame format, where the three nodes are specified to
transmit, receive, accept and decipher the message in terms of
CAN Version 2.0B format.

Fig. 9 shows the sequence of operation performed by the
CAN network in this article. The application starts with Node
1 sending the message which consists of data R[0] to the CAN
network. Node 2 and node 3, upon receiving the message
through the network, received the transmitted message and
compares the message identifier with their Acceptance Filter
specification. As Node 3 acceptance filter had been set to
receive only messages transmitted from Node 2, message
received from Node 1 will be discarded by Node 3 following
its acceptance filter. (Refer to the design specification in Table
2). Node 2 will receive this message and displays the data
R[0] via Port C. Node 2 will then transmit the message
received from Node 1, to the CAN network. Upon receiving
message from the network, Node 3 will display the data R[0]
through Port C. (Node 1, as it also receives the message
transmitted in the network, discards the message transmits by

Reset
Switch

LEDs

Node 1 (U1)
PIC18F458

CAN Transceiver
MCP2551

C
A

N
-b

us

Reset
Switch

LEDs

Node 2 (U2)
PIC18F458

CAN Transceiver
MCP2551

Reset
Switch

LEDs

Node 3 (U3)
PIC18F458

CAN Transceiver
MCP2551

// Initializing CAN related bits and module
Can_Init_Flags = 0;
Can_Send_Flags = 0;
Can_Rcv_Flags = 0;
RxTx_Data[0] = 1; // R[0] = 1

Can_Init_Flags = CAN_CONFIG_SAMPLE_THRICE &
CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_XTD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG;

Can_Send_Flags = CAN_TX_PRIORITY_0 &
CAN_TX_XTD_FRAME &
CAN_TX_NO_RTR_FRAME;

CANInitialize(1,3,3,3,1,Can_Init_Flags);
CANSetOperationMode(CAN_MODE_CONFIG,0xFF);
CANSetMask(CAN_MASK_B1,-1,CAN_CONFIG_XTD_MSG);
CANSetMask(CAN_MASK_B2,-1,CAN_CONFIG_XTD_MSG);
CANSetFilter(CAN_FILTER_B1_F1,113,CAN_CONFIG_XTD_MSG);

Fig. 8. Software coding in C-language
(CAN module)

Once the CAN module in the protocol
handler had been initialized, the node
can starts transmit or receive messages
through the CAN network after assigning
its node identifier value. The remaining
program may differ according to the
specific application performed by the
CAN node in the network.

C. Network Operation

The communication in the CAN network
developed is initiated by Node 1, which
transmit one byte of data with value 1
(R[0] = 1). The network is configured to
use the extended frame format, where
the three nodes are specified to transmit,
receive, accept and decipher the message
in terms of CAN Version 2.0B format.

Fig. 9 shows the sequence of operation
performed by the CAN network in this
article. The application starts with Node
1 sending the message which consists of
data R[0] to the CAN network. Node 2
and node 3, upon receiving the message
through the network, received the
transmitted message and compares the
message identifier with their Acceptance
Filter specification. As Node 3 acceptance
filter had been set to receive only messages
transmitted from Node 2, message
received from Node 1 will be discarded

by Node 3 following its acceptance filter.
(Refer to the design specification in Table
2). Node 2 will receive this message and
displays the data R[0] via Port C. Node 2
will then transmit the message received
from Node 1, to the CAN network. Upon
receiving message from the network,
Node 3 will display the data R[0] through
Port C. (Node 1, as it also receives the
message transmitted in the network,
discards the message transmits by Node
2 as it only interested in the message
transmitted by Node 3). The data R[0]
will be increased by 1 before the updated
message were transmitted again over
the network by Node 3. The transmitted
message will then be received by Node
1 (Node 2 discard the message received
from Node 3) and the update data R[0]
(which had been increased by 1) will be
displayed in Port C.

This operation will continue until the
message transmitted through the network
is received in error.

Node 2 as it only interested in the message transmitted by
Node 3). The data R[0] will be increased by 1 before the
updated message were transmitted again over the network by
Node 3. The transmitted message will then be received by
Node 1 (Node 2 discard the message received from Node 3)
and the update data R[0] (which had been increased by 1) will
be displayed in Port C.

This operation will continue until the message transmitted
through the network is received in error.

Fig. 9. CAN network operation

V. CONCLUSION

The simple CAN system had been successfully
implemented, performing simple application as mentioned in
the previous section to imitate communication in between the
nodes through the CAN network. In implementing the system
for any embedded system application, the data byte sent (R[0])
may hold any value of data which is meaningful to be
transmitted around the network.

As the network only focuses on the transmission of data
frame (extended format), further research work can be done in
manipulating the transmission of error frame in demonstrating
the error confinement specified by the CAN module. Extended
work can also be done in manipulating the acceptance filter
specification in the node, such that the intended node may
receives messages from more than one node. In this case, the
identifier assigned for each node may play an important role
for the prioritization purposes. The CAN network in this

article can also be expanded to more than three nodes to see
the effect of synchronization performed in the network. The
value of the time quanta (TQ) might need some adjustment in
compensating the delay imposed by the bigger network.
Research can also be done for successful application specific
purposes utilizing the CAN protocol advantages in the
network.

As such, this networking protocol can be fully accessed in
the development of a distributed embedded system
networking.

ACKNOWLEDGMENT

The authors would like to thank Universiti Teknikal
Malaysia Melaka (UTeM) and Universiti Teknologi Malaysia
(UTM) for great facilities and continuous support in
completing this research. This work is highly related to the
authors’ previous work in ‘The Development of a Dependable
Distributed Embedded System’.

