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Abstract 

Free space optic (FSO) can be regarded as a 
potential and attractive option to fiber optic. 
FSO has the ability to go beyond the limit of 
fiber optics. Unfortunately, due to the dispersion 
effect in the atmosphere, FSO suffers from 
signal loss and attenuation. Thus, practical 
and detailed research is needed to improve the 
system. Simulation on FSO propagation using 
measured parameter values is important to gain 
better understanding and level of accuracy on 
the pulse behavior in free space. Using MATLAB 
as the simulation platform and with the help of 
experimental parameter values, an accurate 
model can be obtained and studied. This will 
allow some level of prediction on the behavior 
of the propagating light pulse in the atmosphere 
and subsequently the FSO performance can be 
further improved.

Keywords: Atmospheric turbulence, Binary 
Pulse Position Modulation, Bit Error Rate, 
Simulation System.

I. INTRODUCTION

Laser communication in free space offers 
an attractive alternative for transferring 
high-bandwidth data when optical fiber 
cable is either impractical or not viable.  
Here, wireless optical connectivity can 
be used as the last mile to connect fiber 
backbone to end users, such as from 
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building to building, due to the cost 
and time-consumption on top of the 
impossibility and impracticality in laying 
down optic fibers [1]. Other advantages 
of adopting the optical wireless 
communication systems, also termed as 
free space optics (FSO) or lasercom (laser 
communications), includes [2]:-

a) no licensing or tariffs fees required 
for its utilization [3];

b) small, lightweight and compact;
c) ease of installation and deployment 

(digging up of road is  
    unnecessary);
d) it offers very high data rates due to 

its large bandwidth;
e) high security fears (the extremely 

directional, narrow beam optical 
link makes eavesdropping and 
jamming       nearly impossible);

f) it operates at low power 
consumption;

g) there are no rf radiation hazards 
(eye-safe power levels are 
maintained).

However, random fluctuations in the 
atmosphere’s refractive index can 
severely degrade the wave front of a 
signal-carrying laser beam, causing the 
receiver to suffer from intensity fading. 
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This results in increased system bit error 
rates (BERs) particularly along horizontal 
propagation paths [4]. 

Research related to pulse propagation 
in both fiber optic and FSO show the 
propagating pulse is affected by both linear 
and nonlinear elements. The linear effects 
include the group velocity dispersion 
(GVD) and third order dispersion (TOD), 
while the nonlinear effects comprise of self 
phase modulation (SPM). Both the linear 
and nonlinear effects are responsible for 
pulse broadening as well as distortion [5]. 
Based on the severity of these effects, data 
reliability can be compromised and may 
lead to the increase in BER. In fiber optic 
the extent of these effects can be estimated 
and anticipated through numerous 
literatures and research. Unfortunately 
for FSO the extent of these effects cannot 
be estimated easily due to the random 
nature of the atmosphere. Thus, it is 
important to have an accurate prediction 
model to estimate pulse behavior in the 
atmosphere.

In this paper, the simulation on FSO is 
carried out without the nonlinear effects. 
The nonlinear Schrödinger equation is 
briefly discussed in Section II while the 
type of pulses used in the simulation is 
shown in Section III. Simulation results on 
the second order dispersion are presented 
in Section IV. The conclusion is given in 
Section V. 

II. NONlINeAR sCHRÖDINgeR 
eQUATION

The Nonlinear Schrödinger Equation 
(NLSE) is used to mathematically explain 
varying pulse envelope propagating 
in a medium with linear and nonlinear 
elements. Thus, NLSE is suitable for 
describing pulse propagation in free 
space. Numerical solution for NLSE 
can be obtained by applying split step 
Fourier (SSF) or beam propagation (BPM) 
method.

Equation (1) represents the generalized 
form of NLSE for complex envelope A(z,t). 
Equation (2) is the linear part of NLSE. It 
consists of second order dispersion (SOD), 
TOD and attenuation. Equation (3) is the 
nonlinear part of NLSE that denotes the 
SPM. The β2 and β3 are the quadratic and 
cubic dispersion coefficient respectively, 
α is the attenuation factor and γ is the 
nonlinear coefficient [5]. 
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III. PULSE TYPE

Two types of pulses were used in the simulation. They are 
the chirped Gaussian pulse and the chirped hyperbolic secant 
pulse [5] as shown in (4) and (5) respectively.  
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Equation 6 is the pulse initial amplitude, while t is time 
period, T0 is the half-width at 1/e intensity point, P0 is the 
initial peak power and C is the frequency chirp. All of the 
simulations were carried out using the parameter values of,    
T0 = 2 ps, P0 = 1W and C = 0 (unchirped). 

