
 

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 10 No. 1-13 25 

 

A Language for Describing Disruptive Application 

Event Patterns Based on Combined Log Sequence 

and Concurrency 
 

 

Denzel D. Gabriel1, Ralph Laurence M. Matienzo1, Aresh T. Saharkhiz1 and Zaliman Sauli2 
1School of Information Technology, Mapúa University ,Makati 333 Sen. Gil Puyat Ave., Makati City 1200, Philippines. 

2School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia. 

ddgrabiel@mymail.mapua.edu.ph 

 

 
Abstract—Disruptive events are usually preceded by some 

signs or states that can usually detect by a running application 

and recorded in the application log; these signs are typically 

recorded as warning level log entry. Warning logs do not by 

themselves lead to disruptive incidents, but it is indicative of 

something that can go wrong. Combined with the other log 

entries it can be conclusive of an impending incident or 

disruptions. This study determines the language that will best 

describe these scenarios together with their resolution 

accurately; The language can be understood by humans and 

interpreted by a computer program can raise the alarm and sent 

notifications; allow either manual or automated resolution to be 

applied. The goal is to pre-empt the actual occurrence of a costly 

incident and the speedy application of corrective measures. 

Results showed that the language is able to successfully describe 

all the possible log scenarios of interest occurring in sequence, 

parallel or combined. 

 

Index Terms—Application Logs; Language; Log Monitoring; 

Mathematical Induction; Pattern Recognition; Programming 

Language. 

 

I. INTRODUCTION 

 

A programming language is a low or high, machine level 

language used to write instructions and construct computer 

programs such as C++, C#, COBOL, SQL, Java, Assembly 

Language and many more [1]. The Authors can classify them 

into one or a combination of the most common programming 

paradigms such as imperative, object-oriented, declarative, or 

functional. Imperative language is a programming paradigm 

that uses a sequence of statements to determine how to reach 

a certain goal. The basis of object-oriented programming is 

the concept of objects that contain properties and behaviors. 

Declarative language is a very high-level programming 

language where that programmer needs to specify only what 

to do rather than how to do it [1-4]. An example of this is SQL 

or Server Query Language used in the database. You just need 

to select rows or columns in the database, and it is up to the 

programmer / user what to do with those selected areas. 

Lastly, a Functional programming language is a 

programming paradigm where you set a variable or string, 

and make some functionality of it. The more appropriate 

programming paradigm to use for the design of a language 

depends on its purpose and intended implementation. 

In every language constructed, there is syntax and 

semantics. Each language has a different syntax and 

semantics based on its constructed rules. Syntax defines the 

arrangement and combination of various symbols of the 

language. Semantics is the meaning of the language 

constructed. 

Application Management and Support (AMS) is a growing 

multi-million dollar business whose objective is to ensure 

smooth and continuous business operation. The Service Level 

Agreement (SLA) between suppliers and the customers 

formally and quantitatively defines this objective.  

Application maintenance relies heavily on reacting instead 

of predicting events. Commercial applications and services 

normally come with warning logs that can be useful in 

predicting potential disaster. The ability to monitor 

collectively the logs generated by the various components of 

the applications together will enable management to avoid 

breaches in service level agreements.  

There are existing log monitoring applications that can 

detect and perform the necessary actions in the event of an 

incident such as automated notifications and in some cases 

automated remediation. However, so far the common use of 

logs is to aid the application management in manually 

investigating the root cause of the incident in order to 

determine the necessary fixes or workaround.  However, this 

method of reacting to the events as it occurs causes avoidable 

delays that can lead to SLA breaches and penalties. Current 

log monitoring systems are mostly reactive and designed 

merely to detect and trigger actions after the occurrence of an 

incident [5-11]. 

This study focuses on the design of a declarative language. 

The proposed language will serve as a means to improve the 

capabilities of existing Log Monitoring Tools. Specifically, 

the use of the language is to describe the combination of a set 

of patterns or sequences and concurrencies of the logs of an 

application to prevent disruptions in running applications. 

The simplicity and ease of use of the Declarative language 

make it more appropriate for use for the purpose of this study. 