REFERENCES

[1] Cenesiz, N., and Esin, M. (2004). Controller Area Network (CAN) for
Computer Integrated Manufacturing Systems. Journal of Intelligent
Manufacturing. Vol. 15(4), 481-489.

[2] Farsi, M., Ratcliff, K., and Barbosa, M. (1999). An Overview of
Controller Area Network. Computing & Control Engineering Journal.
Vol. 10(3), 113-120.

[3] ARTIST FP5 Consortium (2005). Networks. In: LNCS 3436. Embedded
Systems Design. (316-337). Heidelberg: Springer Berlin.

[4] Paret, D. (2007). Multiplexed Networks for Embedded Systems. England:
John-Wiley Sons.

[5] Varsekalis, D. H-, and Levine, W. S. (2005). Handbook of Networked &
Embedded Control Systems. Boston: Birkhauser.

[6] Kinoshima, T., Kobayashi, K., Zakaria, N. A., Kimura, M., Matsumoto,
N., and Yoshida, N. (2007). Communication Model Exploration for
Distributed Embedded Systems and System Level Interpretations. In:
LNCS 4809. Emerging Directions in Embedded and Ubiquitous
Computing. (355-364) Heidelberg: Springer Berlin.

[7] Microchip Technology Inc. (1999). AN713 Controller Area Network
(CAN) Basics. [Application Note]. USA: Microchip Technology Inc.

[8] Microchip Technology Inc. (2002). AN228 A CAN Physical Layer
Discussion. [Application Note]. USA: Microchip Technology Inc.

[9] Microchip Technology Inc. (2004). PIC18FXX8 Data Sheet (DS41159).
[Datasheet] USA: Microchip Technology Inc.

[10] Microchip Technology Inc. (2002). PIC18C CAN Routines in ‘C’.
[Application Note]. USA: Microchip Technology Inc.

Start

Node 1
- transmits data to the network

Node 2
- receives data from Node 1

- displays data at Port C
- transmits data to the network

Node 3
- receives data from Node 2

- displays data at Port C
- increments data by 1

- transmits data to the network

Node 1
- receives data from Node 3

- displays data at Port C

Fig. 9. CAN network operation

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Implementing the Controller Area Network (CAN) Protocol for Multiplex System

41

The simple CAN system had been
successfully implemented, performing
simple application as mentioned in the
previous section to imitate communication
in between the nodes through the CAN
network. In implementing the system
for any embedded system application,
the data byte sent (R[0]) may hold any
value of data which is meaningful to be
transmitted around the network.

As the network only focuses on the
transmission of data frame (extended
format), further research work can be
done in manipulating the transmission
of error frame in demonstrating the
error confinement specified by the CAN
module. Extended work can also be done
in manipulating the acceptance filter
specification in the node, such that the
intended node may receives messages
from more than one node. In this case, the
identifier assigned for each node may play
an important role for the prioritization
purposes. The CAN network in this article
can also be expanded to more than three
nodes to see the effect of synchronization
performed in the network. The value of
the time quanta (TQ) might need some
adjustment in compensating the delay
imposed by the bigger network. Research
can also be done for successful application
specific purposes utilizing the CAN
protocol advantages in the network.
As such, this networking protocol can
be fully accessed in the development
of a distributed embedded system
networking.

ACkNOwleDgmeNT

The authors would like to thank Universiti
Teknikal Malaysia Melaka (UTeM) and
Universiti Teknologi Malaysia (UTM)
for great facilities and continuous
support in completing this research. This
work is highly related to the authors’
previous work in ‘The Development of
a Dependable Distributed Embedded
System’.

RefeReNCeS
[1] Cenesiz, N., and Esin, M. (2004).

“Controller Area Network (CAN) for
Computer Integrated Manufacturing
Systems”. Journal of Intelligent
Manufacturing. Vol. 15(4), 481-489.

[2] Farsi, M., Ratcliff, K., and Barbosa, M.
(1999). “An Overview of Controller
Area Network”. Computing & Control
Engineering Journal. Vol. 10(3),
113-120.

[3] ARTIST FP5 Consortium (2005).
“Networks. In: LNCS 3436. Embedded
Systems Design”. (316-337). Heidelberg:
Springer Berlin.

[4] Paret, D. (2007). “Multiplexed Networks
for Embedded Systems”. England:
John-Wiley Sons.

[5] Varsekalis, D. H-, and Levine, W. S.
(2005). “Handbook of Networked &
Embedded Control Systems”. Boston:
Birkhauser.

[6] Kinoshima, T., Kobayashi, K., Zakaria,
N. A., Kimura, M., Matsumoto, N., and
Yoshida, N. (2007). “Communication
Model Exploration for Distributed
Embedded Systems and System Level
Interpretations”. In: LNCS 4809.
Emerging Directions in Embedded
and Ubiquitous Computing. (355-364)
Heidelberg: Springer Berlin.

[7] Microchip Technology Inc. (1999).
“AN713 Controller Area Network
(CAN) Basics”. [Application Note].
USA: Microchip Technology Inc.

[8] Microchip Technology Inc. (2002).
“AN228 A CAN Physical Layer
Discussion”. [Application Note]. USA:
Microchip Technology Inc.

[9] Microchip Technology Inc. (2004).
“PIC18FXX8 Data Sheet (DS41159)”.
[Datasheet] USA: Microchip Technology
Inc.

[10] Microchip Technology Inc. (2002).
“PIC18C CAN Routines in ‘C’.
[Application Note]”. USA: Microchip
Technology Inc.