IV. SIMULATION RESULTS DUE TO SECOND ORDER
DISPERSION

Second order dispersion (SOD) is a linear effect and the 
primary source of pulse broadening. From Eq. 2, SOD is 
governed by 2, known as the group velocity dispersion 
(GVD). GVD represents dispersion of group velocity that 
determines the broadening characteristic of the pulse. The 

frequency dependence of the group velocity leads to pulse 
broadening simply because different component of the pulse 
disperse during propagation and do not arrive simultaneously 
[5]. Pulse broadening occurs due to frequency chirps 
generated by the GVD induced phase shift. GVD changes the 
phase of each spectral component of the pulse by an amount 
that depends on the frequency and the propagated distance [6]. 
The generated frequency chirps changes the velocity of each 
spectral components causing them to travel in different 
velocity. Spectral components at the leading edge travel faster 
compare to the trailing edges. This causes a delay on the pulse 
arrival. Pulse broadening is dependent on the delay and 
linearly correlated with distance. The pulse broadening does 
not rely on the sign of 2.

 To observe the effect of SOD alone, 3 and  in Eq. 1 are 
set to zero while GVD, 2 = 21 ps2/km [3]. 

Fig. 1. Pulse propagation at z = 0;0.5;1;1.5 km with 2 = 21 ps2/km for (a) 
unchipred Gaussian pulse  and (b) unchipred hyperbolic secant pulse 

The broadening experienced by both pulses can be 
observed in Fig. 1, where both pulses show a significant 
amount of broadening. Pulse broadening is linearly correlated 
with the propagated distance. As the pulse propagates, 
constant phase shift cause a constant increase in chirp. The 
increase in chirp affects the velocity and the arrival of the 
pulse spectral components. The change of velocity 
consequentially increases delay and cause further broadening. 
The magnitude of delay increases with the distance. These 
effects can be observed in Fig. 1(a) and Fig. 1(b). 

III. pUlse Type

Two types of pulses were used in the 
simulation. They are the chirped Gaussian 
pulse and the chirped hyperbolic 
secant pulse [5] as shown in (4) and (5) 
respectively. 

II. NONLINEAR SCHRÖDINGER EQUATION

The Nonlinear Schrödinger Equation (NLSE) is used to 
mathematically explain varying pulse envelope propagating in 
a medium with linear and nonlinear elements. Thus, NLSE is 
suitable for describing pulse propagation in free space. 
Numerical solution for NLSE can be obtained by applying 
split step Fourier (SSF) or beam propagation (BPM) method. 

Equation (1) represents the generalized form of NLSE for 
complex envelope A(z,t). Equation (2) is the linear part of 
NLSE. It consists of second order dispersion (SOD), TOD and 
attenuation. Equation (3) is the nonlinear part of NLSE that 
denotes the SPM. The 2 and 3 are the quadratic and cubic 
dispersion coefficient respectively,  is the attenuation factor 
and  is the nonlinear coefficient [5].

2 3
232

2 2 | |
2 6 2

idA d A d A A i A A
dz dt dt

2 3

2 32 3

1
2 6 2

LA i A A A
z T T

2| |NLA i A A
z

III. PULSE TYPE

Two types of pulses were used in the simulation. They are 
the chirped Gaussian pulse and the chirped hyperbolic secant 
pulse [5] as shown in (4) and (5) respectively.  

2

0
0

1( , ) exp
2
iC tA z t A

T
                               (4)                                                                                                                            

2

0 2
0

( , ) sec exp
2o

t iCtA z t A h
T T

                  (5) 

0 0A P                    (6) 

Equation 6 is the pulse initial amplitude, while t is time 
period, T0 is the half-width at 1/e intensity point, P0 is the 
initial peak power and C is the frequency chirp. All of the 
simulations were carried out using the parameter values of,    
T0 = 2 ps, P0 = 1W and C = 0 (unchirped). 