Even non-programmers can use the proposed language. This 

study will explore a proactive approach in avoiding rather 

than fixing issues that can occur. The proactive approach is 

to find combined patterns of events occurring sequentially 

and or in parallel that can lead to disruptive situations. 

 

II. MATERIAL AND METHODS 

 

The authors will provide the proposed language to enable 

the user to describe the combination of concurrent and 

sequential log patterns. In this study, the authors will 

investigate the logs generated by Alfresco, which is a type of 

Enterprise Content Management (ECM) System application. 

The methodology of this study comprises of several parts, 



Journal of Telecommunication, Electronic and Computer Engineering 

26 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 10 No. 1-13  

such as identify and classify log formats, identify 

permutations of Log events, establish a suitable language 

syntax and semantics, develop a prototype, and language 

validation. 

 

A. Identify and Classify Log Formats 

The authors identified and classified different applications 

based on the purpose. Different applications have slightly 

different log format. The next step is to identify standard log 

formats used in each of the application classes. This includes 

logs related to input-output events, logs related to user events, 

transaction-related events, and resource-related events and 

many more. The final step will be the identification of the 

essential parts of the log format such as date and time stamp, 

a location such as a server name, the cause of the event, a 

detailed description of the event, log level, and others. The 

logs were grouped based on the following: (1) One string 

only, (2) Two string with one (1) variable, and three (3) Three 

or more strings with two (2) or more variables. Logs are just 

strings separated by varying values.  

 

B. Identify Permutations of Log Events 

Identify different combinations of how the different log 

formats, leading to disruptive situations, can occur. Log 

events can occur in sequence and in parallel. Figure 1 shows 

example of log scenario describing sequence of logs. The 

Authors, used permutation to identify all possible log 

combinations that can describe a scenario. The log contains 

the following: timestamp, log level and log details.  

Timestamp is the exact time that the log event occurred. This 

is the basis for filtering related log events. Log Level is the 

severity or significance of the log. Possible values can 

ERROR, WARN, INFO or DEBUG. In this study, only the 

WARN logs will be considered. The WARN are usually 

generated to indicate some suspicious events that is worth 

looking into. Log Detail distinguishes one log from the other. 

The same application can generate related logs in sequence.  

The log sequence will describe the sequence of specific log 

details and the period between the occurrences of successive 

log events. If Log1, Log2 and Log3 occurred in sequence, 

The Authors can describe this as L1 T1 L2 ... T(N-1) LN. The 

number of possible logs will depend on the possible values of 

N. If it represent the minimum value to be Nmin and the 

maximum as Nmax respectively and consider F as the 

smallest possible fraction value, then to compute for the 

maximum number of possible values. 

If T1 is 20 seconds and T2 is 30 seconds, then this 

expression says Log Detail 1 is followed by Log Detail 2 after 

20 seconds, Log Detail 2 is followed by Log Detail 3 after 30 

seconds.  

In a realistic case, it may be after some time range. For 

example, it will be looking for the sequence where L2 follows 

L1 (a) between 20 to 25 seconds, (b) within 20 seconds, or (c) 

more than 20 seconds. 

The number of possible logs will depend on the possible 

values of N. If it represents the minimum value to be Nmin 

and the maximum as Nmax respectively and consider F as the 

smallest possible fraction value, then to compute for the 

maximum number of possible values, it used the following: 

 

𝑃 = 1 + (𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛)/𝐹  (1) 

 

If the value is 3 to 6 and the smallest fraction is, 0.5 then 

this will give them: 

 

𝑃 = 1 + (6 − 3)/ 0.5 (2) 

  

𝑃 = 7 (3) 

 

Giving them 3, 3.5, 4, 4.5, 5, 5.5, 6. Usually, it shall only 

be interested in a subset of the possible values. This is 

normally stated as a range of values such as values greater 

than X, less than X, between X and Y, outside of X and Y or 

a set e.g. {3,4,9}. The proposed language needs to represent 

these cases. 