IV. SIMULATION RESULTS DUE TO SECOND ORDER
DISPERSION

Second order dispersion (SOD) is a linear effect and the 
primary source of pulse broadening. From Eq. 2, SOD is 
governed by 2, known as the group velocity dispersion 
(GVD). GVD represents dispersion of group velocity that 
determines the broadening characteristic of the pulse. The 

frequency dependence of the group velocity leads to pulse 
broadening simply because different component of the pulse 
disperse during propagation and do not arrive simultaneously 
[5]. Pulse broadening occurs due to frequency chirps 
generated by the GVD induced phase shift. GVD changes the 
phase of each spectral component of the pulse by an amount 
that depends on the frequency and the propagated distance [6]. 
The generated frequency chirps changes the velocity of each 
spectral components causing them to travel in different 
velocity. Spectral components at the leading edge travel faster 
compare to the trailing edges. This causes a delay on the pulse 
arrival. Pulse broadening is dependent on the delay and 
linearly correlated with distance. The pulse broadening does 
not rely on the sign of 2.

 To observe the effect of SOD alone, 3 and  in Eq. 1 are 
set to zero while GVD, 2 = 21 ps2/km [3]. 

Fig. 1. Pulse propagation at z = 0;0.5;1;1.5 km with 2 = 21 ps2/km for (a) 
unchipred Gaussian pulse  and (b) unchipred hyperbolic secant pulse 

The broadening experienced by both pulses can be 
observed in Fig. 1, where both pulses show a significant 
amount of broadening. Pulse broadening is linearly correlated 
with the propagated distance. As the pulse propagates, 
constant phase shift cause a constant increase in chirp. The 
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Equation 6 is the pulse initial amplitude, 
while t is time period, T0 is the half-width 
at 1/e intensity point, P0 is the initial peak 
power and C is the frequency chirp. All 
of the simulations were carried out using 
the parameter values of,    T0 = 2 ps, P0 = 
1W and C = 0 (unchirped).

IV. sIMUlATION ResUlTs 
DUe TO seCOND ORDeR 
DIspeRsION

Second order dispersion (SOD) is a 
linear effect and the primary source 
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of pulse broadening. From Eq. 2, 
SOD is governed by β2, known as 
the group velocity dispersion (GVD). 
GVD represents dispersion of group 
velocity that determines the broadening 
characteristic of the pulse. The frequency 
dependence of the group velocity leads 
to pulse broadening simply because 
different component of the pulse disperse 
during propagation and do not arrive 
simultaneously [5]. Pulse broadening 
occurs due to frequency chirps generated 
by the GVD induced phase shift. GVD 
changes the phase of each spectral 
component of the pulse by an amount 
that depends on the frequency and the 
propagated distance [6]. The generated 
frequency chirps changes the velocity of 
each spectral components causing them 
to travel in different velocity. Spectral 
components at the leading edge travel 
faster compare to the trailing edges. This 
causes a delay on the pulse arrival. Pulse 
broadening is dependent on the delay 
and linearly correlated with distance. The 
pulse broadening does not rely on the 
sign of β2.

To observe the effect of SOD alone, β3 and 
γ in Eq. 1 are set to zero while GVD, β2 = 
21 ps2/km [3].

II. NONLINEAR SCHRÖDINGER EQUATION

The Nonlinear Schrödinger Equation (NLSE) is used to 
mathematically explain varying pulse envelope propagating in 
a medium with linear and nonlinear elements. Thus, NLSE is 
suitable for describing pulse propagation in free space. 
Numerical solution for NLSE can be obtained by applying 
split step Fourier (SSF) or beam propagation (BPM) method. 

Equation (1) represents the generalized form of NLSE for 
complex envelope A(z,t). Equation (2) is the linear part of 
NLSE. It consists of second order dispersion (SOD), TOD and 
attenuation. Equation (3) is the nonlinear part of NLSE that 
denotes the SPM. The 2 and 3 are the quadratic and cubic 
dispersion coefficient respectively,  is the attenuation factor 
and  is the nonlinear coefficient [5].
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The broadening experienced by both pulses can be 
observed in Fig. 1, where both pulses show a significant 
amount of broadening. Pulse broadening is linearly correlated 
with the propagated distance. As the pulse propagates, 
constant phase shift cause a constant increase in chirp. The 
increase in chirp affects the velocity and the arrival of the 
pulse spectral components. The change of velocity 
consequentially increases delay and cause further broadening. 
The magnitude of delay increases with the distance. These 
effects can be observed in Fig. 1(a) and Fig. 1(b). 