 

 
Figure 1: Example of log scenario describing the sequence of logs 

 

C. Establish a Suitable Language Syntax and Semantics 

The language syntax should be able to represent all kinds 

of log formats as identified in the previous step [12]. This 

syntax should also describe time-based characteristics such as 

sequencing and parallel occurrence of events.  The Authors 

developed a formal description of the syntax with the 

corresponding semantics or description of what it means.  

The syntax should describe how to declare respondents, 

actions to perform, and the different log events. In addition, 

it should be able to describe the sequence and concurrence of 

log events.  This will aid the potential user in describing 

combined log events to monitor. For a given example of 

LogA - {10+20} LogB +{5} LogC: N: I. 

This can be read as if LogA is followed by LogB within 10 

to 20 seconds, and LogC occurs within five (5) seconds after 

the occurrence of LogA, then N (notify a person) and I (give 

instruction). The plus (+) and minus (-) signs in the above 

example represent the occurrences in parallel and in 

sequence, respectively. 

The authors used the following notations to represent and 

evaluate the Log Sequence and Concurrency: 

 

1. Binary Concurrency (BC) – involves only two parallel 

logs. 

L1 + {To,Tf} L2 

2. General Concurrency (GC) – involves more than two 

parallel logs. 

L1 + {To1,Tf1} L2+ {To2 , Tf2} L3... (LN – 1) - 

{ToN , TfN} LN 

3. Binary Sequence (BS) – involves only 2 sequential logs. 

L1 - {To,Tf} L2 

4. General Sequence (GS) – involves more than 2 

sequential logs. 

L1 - {To1,Tf1} L2 - {To2, Tf2} L3 ... (LN – 1)- 

{ToN, TfN} LN 

5. Combined Sequence and Concurrency – involves a 

combination of parallel and sequential logs. 



A Language for Describing Disruptive Application Event Patterns Based on Combined Log Sequence and Concurrency 

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 10 No. 1-13 27 

L1 + {To1, Tf1} L2 - {To2 , Tf2} L3... 

 

In the above notations, {To1, Tf1} represents the time 

range. Logs are concurrent if it occurs in different 

applications or servers. It is sequential if it occurs in the same 

application or server. 

The notations given above will serve as the basis for the 

syntax of the proposed language. Moreover, the proposed 

language should be able to eliminate semantic ambiguity.    

 

D. Develop the Prototype 

The Authors developed an implementation prototype of the 

log-monitoring program to demonstrate the proposed 

language. This prototype will make use of dummy 

applications generating the different log formats. A simple 

test log generator program simulating the Alfresco 

application and the service applications will be written to 

simulate the generation of the concurrent and sequential logs. 

It used a test log generator to accept a script that describes 

how to generate the log string and timestamp and how to 

append it to a log file. The applications that will be simulated 

to generate logs are the Alfresco Explorer, Alfresco Share, 

Lucene (Solr) Search Service, Tomcat Web Server and 

MySQL or PostGress Database event log. 

The Authors developed a log monitoring service prototype 

for tracking the logs. This service will perform the following: 

(1) monitor log changes, (2) match the log changes against 

the known log patterns, (3) store the log details in the 

database, (4) determine if the database matches a configured 

log scenario, and (5) write the result describing the log pattern 

in a file if it detects a match. 

A prototype compiler was also developed for the language 

to demonstrate how to test the different scenarios. It will 

identify a set of scenarios to represent and cover all log 

combinations based on the knowledge of the parameter 

domain or range of values derived mathematically as 

described in the previous sections. 

The procedure of the prototype will include a number of 

scenarios representing each of the following possible 

combinations: (1) purely single, (2) two sequential or more 

logs in sequence, (3) two concurrent or more logs in parallel, 

(4) combined sequential and concurrent, and (5) compound 

combination. To validate the correctness of the language, it 

wrote at least two (2) sets of scripts for the possible log 

combinations. The first set of log scripts will determine if the 

log monitor properly catches a specific log scenario. The 

other set of log scripts will determine if the log monitor 

ignores a non-matching scenario. 