Fig. 1. Pulse propagation at z = 0;0.5;1;1.5 
km with β2 = 21 ps2/km for (a) unchipred 

Gaussian pulse  and (b) unchipred hyperbolic 
secant pulse

The broadening experienced by both 
pulses can be observed in Fig. 1, where 
both pulses show a significant amount of 
broadening. Pulse broadening is linearly 
correlated with the propagated distance. 
As the pulse propagates, constant phase 
shift cause a constant increase in chirp. 
The increase in chirp affects the velocity 
and the arrival of the pulse spectral 
components. The change of velocity 
consequentially increases delay and cause 
further broadening. The magnitude of 
delay increases with the distance. These 
effects can be observed in Fig. 1(a) and 
Fig. 1(b).

From Figure 2(a) and 2(b), the waterfall 
plot for both pulses show similar 
characteristics in pulse broadening. It is 
obvious SOD induced broadening increase 
linearly with propagating distance. 
Nevertheless, both pulses have displayed 
different broadening rates. Hyperbolic 
secant pulse reveals a lower broadening 
rate compare to Gaussian. This can be 
observed as Gaussian pulse exhibits wider 
broadening and lower pulse amplitude as 
it propagates, in comparison to hyperbolic 
secant pulse. This implies that both pulses 
have different effect to GVD. There is one 
important attribute; hyperbolic secant 
pulse shows a faint distortion at both 
edges of its pulse. Distortion can be seen 
between distances 0.3 km and 0.5 km but 
disappears as the pulse propagates; as 
can be observed in Fig. 2(b).

Broadening rate for both Gaussian and 
hyperbolic secant pulse can be observed 
in Figure 3. Hyperbolic secant pulse 
shows lower broadening rate at about 
34.5% compare to Gaussian pulse. The 
difference in broadening rate can be 
traced back to the difference in the pulse 
shape. The pulse shape is defined by the 
pulse equation and both pulses manifest 
differently over the same parameters as 
can be seen in the Gaussian pulse which is 
presented by Eq. 4 and hyperbolic secant 
pulse as in Eq. 5. These differences create 
variations and rare anomalies
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From Figure 2(a) and 2(b), the waterfall plot for both pulses 
show similar characteristics in pulse broadening. It is obvious 
SOD induced broadening increase linearly with propagating 
distance. Nevertheless, both pulses have displayed different 
broadening rates. Hyperbolic secant pulse reveals a lower 
broadening rate compare to Gaussian. This can be observed as 
Gaussian pulse exhibits wider broadening and lower pulse 
amplitude as it propagates, in comparison to hyperbolic secant 
pulse. This implies that both pulses have different effect to 
GVD. There is one important attribute; hyperbolic secant 
pulse shows a faint distortion at both edges of its pulse. 
Distortion can be seen between distances 0.3 km and 0.5 km 
but disappears as the pulse propagates; as can be observed in 
Fig. 2(b). 

Broadening rate for both Gaussian and hyperbolic secant 
pulse can be observed in Figure 3. Hyperbolic secant pulse 
shows lower broadening rate at about 34.5% compare to 
Gaussian pulse. The difference in broadening rate can be 
traced back to the difference in the pulse shape. The pulse 
shape is defined by the pulse equation and both pulses 
manifest differently over the same parameters as can be seen 
in the Gaussian pulse which is presented by Eq. 4 and 
hyperbolic secant pulse as in Eq. 5. These differences create 
variations and rare anomalies 

Fig. 2. Pulse propagation at z = 1 km and with 2 = 21 ps2/km for (a)unchirped 
Gaussian pulse and  (b)unchirped hyperbolic secant pulse. 

Fig. 3. Broadening factor for unchirped Gaussian and unchirped Hyperbolic 
Secant pulse over the distance, z = 1 km, with 2 = 21 ps2/km,  

V. CONCLUSION

In this paper the dispersion effects were simulated 
individually in 1D and 2D graphical representation. 
Simulations were done in order to observe pulse behavior and 
response to linear parameters. Pulse propagation in free space 
was simulated with the SOD in order to observe the pulse 
behavior in free space. Simulation result may serve as a 
prediction model that can be used to estimate or predict to an 
extent the actual pulse behavior in free space. 
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V. CONClUsION

In this paper the dispersion effects were 
simulated individually in 1D and 2D 
graphical representation. Simulations were 
done in order to observe pulse behavior 
and response to linear parameters. Pulse 

propagation in free space was simulated 
with the SOD in order to observe the 
pulse behavior in free space. Simulation 
result may serve as a prediction model 
that can be used to estimate or predict to 
an extent the actual pulse behavior in free 
space.
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