The prototype is based on the Backus Naur Form (BNF) 

specification. The BNF will have the syntax and semantics of 

the proposed language. The BNF will be used in the Editor 

where the user can describe the scenarios. The Editor will 

only produce the correct output that is the description of the 

scenario when the user follows the correct syntax based on 

what is written in the BNF. 

 

E. Language Validation 

The essential information needed to describe the log 

patterns to monitor includes the application definition, 

respondents, log definition, and scenarios. The log definition 

is the string or log format making up a specific log used by 

the log monitor in recognizing and identifying the log. This is 

simply a string possibly containing some numerical values. 

The scenario is a combination of sequential and concurrent 

logs. The proposed language should describe these 

combinations. 

The main effort of this study is on the description of the 

various log scenarios. It can validate that the language is 

sufficient by proving that the proposed language can 

represent all these scenarios. 

It can organize all the possible description of logs as a well-

ordered set. If it uses the symbols L, I, + and - in the 

description of a scenario, it can write the following: 

 

Case 1: Sequential log pattern 

L1 

L1 - I1 L2 

L1 - I1 L2 - ... - Ln 

 

Case 2: Concurrent log pattern 

L1 + I1 L2 

L1 + I1 L2 + ... +In-1 Ln 

 

Case 3: Combined Concurrent and Sequential log pattern 

L1 + I1 L2 - I3 L3 - I4 L4 ... In-1 Ln 

 

In this example, L is the set of logs that form the scenario, 

I, is the interval between sequential events or the interval 

when two or more logs can be considered concurrent, + 

indicates 2 or more concurrent and – indicates two or more 

sequential logs. induction method as stated in [13] was 

utilized to check the correctness of the language.  There are 

two induction steps. The first step, known as the base case, is 

to prove the given statement for the first natural number. The 

second step, known as the inductive step, is to prove that the 

given statement for any one natural number implies the given 

statement for the next natural number. 

 

F. Test Procedure 

The procedure contains three (3) parts, which are the 

creation of the scenario using the proposed language, 

simulating the logs generated by the application, and testing 

the log monitoring prototype. 

 

III. RESULTS AND DISCUSSIONS 

 

The scenarios that are tested are the logs occurred in single, 

sequential, concurrent, and combined respectively. The 

images shown in Figures 2 to 5 are the scenarios of the log 

events. The application definitions were defined, as well as, 

the respondents and it will notify them if a log has been 

detected in a specific timeframe, and the log definitions that 

contains details of the log. The scenarios were also defined 

but in the different event to determine which respondent 

should receive the notifications. If a log is detected within a 

timeframe, it gives notification to the respondents. 

Figure 6 illustrates the SQL scripts output in this study. All 

the definitions are ready to be stored in the database. If there 

is a need for modification, it is accessible for changes. The 

user can now create new scenarios and also update or delete 

the scenarios given if it is necessary as shown in Figure 7. 

 



Journal of Telecommunication, Electronic and Computer Engineering 

28 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 10 No. 1-13  

 
Figure 2: Scenario Editor – Actual (AppDefinitions, Respondents, 

LogDefinitions) 

 

 
 

Figure 3: Scenario Editor – Actual (LogDefinitions) 

 

 
 

Figure 4: Scenario Editor- (Scenarios) 

 

 
 

Figure 5: Scenario Editor - Alfresco 

 

 
Figure 6: SQL Scripts  

 

 
 

Figure 7: Scenario Builder 
 

The image is shown in Figure 8 an example of the log 

detection while monitoring, this is real-time detection of the 

scenario, in a given time interval. The log details are ten (10) 

left in disk and twenty (20) memory, which is an example of 

a log event while monitoring the log files. Originally it only 

detects when there is a newly generated log that occurred. 
 

 
 

Figure 8: App1.log 

 

Image shown in Figure 9 is detecting a log with a matching 

scenario. There were some challenges encountered during its 

development and tested these are found in the Log Format, 

Parsing, and SQL Code Generation. 

Log Format Issue - There are cases where a part of the log 

can have different values. If it is a number, then this could be 

specified by range, for example, all positive integers, 

numbers between minimum and maximum like one to ten. If 

it is a string, then it can be specified using a wildcard or a set 

of acceptable values like: {app1, app2, app3}. This may be 

considered as a limitation. 

Parsing Issue - There are tokens that can also be parsed as 

a string enclosed in a quote. There should be a way to 

distinguish generic strings from filenames for example. This 

was resolved by identifying special characteristics of the 

filename such that it can only begin with a number or letter. 

SQL Code Generation - When generating the SQL 

statements, the presence of a quote character might also show 

some issues since it is a special character in SQL statement. 

This is done by preprocessing the string and replacing the 

single quote with two quotes. 

There are probably some issues that are not mentioned and 

not yet encountered by the Authors; however, these issues 

will certainly not cause much harm or damage in the 

operation of the prototype. 

 



A Language for Describing Disruptive Application Event Patterns Based on Combined Log Sequence and Concurrency 

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 10 No. 1-13 29 

 
Figure 9: Logger.log 

 

IV. CONCLUSION 

 

The proposed Declarative Language was developed 

successfully using the methodology defined in the study. 

Using mathematical approach, The Authors were able to 

make the classifications and generalizations that became the 

basis of the development of the rules of the language. The 

developed Prototype was used to demonstrate how the 

language will be used in the actual setting. Based on the 

results and tests made, it can be concluded that the language 

is able to successfully describe all the possible log scenarios 

of interest occurring in sequence, parallel or combined. Thus, 

the developed declarative language was able to represent the 

classifications and generalizations of scenarios. 

 

REFERENCES 

 
[1] T. L. Hinrichs, D. Rossetti, G. Petronella, V. N. Venkatakrishnan, A. 

P. Sistla, and L. D. Zuck, “Weblog: A declarative language for secure 
web development,” in Proceedings of the Eighth ACM SIGPLAN 

workshop on Programming languages and analysis for security, 2013, 

pp. 59–70.  
[2] F. Marco and M. Marco, “Design of a declarative language for 

pervasive systems.” Master’s thesis, Politecnico di Milano, Milano, 

2007.  
[3] A. Mottola, “Design and implementation of a declarative programming 

language in a reactive environment.” Università degli Studi di Roma, 

2005. 
[4] S. J. Løvborg, “Declarative Programming and Natural Language.” 

2007. 

[5] M. O. Shafiq, “Semantically Formalized Logging and Advanced 
Analytics for Enhanced Monitoring and Management of Large-scale 

Applications.” University of Calgary, 2015. 

[6] D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao, P. Stahlberg, and G. 
Anderson, “SASE: Complex event processing over streams,” arXiv 

Prepr. cs/0612128, 2006.   

[7] S. Boyer, O. Dain, and R. Cunningham, “Stellar: A fusion system for 
scenario construction and security risk assessment,” in Information 

Assurance, 2005. Proceedings. Third IEEE International Workshop on, 

2005, pp. 105–116.  
[8] M. Wei, I. Ari, J. Li, and M. Dekhil, “Receptor: Sensing Complex 

Events in Data Streams for Service-Oriented Architectures.”,” Tech. 

Rep. HPL-2007-176, HP Lab., 2007.  

[9] W. Fitzgerald, R. J. Firby, A. Phillips, and J. Kairys, “Complex event 

pattern recognition for long-term system monitoring,” in Workshop on 

Interaction between Humans and Autonomous Systems over Extended 
Operation, 2004.  

[10] P. Gay, B. López, and J. Meléndez, “Sequential learning for case-based 
pattern recognition in complex event domains,” in Proceedings of the 

16th UK Workshop on Case-Based Reasoning. 13th December, 2011, 

pp. 46–55.  
[11] M. M. Burnett and A. L. Ambler, “A declarative approach to event-

handling in visual programming languages,” in Visual Languages, 

1992. Proceedings., 1992 IEEE Workshop on, 1992, pp. 34–40.  
[12] I. L. Bratchikov, “The Syntax of Programming Languages,” Russ. 

Nauk., 1975.   

[13] E. W. Dijkstra, Selected writings on computing: a personal perspective. 
Springer Science & Business Media, 2012. 

 

 


